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Abstract

We present a comparison of several Difference Image Analysis (DIA) techniques, in combination with Machine Learning (ML)
algorithms, applied to the identification of optical transients associated to gravitational wave events. Each technique is assessed
based on the scoring metrics of Precision, Recall, and their harmonic mean F1, measured on the DIA results as standalone tech-
niques, and also in the results after the application of ML algorithms, on transient source injections over simulated and real data.
This simulations cover a wide range of instrumental configurations, as well as a variety of scenarios of observation conditions, by
exploring a multi dimensional set of relevant parameters, allowing us to extract general conclusions related to the identification of
transient astrophysical events.

The newest subtraction techniques, and particularly the methodology published in Zackay et al. (2016) are implemented on an
Open Source Python package, named properimage, suitable for many other astronomical image analyses. This together, with the
ML libraries we describe, provides an effective transient detection software pipeline. Here we study the effects of the different
ML techniques, and the relative feature importances for classification of transient candidates, and propose an optimal combined
strategy. This constitutes the basic elements of pipelines that could be applied in searches of electromagnetic counterparts to GW
sources.

Keywords: methods: data analysis, techniques: image processing

1. Motivations: Synoptic era scenario

Synoptic sky surveys are promoters of a new era of obser-
vational astronomy, where data volume is becoming a major
challenge, and discoveries are happening at a rate never experi-
enced before. Several collaborations, involved in observational
astrophysics projects, are pushing towards a data-driven sci-
ence paradigm, and transforming astronomy. The Large Syn-
optic Survey Telescope (LSST, Ivezic and for the LSST Col-
laboration, 2008; LSST Science Collaboration et al., 2009) is
going to bring this phenomenon to a higher level, where raw
data disk-space consumption is going to be in the PetaByte-
scales by the end of the project. To face this transformation, as-
tronomers have been involved in information technology devel-
opment for several decades, bringing to existence organizations
such as IVOA1, an international alliance committed to organize
and make available a living archive of historical astrophysical
data.
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In this context, a new era of observational astronomy is
arising since the first direct detection of Gravitational Waves
(GW, Abbott and Collaboration, 2016). This historical dis-
covery places a huge responsibility on synoptic telescopes: the
search for the electromagnetic (EM) counterparts of these GW
events. The Transient Optical Robotic Observatory of the South
(TOROS2), is a project aimed at identifying those GW sources.
During Advanced LIGO science run O1 TOROS participated in
the search for an optical counterpart to the first GW detection
(Dı́az and Collaboration, 2016), in an effort to determine the
origin of its progenitor. The theoretical scenario was developed
in several articles, such as Kasen et al. (2013); Barnes et al.
(2016), where models predict that a GW event like GW150914
involves a merger between compact objects. This model has
three possible cases, featuring binary combinations of Black
Hole and Neutron Stars components. In case a Neutron Star
is one of these, the merger will produce an EM emission (or
Kilonova) that will last a couple of days, and will be visible at
optical and near-infrared wavelengths. The search for such an

2https://toros.utrgv.edu
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elusive signature is a major challenge, and in many ways can
be described as a race against time. This objective was reached
recently, when the event GW170817 was identified by several
collaborations as the first observed Kilonova, see for example
Abbott et al. (2017a); Dı́az et al. (2017) and references therein.

One difficulty involved is the need for a comparison method
between images obtained on different epochs, since a fast de-
tection of small variations in brightness, over a large region of
the sky is critical to identify the signature of a Kilonova event.
Another issue is the requirement of a wide field of view, since
the instrument dedicated to the search would need to cover sev-
eral hundred square degrees per night, and also reaching deep
magnitude limits. If we combine these two simple conditions
of wide sky coverage and temporal resolution we have that the
image comparison method will need to deal with variable Point
Spread Functions (PSF) across several square degrees and, at
the same time, be able to detect the magnitude variations with
high fidelity. One of the approachs to this task is to compare the
detected sources, and their brightnesses, on each epoch, and to
select as possible transient candidates any mis-match. Though
this methodology can find difficulties when applied on crowded
stellar fields, or when the transient event is buried in a galaxy,
and its flux is entagled with the luminosity profile of the host,
(this was particularly the case for the event of GW170817). In
the former case the angular cross match of sources can have a
computational cost which would introduce an undesired time
overhead for a transient discovery survey with high cadence. In
the latter case in order to measure the flux and position of the
transient source a correct modeling of the host galaxy luminos-
ity profile must be applied beforehand.

There are several works that tackle this problem by using
an image subtraction methodology, such as Alard and Lupton
(1998); Bramich (2008). This image differentiation approach
avoids the discussed issues of catalog cross-matching. A dif-
ferent approach has been taken by Zackay et al. (2016) in a se-
ries of three papers that derive an improved treatment of astro-
nomical images from an statistical point of view. This is more
general that previous works, and translates several astronomical
common methods such as source detection into statistical lan-
guage. The authors of this method claim that it also reduces the
necessity of a posterior Machine Learning (ML) analysis. The
astronomical community has been increasing the implementa-
tion of ML, seizing its capability for solving data processing
issues based on handcrafted examples (Fortson et al., 2012),
specially in the transient detection area (Djorgovski et al., 2010;
Law et al., 2009; Rau et al., 2009).

In this work we implement three difference image analysis
techniques: Alard & Lupton’s (from now on A), Bramich’s (B),
and Zackay’s methodology in two separated ways (Z and S) to
simulated and real data. Afterwards we train ML algorithms
to identify interesting targets buried in a sea of bogus detec-
tions, with as extreme ratios as 1% or less. The aim of this
article is to develop and establish the best possible combination
of difference imaging and machine learning techniques based
on a comprehensive metric. Novel promising methods such as
those based on Convolutional Neural Networks (Sedaghat and
Mahabal, 2017) will be compared in the future, when TOROS

collaboration had produced enough data to train such complex
models. In this small survey context classical Machine Learn-
ing algorithms should to be suitable enough.

In the following section we introduce the difference image
and Machine Learning techniques to be studied, in section 3 we
present the simulated and real data sets that we will be used in
the analysis. In section 4 we discuss the results of difference
image analysis techniques previous to Machine Learning algo-
rithm implementation. After that we perform the feature selec-
tion, and analyze different ML algorithms, estimate their per-
formance for the classification of real/bogus detected on differ-
ence imaging results. Finally in section 5 we present conclud-
ing remarks and future prospects over this work. The software
developed and datasets here used are open source, and can be
found on TOROS public repositories.3

2. Methods

2.1. Difference Image Analysis

Difference Image Analysis (DIA) is a technique which di-
rectly compares two images of the same position in the sky,
taken at different epochs. It is usual that one of these is a co-
addition of many previously taken images, and has very high
signal to noise ratio, known as reference frame (R). The other
image would be the recently acquired new image (N). Both im-
ages are assumed to be astrometrically aligned and registered,
and so a special kind of subtraction is performed to deliver, after
object detection, the transient candidates. The detection proce-
dure in the difference images is in essence a classification prob-
lem (source or background), that gives as a result detections of
transient sources (TS), detection of artifacts (Ar) and missed
transients (MT).

2.1.1. Linearized kernel models
Image differencing goes back to Phillips and Davis (1995)

where the Eq. 1 linking the new and the reference images at
position (x, y), is proposed by means of a deconvolution kernel
(Ker(u, v)), bound directly to the change in shape of the PSF
between both images. A direct solution would be like Eq. 2
by solving in Fourier space for the kernel (here Â denotes the
Fourier transform of A).

R(x, y) ⊗ Ker(u, v) = N(x, y) (1)

K̂er =
N̂

R̂
(2)

This can become numerically unstable in the case that the
PSF of N is narrower than the PSF of the R image, and also
in the presence of high frequency noise on R, making essen-
tial to the succes of this methodology the good quality of the
Reference images. The linearized kernel model was exten-
sively developed in Alard and Lupton (1998), where a decom-
position in base functions Bi(x, y) for the kernel is proposed:

3https://github.com/toros-astro
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Ker =
∑

i kiBi(x, y), where ki are the coefficients. Given the as-
sumption that every pixel in the images are drawn from a Gaus-
sian distribution N((R ⊗ Ker)(x, y), σ(x, y)) -where N denotes
a normal distribution function-, we can estimate a Maximum
Likelihood using the following cost function Q, equivalent to a
chi-square test:

Q =

∫
(x,y)

[
N(x, y) − (Re f (x, y) ⊗ Ker(u, v))

]2 /σ(x, y)2 (3)

The first proposed kernel was a sum of Gaussian functions mod-
ulated by low order polynomials (pu(x) and pv(y)), like the
Eq. 4.

Ker(x, y) =
∑

n

an N(µ = 0, σu, σv) pu(x) pv(y) (4)

This model is not versatile enough for complex-structured
PSFs, and the image subtractions performed with this method-
ology may present artifacts. Bramich (2008) proposed a more
flexible model modification, as it treats each pixel from the PSF
as an independent value. This is basically to use delta type basis
functions (Eq. 5), where each one is modulated by a coefficient
which represents the pixel value located in position (ui, vi).

Ker(u, v) =
∑

i

kiδ(u − ui, v − vi) (5)

The determination of ki coefficients is performed during mini-
mization of the function Q, that is, during the likelihood max-
imisation. This techniques have been applied before on vari-
ous astronomical analyses such as variable star search, and ex-
oplanet search, for example in Oelkers et al. (2013, 2015) just
to name a few. In Bramich et al. (2016) the author explores
further options for kernel modelling, adding several selection
criteria to optimize the subtraction, although this is not being
tested in this work.

2.1.2. Zackay formal image treatments
The proposed image model by Zackay et al. comes from a

different statistical point of view, as they choose to represent
the pixels of the images as distributions, and attempt to perform
hypothesis testing on their values.

In the case of the reference image R the model is as below:

R(x, y) = FRT ⊗ PR + εR (6)

with T being the true image, i.e. taken with a perfect infinite
telescope, and no atmosphere influence; FR ∈ IR is the trans-
parency, which encloses the atmosphere and instrumental ab-
sorption, and would play the role of a flux zero point; the PR is
the PSF, which should be normalized to have unit sum; and εR

is the background noise with variance V(εR) = σ2
R, assumed to

be normally distributed.
This model is suitable for statistical hypothesis testing of the

existence of a new source, since it allows the definition of sim-
ple null and alternative hypotheses for the new image:

H0 : N = FN T ⊗ PN + εN (7)
H1(q, α) : N = FN (T + αδq) ⊗ PN + εN . (8)

The lack of evidence for the null hypothesis H0 favors the ex-
istence of a point source at position q with flux α in the new
image, which is affected by PSF PN , transparency FN and noise
εN . According to the Neyman-Pearson lemma (Neyman and
Pearson, 1933a), the most powerful (following the definition
given in (Neyman and Pearson, 1933b)) statistic is the likeli-
hood ratio test:

L(α, q) =
P(N,R |H0)

P(N,R |H1(α, q))
, (9)

which can be calculated without prior information on T . It can
be proven that maximising equation 9 is the same as maximis-
ing the statistic S of equation 10

S :=
log(L(α, q))

α
(10)

and after intermediate calculations available in the appendix A
of (Zackay et al., 2016) the expression for the Fourier trans-
form of this statistic is obtained in terms of Fourier transform
of known quantities:

Ŝ =
FN F2

R P̂N |P̂R|
2 N̂ − FR F2

N P̂R |P̂N |
2 R̂

σ2
RF2

N |P̂N |
2 + σ2

N F2
R|P̂R|

2
, (11)

By following definitions presented in (Zackay and Ofek, 2017b)
and (Zackay and Ofek, 2017a) it is possible to prove that S is
the cross match convolution of the real difference image D and
its corresponding PSF PD of equation 13.

Ŝ = FD D̂ P̂D (12)

By algebraic manipulations the expression of each one looks
like

D̂ =
FR P̂R N̂ − FN P̂N R̂√
σ2

N F2
R|P̂R|

2 + σ2
RF2

N |P̂N |
2

(13)

P̂D =
FR FN P̂R P̂N

FD

√
σ2

N F2
R|P̂R|

2 + σ2
RF2

N |P̂N |
2

(14)

with the flux based zero point relative to the difference

FD =
FN FR√

σ2
N F2

R + σ2
RF2

N

. (15)

For source detection the authors claim that the best option is
to determine the locations where S presents peaks outside 5σ
(the robust σ). This is the same as a p-value test cut. We im-
plemented this as a separated technique, being the true source
detection method presented in the already cited work. Among
other features, this S image statistic has correlated background
noise, and thus is not suitable for every astronomical informa-
tion extraction. To recover this Zackay et al. derives the formu-
lation of an S corr image in Eq. 98 from Appendix C, which is
not affected by the noise level in the vicinity of bright sources
and other additional noise components.
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Figure 1: Diagram showing the combined DIA and ML analysis process devel-
oped in this work. Reference (R) and new (N) simulated images are processed
using DIA by applying Alard and Lupton (H), Zackay et al. (Z), Bramich (B)
methods, and S corr (S) image. We show for comparison, an example of a real
object, detected from an injected transient source (TS) and an example of a
bogus object arising from an artifact (Ar) in the image difference. In the bot-
tom of this figure, we show three bars, splitted into several blocks, each one
representing different classification results at different stages of our multi-stage
classification process. The first bar represents the results of source detection
after the DIA algorithms have performed the image subtraction. The first two
blocks of this bar represent the injected sources, which are splitted into Missed
and TS detected, and the left block is the resulting set of artifacts Ar. The ML
algorithms attempt to learn the classification of TS and Ar subsets into Real and
Bogus for each DIA technique. The results of ML are displayed in the second
bar, where the sum of the blocks TS and Ar are splitted into Real and Bogus
blocks of data. The combination of the DIA+ML results is represented in the
last horizontal bar, showing the final quantities of False Negatives (FN), True
Positives (TP), False Positives (FP) and the True Negatives (TN). As a final fig-
ure of merit we calculate the F1 for each combination of DIA+ML algorithms.

2.2. Elements of Machine Learning
DIA techniques provide the means to detect transient and

variable sources on images. However, as several defects arise
and are detected as bogus, it is necessary to classify them in or-
der to identify the real sources. Machine Learning (ML) takes
advantage of the power of massive amounts of data to generate
suitable models to assess the bogus real classification problem.
In the classification of transient objects there are several imple-
mentations by big collaborations whose capability of collect-
ing data got to overwhelm their human classification capacity.
This situation forced them to innovate and apply several ma-
chine learning techniques to data selection, in order to make
manageable their volumes of raw data, and focusing their atten-
tion on the most promising candidates. For a summary of the
methodologies implemented on recent years see, e.g., Bloom
et al. (2012).

2.2.1. Machine Learning Algorithms
Machine learning (ML) algorithms rely on the use of data to

generalize the relations between intervening variables in order
to make predictions. There are several classes of algorithms
that belong to this area. They differ on how they generalize
the examples, and more specifically, on the way they represent
the data as models. A relevant review on learning with algo-
rithms can be found in Domingos (2012), where a discussion
on aspects that concern to any ML algorithm is carried out. The
pertinent jargon adopted in this work can be summarized as:

• objective class: (also target class) the output variables
that we want to predict. In binary classification problems
they are commonly referred as “positive” and “negative”
classes.

• instance: a data example. Can be a training (“labeled”)
instance, or a new observation.

• features: the predictors, in short the measurable and/or
computable quantities that represent each instance.

• score: a value used to quantify the performance of an algo-
rithm to retrieving the objective class given a training-test
dataset.

• confusion matrix: a double entry table where it is possible
to visualize the classification results in terms of instances
correctly and incorrectly classified. This table originates
the score metric values used in classification problems.

For more details or references see, e.g. Mitchell (1997); Hastie
et al. (2001). Training datasets are key on supervised ML al-
gorithms, which learn model representations focused in infer-
ring the objective class according to the describing features. A
confidence score is used to select the best model representa-
tion. In this context, the training data must be labeled, using
any previous classification available, such as human training.
This validation process is objective at the time of understand-
ing the results, and the meta-parameters of the model already
trained provide second-order information on the data itself. In
this work we employ supervised classification algorithms from

4



the standard library Scikit-Learn (Pedregosa et al., 2011) –used
version is 0.20.1–, which is one of the most popular libraries for
ML, written in the convenient programming language Python.
In what follows we summarize the ML algorithms used in this
work.

• K-Nearest Neighbors (Hastie et al., 2001): a really simple
algorithm, basically classifies an instance given the most
popular kind in its vicinity on feature space, using as a pa-
rameter K the number of close instances to take into ac-
count. Although this method has the advantage of fast
training, a drawback is that in a high number of dimen-
sions, euclidean distance can be quite computationally ex-
pensive and at the same time inaccurate in terms of the
feature space real metric. And on top of this you need to
store the training data, in order to classify new instances.

• Support Vector Machines: a quite sophisticated algorithm.
In a few words, this technique tries to characterize an
hyperplane in the feature space that separates different
classes. A major quality of this algorithm is that the pro-
cedure to find this hyperplane only depends on inner prod-
ucts of feature vectors (in the linear algebra sense), and so,
non-linear transformation kernels can be used to make this
classifier able to work in a wider range of problems.

• Random Forest (RF) from (Breiman, 2001): this is a so
called meta algorithm since is basically a combination of
simpler ML methods. In this case RF is a collection of De-
cision Trees that use a randomly chosen subset of features
to train.

A decision tree is a rather simple concept, basically is a
chain of if--else that separates the data taking into ac-
count only one feature at the time. There exists several
variations of this algorithm depending on the statistic that
is used to separate the data, such as information gain, en-
tropy maximisation, etc. The Random Forest brings an en-
semble of trees, that cast a vote, and the majority decision
is taken.

2.2.2. Feature selection process
Each feature provides different amounts of information about

the objective class, being more informative features the most
important ones. To estimate this relative importance we can
use a wide range of techniques that involve from data visualiza-
tion, to Principal Component Analysis (PCA, Pearson (1901)).
Since some features might provide redundant information, it is
convenient to obtain the maximum amount of information with
the minimum set of features since it reduces dimensionality and
pruning this non-informative variables can lead to an additional
computational speed up. In some cases this can be achieved
by a transformation of the feature space, by creating new com-
putable features that reduce the dimensionality of the problem
(e.g. PCA). Sometimes this is not necessary since it is possi-
ble to discard redundant features and just use the ones that have
better performance.

In order to maximize the performance of the used ML algo-
rithms we introduce convenient feature selection strategies for

each case. The first strategy is to analyze importance for each
feature individually, this is called univariate analysis. The sim-
plest technique is just to filter features with low variance, since
a constant quantity would hold no information regarding the tar-
get class. This general approach was applied to every tested al-
gorithm. Another univariate technique is to calculate the mutual
information between each feature and the target class (Cover
and Thomas, 2012). Selecting features which maximize this
value would in principle select the features with higher pre-
dictive capability on the target class. The mutual information
technique was used for the KNN algorithm only.

For the decision tree family of algorithms we introduce the
Random Forest derived feature importance calculation (Strobl
et al., 2007, 2008). The analysis we used consists of training
the model using every feature and in the testing stage carrying
a random permutation of the values of each feature, erasing any
correlation with the target class. The decrease in performance
of the trained algorithm would quantify the importance of the
permuted feature, without need of re-training the model. In or-
der to determine the significance of this decrease we include in
the training and testing set a control feature with random values,
and compare the importances in relation to it. Any feature with
an importance less than the random feature would be discarded.
This technique is biased in the case of correlated variables, but
this could be avoided by pruning them before performing the
selection.

Lastly, in the case of SVM we employed a methodology
known as Recursive Feature Elimination (Guyon et al., 2002),
which works by using an external weighting algorithm, which is
evaluated in random subsets of features, and recursively prun-
ing those with low weight. The external weighting algorithm
can be any linear model capable of delivering a coefficient for
each feature, which makes this technique suitable for linear
Support Vector Machines.

2.3. Evaluation of DIA+ML algorithms performance

The focus of this work is centered at the task of recovering
transient sources from telescope images by combining the Dif-
ference Image Analysis and the Machine Learning methods in
order to maximize recovery completeness and minimize its con-
tamination. To test the training stage of a ML algorithm, a la-
beled testing dataset is used to generate predictions, and the
performance can be quantified identically to a hypothesis test,
by constructing the confusion matrix, as follows: (see Fig. 1)

• True positives (T P) are the injected transient sources cor-
rectly detected and classified as real instances.

• False positives (FP) are the artifacts in the image differ-
ences and the misclassified instances of bogus objects.

• True Negatives (T N) are the correctly classified bogus

• False Negatives (FN) are the lost instances due to misclas-
sification or missed by the DIA.

5



Notice that the components of the confusion matrix can be
computed for any detection and classification problem, in par-
ticular, either for the results of the DIA or of the DIA+ML,
changing the previous definitions accordingly.

Using the values of the confusion matrix we can compute
more sophisticated scores, useful to quantify performance met-
rics for different optimization strategies.

• Precision measures how many of the classified as positive
instances were actually positive. It can be calculated like
this: T P/(T P + FP).

• Recall (R) or True Positive Rate (TPR) characterizes how
many of the positive examples were actually retrieved.
This is T P/(T P + FN).

• False Positive Rate (FPR) is the probability of a false de-
tection, this is FP/(FP + T N).

• False Negative Rate (FNR) is defined as 1 − R, and is the
rate of lost positive examples.

Precision and recall are useful to check the algorithms per-
formance in this unbalanced class context, where the bogus or
artifact objects rate depends on the difference imaging method
applied. A more informative value is the F1 score, derived from
the precision and recall metrics, which correctly weights the
cost of the errors of losing transients as well as detecting arti-
facts. F1-measure is the harmonic mean of the P and R met-
rics, both equally weighted, and can be used as a final figure
of merit. It is computed using 2PR/(P + R), which is the same
as 2T P/(2T P + FN + FP) and is also a number from 0 to 1.
This metric is less sensitive to unbalanced classification scenar-
ios, because it takes an intermediate value between P and R, but
staying closer to the lower value, penalizing the discrepancy of
Precision and Recall. At the same time is a metric which does
not requires the value of the T N amount, a quantity we cannot
derive from any technique, due to the nature of the problem.

To asses the performance of a trained algorithm, usually new
data is used. After the training stage, it is possible to detect
cases of over or under training, by using labeled examples
which were not processed yet. For this a standard technique
named cross–validation, in which the same training set is di-
vided into training and testing subsets, is preferred. This al-
lows to record the mis-classifications and build a confusion ma-
trix. Therefore, we use stratified k-fold cross validation (Wit-
ten et al., 2016), which splits the training set in k subsets: k-1
pieces serving for training and the remaining just for validation
purpose. The results of the validation of this k classification
algorithms trained are the k confusion matrices, one for each
fold of test data. The several metrics explained above are then
calculated, yielding a confident performance evaluation of the
algorithm.

3. Simulated and real datasets

In order to test and compare the different combinations of
DIA and ML techniques for transient detection, we explored a

range of different observing conditions using a purpose made
data-set generating simulated images with transients injections.
However these simulations are not completely realistic, so that
we also test the combined techniques using observations trig-
gered by GW ALIGO alerts. In both cases the injection of tran-
sients allows to asses suitable rate estimates to test the perfor-
mance of the detection methods.

3.1. Generating a simulated image dataset for ML training
We simulated images using Astromatic Software4, particu-

larly Stuff and SkyMaker (Bertin, 2009), which together can
produce realistic images of stars and galaxies, for any given
telescope hardware configuration, and including image artifacts
such as saturation, spikes, secondary mirror spider shadows,
etc. Since it is open source software, it is possible to reproduce
the results of the image simulation by introducing the same con-
figurations. We simulated the data in several steps:

1. First we used Stuff to produce a catalog of real objects
in the field, including galaxies and stars, containing their
positions and real photometric properties, as well as shape
parameters.

2. Then this catalog is used to make a fits image using Sky-
Maker. This is taken as the ”reference image” (R).

3. Next some stellar sources (transient) are added to the cata-
log previously created, at random positions, and with ran-
dom magnitudes drawn from a fixed Luminosity Function
(LF) distribution.

4. The final outcome is a ”new image” (N) with the transients
sources included.

5. The last stage of the simulation is to perform the DIA sub-
traction between N and R, and perform the source detec-
tion on the resulting difference image.

These steps are repeated once for each point of the explored
parameter space, having then, one R and one N image for each
of them. The simulation parameter values cover a relevant
range of possible observational configurations, taking into ac-
count three aspects, namely, the telescope & site characteris-
tics, the sky stellar background, and the relative location and
brightness of the transient with respect to their host galaxy. The
simulations expand eight parameters, and each one has associ-
ated two images, one corresponds to the reference image and
the other is the new image. The values of the parameters used
in the images simulations are described in Table 1. Regarding
the observational configurations, we considered five parame-
ters, namely, the diameters of the telescope primary and sec-
ondary mirrors, the seeing FWHM for R and also N, the plate
scale, and the exposure time. The values of telescope apertures
are selected so that they represent the available instruments by
our collaboration. The seeing of the R images took values of
0.8, 1, and 1.3 arc-seconds, following empirical determination
of TOROS future site characteristic values (Fig. 3 in Renzi
et al. (2009)). The seeing of the N images took values of 1.,
1.9, 2.5, motivated by typical and bad observing conditions.

4https://www.astromatic.net/about
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The plate scale and exposure times values are chosen accord-
ing to the available CCD cameras. Regarding the telescope and
site characteristics, we include as particular cases, the Estación
Astrofı́sica de Bosque Alegre (EABA), the TOROS pilot in-
strument (TORITOS) and the projected 0.6-m telescope for the
TOROS site. The number and contrast of the stellar sources
are described by the stellar density parameter. The range of
stellar densities (given by the STARCOUNT ZP parameter) repre-
sents fields of different environments going from typical den-
sities of an mid galactic latitude, and up to densities of less
than 5 degrees from the MW disk center at l ∼ 60 deg of lon-
gitude, with a limiting magnitude of i ∼ 19. The luminosity
distribution of these sources are governed by a power law, with
an exponent which took the values of 0.1, 0.5, 0.9 dexp per
mag (STARCOUNT SLOPE parameter in the Skymaker software)
Also, we allow the variation of the background surface bright-
ness, using values of 20 and 21 for reference images, typically
taken mostly on dark nights, and 20, 19, and even 18 for new
images, taken in different conditions. Regarding the host galax-
ies of the injected transients, we sampled the relative brightness
and the angular distance from the host center from uniform dis-
tribution in the ranges [-4, 1] magnitudes and [0,5] half light
radius, respectively. This allows to explore different transien-
t/host relative configurations, including low relative luminosi-
ties and position ranging from the center up to the outer stellar
halo. For a given observational configuration (or set of parame-
ters), we define the magnitude range where reliable photometry
can be obtained, based on the photometric calibration obtained
applying RANSAC (Fischler and Bolles, 1981) robust linear
regression on standard sources. The RANSAC method prunes
spurious sources, and obtains an estimation of slope and zero
point values, not sensitive to outliers, and at the same time also
provides a filter mask identifying this outliers.

The explored parameter space may include configurations
which are not probable. For instance the combination of a 1.54
mirror, with 300 seconds exposure time, in a night with a bright
background light (i.e. moon light), a large plate scale and a
broad seeing. A number of this corner cases are present in the
explored configuration space, and in some of this cases simu-
lated images appear completely saturated, and in others the pho-
tometric quality is extremely low. This corner cases have been
discarded, leaving a total of 26205 groups of N, R and DIA dif-
ferenced images.The results shown in the next sections include
all sensible points in the explored parameter space, which com-
prises an heterogeneous combination of image qualities. Never-
theless, the independent photometric calibration of each image
informs us the range of validity of flux determination on each
configuration making us able to fairly compare results among
the whole simulated dataset.

In section 4, we discuss the general trends that result from
our analysis. Although our parameter space do not cover all
possible configurations for telescope optics and site, we pro-
vide the codes that allow to simulated any other observational
configuration.

A total of 3272784 transients were injected, placed on top
of an extended object (as expected in the case of Kilonovae)
with random angular position and distance relative to the host

galaxies below 5 half light radius. The simulated galaxies have
different morphological types, and also have different redshift
values, random orientation and ellipticity and their luminosities
are chosen according to a Schechter luminosity function. The R
magnitudes of the transient objects are disposed with a random
offset from the host galaxy, drawn from a uniform distribution,
between values -4 and +1 magnitudes.

In the Fig. 1 we present a scheme of the results of the dif-
ference image subtraction and the following ML classification
of real and bogus transient sources. Besides the reference and
new simulated images we show the result of the subtractions
performed for this pair of images.

The subtractions were carried out by three different imple-
mentations of the techniques introduced above, namely: Za-
ckay, Alard & Lupton, and Bramich algorithms, and we show
stamps of bogus and real objects for visual comparison. We
also present the resulting S corr image computed as in Eq. 98
from Appendix C of Zackay et al. (2016). As can be seen in the
stamps, the properties of the subtractions vary according to the
applied methodology. It is worth noticing the shape and the ap-
pearance of the same objects after the subtraction has been per-
formed. In the case of the transient source injected we see that
every technique presents a point source of almost equal size, ex-
cept for the S image, which shows an enlarged light distribution.
This is due to the nature of the S image, which is a convolution
of the Z image with its own PSF. In the second row, we show
artifacts originated in the same bright point source. The reason
this artifact is consistent in every technique is them failing to
correctly match the photometric properties of both R and N im-
ages. In every case we find different structures and these arise
because of the intrinsic differences among methods. The arti-
fact in the Z image has a boxy shape due to the PSF determina-
tion methodology, in the case of the B image the kernel matches
the center of the stellar sources but fails to adequately account
for the flux in the wings. Similarly in the case of H we find
that the source is still visible, though it lacks a clear structure.
In the S case we see an excess of intensity, with a smooth pro-
file, though surrounded by negative pixels, signs of a flux mis-
match in the Z image. For the implementation of the Alard and
Lupton method we adopted the publicly available HOTPANTS5

software by Becker (2015) (version 5.1.11). The Bramich
implementation is a Python code by the authors, available at
https://github.com/toros-astro/ois (version 0.1.14),
as well as Zackay et al. implementation, which is also a
Python code by the authors available at https://github.

com/toros-astro/ProperImage. Both implementations are
built upon standard scientific libraries such as NumPy (ver-
sion used here is 1.15.14), SciPy Jones et al. (2001–) (ver-
sion 1.1.0) and Astropy (Astropy Collaboration et al., 2013;
Price-Whelan et al., 2018) (version 3.0.4),.and run on versions
of Python 2.7 as well as 3.6. Also ois and Properimage

are fully documented and tested, and they are Open Source,
free to the community to use. Many examples and details
of the implementation can be found in the documentation

5http://www.astro.washington.edu/users/becker/v2.0/hotpants.html
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TOROS instruments
parameter units values eaba toros toritos

aperture of the telescope [m] [0.4, 0.6, 1.54] 1.54 0.6 0.4
reference seeing FWHM [arcsec] [0.8, 1, 1.3] 1.3 0.8 0.8
new image seeing FWHM [arcsec] [1.3, 1.9, 2.5] 2.5 1.0 1.0
plate scale [arcsec/pix] [0.3, 0.7, 1.4]
exposure times [sec] [60, 120, 300]
stellar density [stars per sq deg] [4e3, 8e3, 32e3, 64e3, 128e3, 256e3]
stellar luminosity distribution exponent [dexp per mag] [0.1, 0.5, 0.9]
background brightness (R) [mag per arcsec 2] [20, 21, 22]
background brightness (N) [mag per arcsec 2] [18, 19, 20]
relative brightness from host r-band magnitudes sampled from Unif(-4,1)
angular distance from host half light radius sampled from Unif(0, 5)

Table 1: Parameter space for simulated images to be explored for transient detection.

at http://optimal-image-subtraction.readthedocs.

io and http://properimage.readthedocs.io. This im-
plementation applies a set of pre-processing stages to the im-
ages, in order to correctly treat the background, bad pixel mask-
ing and interpolation, and PSF determination. It is worth notic-
ing that the Zackay implementation works faster when the ex-
posure times of the reference and new images are equal. In
this case there is almost no need for a zero point calibration,
which saves computational time. Alard-Lupton implementa-
tion is written in C programming language, also it employes a
simpler Gaussian PSF assumption, making this method faster
than the others by a factor of almost 4X.

3.2. Injection of transient objects on observed images

The simulated images previously used are practical for de-
veloping the DIA techniques and generating a training dataset
for the bogus/real classification problem. Also this approach
allows to explore the dependence of the algorithm performance
on different observing settings and transient properties. Nev-
ertheless, this approach is limited by the simplifying hypoth-
esis. In order to take into account the flaws that arise in the
observing process and subsequent analysis, we present in this
subsection the process of injecting transients sources into real
observational images. We used images obtained by the TOROS
collaboration as part of the follow up of the triggers during Ad-
vanced LIGO science run O2. The images were obtained for
the gravitational wave event GW170104, using the Estación
Astrofı́sica Bosque Alegre (EABA) 1.54-m Newtonian tele-
scope. The instrument was set to white light image acquisi-
tion, and the CCD used was a Apogee Alta U16. Since the
observations were performed hours after the gravitational wave
event trigger was received, we had no previous references of
the selected targets. The ”reference a posteriori“ methodol-
ogy was implemented, using images taken over the following
months. The objects were selected by cross-correlating and fil-
tering the skymap provided by LSC GCN:20364 and the galaxy
catalog from (White et al., 2011), according to the methodol-
ogy described in the first TOROS follow up paper (Dı́az and
Collaboration, 2016). The set of observed galaxies comprise
NGC1341, NGC1567, NGC1808, ESO0555-022, ESO3564-

014, PGC073926, PGC147285, at two epochs separated by
eleven months. The images were reduced using a standard im-
age processing, and then co-added for each epoch using the
SWarp (Bertin, 2010) public software. The procedure for the
subtraction analysis is consistent with the one performed on
the simulated dataset. We perform the subtractions using each
image twice, once as a reference, and once as a new image.
Given the BH-BH merger nature of the GW event (Abbott et al.,
2017b) it was not expected any EM emission incoming from
this source, and in fact no kilonovae were detected Sanchez
et al. (2018). Therefore we decided to inject transients for
the intended analysis. In order to simulate a transient object
with consistent PSF, we replicated 15 of the actual stars in each
frame, inside the true dynamic range of the images. The to-
tal number of realizations was 176 using the observed galax-
ies, yielding a total of 2640 transient injections. The subtrac-
tion requires the images to be registered, to that end we de-
veloped the python package astroalign6. This package was in-
spired by astrometry.net7 but it does not rely on a prefixed star
catalog, instead it aligns two images comparing the asterisms
drawn by the brightest stars in the field. These procedures re-
quire a complete pipeline for processing and data management
as the CORRAL framework (Cabral et al., 2017). This is an
open source python package which merges a database connec-
tion interface with a Model-View-Controller paradigm, making
building complex experimental designs simpler and straightfor-
ward, and letting the framework figure out the multi-processing
itself. This allows us to write specific processing steps, like
those involved in DIA and ML combined analysis, according to
an intuitive data handling model. Therefore, we built a similar
processing pipeline, using the same sequence of steps, for both
the real and the simulated datasets. The completeness and con-
tamination of the transient detection by the DIA pipelines can
be increased and reduced, respectively, by the application of the
ML algorithms previously introduced. These metrics, among
others, were used to rank the transient detection agents, thus al-
lowing to chose the most suitable approach for applications on
TOROS images.

6https://github.com/toros-astro/astroalign
7http://astrometry.net
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4. Comparing transient detection agents

The DIA methods can deliver either direct subtractions (those
which return an astronomical image without any convolution
process), or convolved subtractions, as the S statistic proposed
by Zackay et al.. For the direct difference image methods, the
transient candidate identifications were performed using SEx-
tractor8 (version 2.19.5), with the same configuration param-
eters.

The S image, in turn, is a cross-correlation of the difference
image with its own PSF, and so the detection of transient can-
didates is different from the other DIA methodologies. By cal-
culating the S corr statistic from the S image and performing a
robust determination of its mean and standard deviation (µ, σ),
we

can define the significance (α) of the detection of a candidate
in a given pixel as follows:

α = (S corr − µ)/σ

In Fig.2 it can be seen the distribution of significances for the ar-
tifacts and transient sources as well as both cuts of α for 3.5 and
5 in vertical lines, for both datasets. The chosen threshold of 3.5
is relaxed with respect to the originally proposed value of 5 by
Zackay et al., attempting to detect dim transient sources. Al-
though this increases the number of artifacts, the following ML
analysis is expected to label them as bogus. Since SExtractor
performs a pre–convolution on every image it scans, we cannot
use it on S corr images. Instead we obtained candidates on the
S corr images using sep9, an open source package capable of run-
ning a source extraction without kernel pre–convolution. This
software provides photometric measurementes similar to those
delivered by SExtractor. The threshold used with this source
detection technique is again a limit on 3.5 over the background.

Therefore we were able to analyze the candidate sources, its
photometric properties and parameters measured by SExtrac-
tor and sep for every DIA technique, and use this results as
features for the ML stage. We end having five DIA transient
detection results: detections over Zackay D images (Z), over
Bramich (B) and over Alard-Lupton differences (A), the three
of them provided by SExtractor; detections over S corr using
sep (S sep), and detections using a simple pixel treshold (S 3.5σ).
In what follows (Subsec. 4.1), we explore the main differences
between samples of artifacts, real transient sources and missed
sources for each DIA method. Since the comparison is based on
the very same images, we can directly relate the occurrence of
both real transient sources and missed objects among methods,
not being this possible in the case of artifacts, since those can be
random subtraction errors misidentified as transient candidates.
The labeled candidates for Z, B, A and S sep DIA results, and
their photometric quantities measured are the inputs of the fea-
ture selection process, for training and testing of the ML models
aimed at doing the bogus–real classification (Subsec. 4.3).

8https://www.astromatic.net/software/sextractor
9https://github.com/kbarbary/sep

4.1. Performance of the DIA methods
The fraction of occurrences of the different classes of ob-

jects is our first piece of information regarding the subtrac-
tion methods performance, prior to any Machine Learning tech-
nique application. In Table 2 we show the number of transient
sources (TS), missed detections (missed) and artifact sources
(Ar), along with the corresponding fractions, TPR, FNR and
FPR, respectively. We also report the F1 statistic after the DIA
implementation that will be later compared to the same statistic
after the ML application.

By definition the values of FNR and TNR always add up to
one, and FPR can be any number, since the normalization is
over the total number of injected sources. Regarding the rates
of recovered transient sources (TPR), we read that there is vari-
ability on the results for different techniques. There is a baseline
of 50% for every technique, and a top value of 93%, finding in-
termediate values in the simulated as well in the real dataset.
The number of missed objects is larger in the case of the simu-
lation, since we injected transients in a larger number of simu-
lated images, covering a wide range of experimental configura-
tion (as indicated in Table 1).

For the simulated dataset we can read that Bramich finds less
transients, and at the same time produces less artifacts. For the
real dataset it finds more transients than any other technique,
and produces a relatively low amount of artifacts. The tech-
nique which finds more transient sources is S sep, with a rela-
tively low number of artifacts for the simulated dataset. In the
case of the real dataset the scenario is the opposite. The method
which generates more artifacts in the simulated case is Alard-
Lupton, yielding more than twice the amount of false detections
than Zackay technique. In case of the real dataset this happens
for the S 3.5σ which has a FPR of 200, and Zackay generates less
artifacts than any other DIA method. This behaviour can be ex-
plained with the tendency of S 3.5σ of finding local maximae in
the edges of images, or near bright sources, an issue we would
like to address in the future.

In the simulated dataset we find that the F1 statistic is sys-
tematically higher than the real dataset results. This is mostly
due to extremely high FPR we measure in the latter. It is clear
that we have more sources of confusion in the real images, this
could explained by the presence of instrumental defects on the
CCD camera used, poor flat field calibration, and correlated
noise coming from the stacking procedure. These effects are
not straightforward to include in the simulations therefore we
can think of them as a representation of an optimistic case sce-
nario, in comparison to the observations.

4.2. Analyses of the DIA results
In order to compare the photometric properties of the tran-

sient candidates for every DIA method, we performed a photo-
metric calibration with the flux of the simulated astronomical
sources, by using a robust linear regression as already detailed
in Sec. 3. The measured magnitudes of the transients recovered
in the simulation generated images shows agreement among the
different DIA methods. We show in the Fig. 3 the mean and the
standard error of the difference between the injected and mea-
sured magnitudes of the transients recovered in the simulated
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Figure 2: Distribution of α values for the artifacts and transient sources for S corr detection technique. Notice the logarithmic scales in both axes. In vertical lines
we include the position of thresholds for α = 3.5σ and α = 5σ. Left: simulated dataset. Right: real dataset.

Simulated dataset
TS Missed Ar TPR FNR FPR F1

Z 1,933,065 1,339,719 3,170,089 0.59 0.41 0.97 0.46
B 1,596,713 1,676,071 1,979,948 0.49 0.51 0.60 0.47
A 1,971,291 1,301,493 5,537,472 0.60 0.40 1.70 0.37
S sep 2,180,390 1,092,394 2,456,876 0.67 0.33 0.75 0.55
S 3.5σ 2,092,625 1,180,159 2,700,107 0.64 0.36 0.83 0.52

Real dataset
TS Missed Ar TPR FNR FPR F1

Z 2296 344 25914 0.87 0.13 9.8 0.15
B 2468 172 47731 0.93 0.07 18.1 0.09
A 2179 461 110,025 0.83 0.17 41.7 0.04
S sep 2099 541 128,820 0.80 0.20 48.8 0.03
S 3.5σ 2043 597 528,927 0.77 0.23 200.4 0.008

Table 2: Number of detections of transient sources (TS), missed detections
(missed) and artifact sources (Ar), and the corresponding rates (TPR, FNR
and FPR, respectively) for the implemented DIA methods on the simulated and
real datasets, computed before ML analysis. We include the S Corr candidates
thresholded and extracted with sep.

images, as a function of the transient r-magnitude. We also
show in this Figure the results for transients injected on EABA
observations, and the subset of simulated images that are closest
to the observing configuration of the EABA telescope and site.
The difference between the EABA observations and the cor-
responding simulation arises because of several factors. Most
importantly is that the real dataset images are stacks of images,
and this largely enhances its dynamic range, allowing to ob-
serve bright sources without saturation, and at the same time,
sources at magnitudes fainter than 17 with an good signal to
noise ratio. In the simulations, the aperture photometry might
not be able to ideally capture the true flux value of the bright
saturated or enlarged sources. Prior to reaching the saturation
limit, the linearity of the CCD response is lost, progressively
deviating flux measurements from true values. The limiting
magnitude difference between simulations and real data are due
to the actual performance of the EABA instrument, and the at-
mospheric conditions during the nights of O2 follow up obser-

Figure 3: Magnitude difference between injected and recovered sources as a
function of the magnitude of the injected transients, for the full averaged sim-
ulation (thick light gray), the stacked EABA images (circles) and a simulation
with an equivalent mirror size and exposure time (solid black). Error bars are
1 × σ wide.

vations. Taking this into account, it is worth noticing that the
simulated and observed images are consistent within a range of
approximately 5 magnitudes.

We also studied several statistics for each class of object, try-
ing to gain insight into their properties. The Cumulative Lumi-
nosity Function for each class in the simulated dataset is dis-
played on the top row of the Fig. 4, where it can be seen that for
the transient sources the methods are roughly equivalent. We
find that for the magnitude range r ≥ 15 the methods behave
similarly, but Zackay and S-Corr have more transient sources
detected than the rest of the techniques. In this faint end of the
luminosity function the main reason for losing objects is the de-
tection limits. In the bright end r ≤ 15 however, there is not a
clear pattern, and besides the true missed objects, the already
discussed errors in the magnitude measurements for bright ob-
jects due to saturation could increase the discrepancy with the
simulated magnitude values.

In the case of the artifacts, both in the simulated and observed
dataset, we find similar behaviour in the DIA techniques, al-
though it is worth to notice that the accumulated number of
objects is in disagree with the reported figures in Tab. 2, this
is due to the fact that many artifact sources present flux mea-
surements without astrophysical meaning. The values of mag-
nitudes calculated for a portion of the artifacts fall outside the
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Figure 4: Cumulative Luminosity functions for Transient Sources (TS) (left column), Artifacts (Ar) (center column) and Misses (right column) object classes. In the
first row we have the simulated data and in the second row the real dataset. The cumulative luminosity function of the injected sources is displayed in every panel
as the shaded area. The line code for DIA techniques is: Zackay’s is always in lines with white dots, where Bramich’s is in lines with filled dots, Alard-Lupton is in
dotted lines, as well as S corr statistics is in black solid line.
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range presented in the Fig. 4.
The right panel of Fig. 4 top row, corresponding to the missed

objects in the simulations, shows that all methods fail to recover
an important number of sources fainter than 21 magnitudes, and
also objects brighter than 12 magnitudes. Since this missed, and
trasient sources sets of objects are the complement of each other
we find similar explanations for the bi modality of lost sources
and the deficits of injected recovered objects. Particularly S-
Corr is the method which lose less injected sources, followed
by Alard-Lupton, although the latter losses objects in the whole
range presented, in contrast with the other methods. As a com-
parison with the real dataset, we find that there is not such gap
in between the faint and bright end of the missed objects lumi-
nosity function, but instead a smooth ever increasing distribu-
tion is observed. In the real dataset, we have a different picture,
with every method losing objects, almost equally, except for the
Bramich method, whose distribution seems to be fainter, and
shows accumulated numbers below every other technique. We
also observe a slight increase in the number of objects lost for
the S-Corr compared to the rest of the techniques, although is
should be recalled that there is a big gap between the sample
sizes of simulated and real datasets.

In certain way a higher contamination of bogus may be
acceptable since Machine Learning algorithms could separate
them from the true interesting candidates, and on the other
side, a high FNR is quite undesirable since those candidates
are “lost forever”. This compromise should be constrained in
advance, and shouldn’t be taken for granted. Every algorithm
could be optimized by using iterations or other supplementary
techniques, moving the scenario to a more favorable ratios sce-
nario.

4.3. Machine Learning Results
As explored above, we have photometric properties for the

detected candidates in the several DIA images. On top of this
we also have shape properties, as well as high order statistical
moments on their light distributions provided by SExtractor -
an in S corr case sep-. This labeled dataset together with the
mentioned features, constitutes the input instances for training
and testing ML algorithms in the task of classifying the bogus
and real objects.

In order to asses the different scenarios we simulated, our
machine learning experiments were conducted in several steps:

• We grouped the dataset in terms of three simulation con-
figuration values: the mirror diameter of the telescope, the
exposure time, and the seeing of the new image. This gave
us 27 subsets of data, where we conducted identical and
independent experiments.

• Each experiment was carried out firstly by splitting the
dataset into a training and final testing set, with a 20%-
80% proportion respectively, due to the enormous amount
of data available for training.

• The training subset is used to perform feature preprocess
and selection, and to perform a k-fold cross validation
performance measure for three ML algorithms: k-Nearest

Neighbors, Random Forests, and linear Support Vector
Machines.

• We calculated the confusion matrix for the ML classifica-
tion (Bogus–Real), and combined it with the DIA perfor-
mance metrics, in order to rank the DIA+ML methodolo-
gies using an overall figure of merit. This is done by deriv-
ing a confusion matrix from the injected sources, through
the DIA (Missed, TS, Artifacts), to its final DIA+ML clas-
sification results (FN, TP, FP, and TN), such as illustrated
in Fig. 1.

The used Machine Learning algorithms as previously stated
were:

• k-Nearest Neighbors, using 7 neighbors, with uniform
weights and euclidean distances (using scaled feature val-
ues).

• Random Forest, with 800 trees, with up to 7 features per
tree, stopping the tree growing if less than 20 examples per
leaf, using a Gini impurity criterion.

• Support Vector Machines, using L2 norm penalization,
with a tolerance parameter of 10−5, solving the dual opti-
mization problem, and weighting the classes if unbalanced
for their frequency.

All the configurations for the ML algorithms correspond to Sci-
Kit Learn version 0.20.1.

4.3.1. The feature selection process
We performed a preprocessing of the features, by scaling

them to zero mean, and unit variance. Afterwards we applied
univariated analysis by using a variance threshold cut of 0.1,
pruning constant features. Following this simple treatment we
used three different feature selection strategies, adapted to each
ML algorithm tested .

To calculate the importances for kNN algorithm, we used the
mutual information of the features and the target class, selecting
the percentile 30 as a threshold cut.

For RandomForest we applied a feature selection process fol-
lowing Bloom et al. (2012), using a RandomForest training
stage, and picking those features that were the most informa-
tive in the majority of the individual trees. To avoid bias in the
selection we pruned the correlated features, and afterwards we
followed the methodology described in associated Python pack-
age rfpimpin a 10-fold cross validation experiment. To deter-
mine the unimportant features we added to the training dataset
a uniformly distributed random variable. Using this procedure
we can set the zero value of the scale as the importance of this
Random feature. We calculated the mean and standard devia-
tion of the 10 values obtained in the 10-fold experiment, tossing
away those features consistent with the values obtained for the
Random one.

For Support Vector Machines we applied a Recursive Feature
Elimination on a 6-fold experiment, using an elimination step
of 1, and choosing F1 as the scoring metric to maximize.
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4.3.2. Evaluation of DIA+ML algorithms

In Fig. 5 we show a heatmap of values of F1 statistic (scaled
by a factor of 103) for the results of the 12 DIA+ML combi-
nations (4 DIA techniques and 3 ML algorithms). The map is
obtained by grouping several possible instrumental configura-
tions, spanning the dimensions of the FWHM for the new image
(NFWHM) measured in arcseconds, the exposure time (texp) mea-
sured in seconds, and the diameter of the primary mirror (D)
in cm, and performing the ML train–test experiments on each
group. This covers a wide range of instruments, from small to
middle size telescopes, and from good to poor observing con-
ditions. There exists though, several possible configurations
which are not covered by our analysis, designed mostly for
TOROS collaboration available instruments. Nevertheless the
analysis is valid for numerous transient search science collab-
orations with instruments falling within the range of our simu-
lation parameters, such as (piofthesky, black gem, assassn, los
alerces, catalina sky survey, etc). It is also worth noticing that
for each of the 27 instrumental configurations analyzed we are
mixing the combination of values of the rest of the simulation
parameters (listed in Tab. 1), and in consequence including sev-
eral dissimilar transient detection scenarios into the same ML
experiment.

This result shows an expected dependence in the simula-
tion parameters, clearly favouring longer exposure times and
smaller seeing FWHM for the new image, there is also weaker but
present dependence on mirror size. The strongest dependence
of the F1 value holds with the DIA technique applied. It is clear
that independently of the ML used Alard & Lupton DIA method
has better performance in terms of F1 statistic in the simula-
tions, followed by Zackay’s techniques (including S corr). There
is no major difference among ML algorithms for a given DIA
technique, but a small advantage seems to be obtained when
using RandomForest.

We also include the values of F1 for the real dataset in the top
of the map, which can be compared to the highlighted equiva-
lent simulation. In the observed dataset we find that generally
Bramich is better ranked, and the best DIA+ML technique is its
combination with kNN. Notice that the overall F1 for this DIA
method is much better in this observed dataset than in the sim-
ulations. However the range of values for the ML+DIA combi-
nation are comparable, despite the difference in the F1 values
of DIA only.

In order to better compare the performances reported in Fig. 5
we have marginalized over the groups of instrumental configu-
rations, showing the quartiles of the distribution of F1 values in
the Fig. 6. In order to compare these values before and after ML
classification we also include as horizontal lines the quartiles of
the distribution of the F1 values obtained in each group after
the application of the DIA methods only. It is clear from this
figure that Alard&Lupton technique is better ranked than any
other DIA method, and at the same it experiences the largest
boost in performance after the application of any ML algorithm.
We also show in dots the results for the observed dataset and in
horizontal dotted line we also include the F1 value for the cor-
responding DIA methodology (see Tab. 2). In the real dataset

we find that the combinations which make use of kNN and Ran-
domForest algorithms are signficantly better ranked than SVM
combinations. In general Bramich DIA technique results in bet-
ter performance as measured by F1 statistic, comparable to the
best values obtained in the simulations. However we notice that
this result is linked mostly to the improvement that ML algo-
rithm provides, which is larger than in the simulated dataset. It
is noticeable also, that Alard&Lupton results are consistent be-
tween simulation and real dataset within the uncertanties, being
this also consistent with the Bramich results for the real dataset
case. This will be further explored when the TOROS collabo-
ration instrument data aquisition period begins, and larger col-
lections of images are available.

As a global result we report that the best combination of
DIA+ML for the simulated dataset is Alard & Lupton imple-
mentation Hotpants, and RandomForest. For the real dataset in
turn we find that the best performance is with Bramich DIA
combined with kNN machine learning algorithm. For these
two cases we present the selected features and their normal-
ized relative importances in Fig. 7. The included features
in this figure sum up 90% of the total importance calculated
for the whole set of selected features in each DIA+ML case.
We can see that in the simulation the 5 most important fea-
tures in the case of the best ranked DIA+ML for the simulated
dataset, that is A&Lupton, are in order ELONGATION, FLAGS,
FWHM IMAGE, MAG AUTO and CLASS STAR. In case of the real
dataset, for Bramich+kNN the 5 most important features are
in order B IMAGE, CXX IMAGE, CYY IMAGE, SN, FLUXERR ISO.
The details on the calculation and meaning of each feature are
included in Appendix A. The disagreement among the maps
of importance might be explained considering the differences
in the DIA+ML algorithm, and its feature selection procedure.
Still, we can detect that the most important features represent
as expected, shape and brightness parameters.

In order to gain some insights on the simulated dataset, we
explored some of the dependences of the metrics of perfor-
mance with the parameters of the injections. In the Fig. 8 we
show the values of Recall R and F1 metric scores, as two di-
mensional maps, for two pairs of the simulation parameters, for
the A&Lupton+RandomForest technique. The first one, in left
panel, shows the dependance of R with the values of relative
position and brightness to the host galaxy. This maps clearly
shows a strong dependence of the Recall of the final ML+DIA
on the relative brightness, and at the same time shows no de-
pendence on the distance to the host galaxy center. The second
map, in right panel, shows the F1 values as a function of the
parameters of the stellar luminosity function of the star field
on the images: STARCOUNT SLOPE and STARCOUNT ZP. As ex-
plained in Sec. 3.1 the stellar luminosity function is a power
law, and the exponent is the value of STARCOUNT SLOPE, the
STARCOUNT ZP parameter is the total density of stars in the field
(see Tab. 1). This map indicates that in a dense environment
the F1 is lower, indicating the number of stars in the image as
source of confusion for the DIA+ML technique. At the same
time a lower slope, which traduces into in more bright stars at a
fixed total density, pushes the scoring to lower values. It is clear
then that dense stellar fields, like the ones in the galactic plane,
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Figure 5: A heatmap of F1 × 103 score performance values for each of the
27 instrumental configurations (as rows) where the DIA+ML algorithms have
been applied (as columns). In the top row the scores for the observed dataset
are included in the same grayscale, and a separated row is highlighted for com-
parison, corresponding to the simulations with values of (NFWHM, texp = 60s,
D = 1.54).

0.0
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0.8

1.0

F1

kNN RF SVM kNN RF SVM kNN RF SVM kNN RF SVM

Zackay Bramich ALupton SCorr

Figure 6: The distribution of F1 values presented in Fig. 5, displayed as boxes
and whiskers. Inside the box we have the median, the box edges displays the
25 and 75 percentile, as well as the whiskers show the minimum and maximum
values of the sample. In horizontal solid lines we show the median of the F1
score prior to ML, and as dashed the quartiles of these values. In circles we
have the values of F1 for the real dataset. In dotted lines we also show the F1
value for the real data corresponding to Tab. 2.

are places where a decrese in the performance of the DIA+ML
is expected. These class of studies are possible to evaluate by
using a multi parameter simulation, like the one carried out.

5. Conclusions

We developed open source tools for image subtraction fol-
lowing the DIA techniques from Bramich (2008) and Zackay
et al. (2016). We also made use of HOTPANTS implementation
of Alard-Lupton algorithm. The Python packages developed,
together with HOTPANTS, were mounted on top of a CORRAL
data processing pipeline, in order to systematically perform im-
age subtractions with transient candidate injections. The im-
ages used for this were drawn from EM counterpart search, car-
ried out by TOROS during O2 LIGO-Virgo-Scientific collabo-
ration science observing run in 2017. This observations were
performed during January and November, using the “reference
a posteriori” methodology previously applied by TOROS col-
laboration. Additionally we developed comprehensive simula-
tions of images, exploring a multi dimensional parameter space
of instrumental configuration as well as observing conditions,
as detailed in Tab. 1, generating millions of transient injected
on top of extended sources over several thousands of images.
The nature of the injected transients does not include moving
objects, or stellar variability, focusing the analysis on Kilono-
va/Supernova detection scenarios.

The mentioned pipelines measured the ratios of recovery of
injected transients, as well the source contamination and loss
for each DIA algorithm. We also compared their photometric
results, including the S corr image photometry. In order to sepa-
rate the true transient candidates from the spurious artifact de-
tections we applied Machine Learning algorithms, trained with
data generated by our pipeline. We carried out a feature selec-
tion stage, and completed a cross validation train-test experi-
ment, in order to calculate score metrics such as Precision and
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Recall, useful to compare performances in an unbalanced class
context, and ranked the methodologies by combining them in
the F1 statistic.

The comparison in the simulated and real data showed that
the scenario was of relevance in the performance of the differ-
ent combination of methodologies, bringing differences which
can relate to the techniques as well as the nature of data used.
Our results shows that Zackay’s image subtraction techniques,
including S corr, are more suitable for transient detection as a
standalone technique. However it is clear that the Machine
Learning algorithms are key to complete the task of select-
ing the relevant transient candidates, by setting apart the ar-
tifacts which contaminate and are uninteresting. After the
application of these algorithms, and looking at the final per-
formance metric F1 we conclude that, among the DIA+ML
combinations tested, the better ranked technique were: in the
real EABA images dataset Bramich+kNN, and in the simulated
dataset A&Lupton+RandomForest. Although we find consis-
tency, within the uncertanties, among every ML applied tech-
nique in the simulated data, for every DIA method. This is also
valid between the real and simulated dataset, for the A&Lupton
and Zackay case. For these selected methods we also report the
more important features, determined by Random Forest permu-
tation importance in the case of the simulations, and by univari-
ated analysis in the case of the real dataset.

Seizing the large and complex simulation generated, we an-
alyzed the dependency of the Recall metric on the environment
of the injected transients, in relation to the host galaxy, and the
stellar field present in the simulated images. Concluding that
is more likely to generate artifacts and miss a fraction of tran-
sient objects in a dense and bright stellar field, and also to miss
a greater fraction of detections if the contrast in brightness with

the host galaxy is small, independently of its spatial relative lo-
cation.

These results are very important for the development of the
data processing pipeline of the TOROS collaboration which
comprises different telescopes and instruments. A future exten-
sion of this work is to tackle the genuine transient time-series
astrophysical classification for large amounts of data.

Simulation results and data used in this work are available to
the community, in the format of candidates catalog tables at O.
(2019)10.
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