Cis-Trans Interconversion in Ruthenium(II) Bipyridine Complexes

${ }_{2}$ Yeraldith Rojas Pérez, Leonardo D. Slep,*© and Roberto Etchenique*©

3 Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, 4 Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina

(S) Supporting Information

Abstract

Most studies of ruthenium polypyridine complexes are devoted to their cis isomers. The fact that cis isomers are thermally more stable and thus easier to synthesize has prevented researchers from investigating the properties and applications of trans complexes. We present a study of thermal and photochemical cis-trans interconversion of the key complex [Ru$\left.(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}\left(\right.$ bpy $=2,2^{\prime}$-bipyridine, $\mathrm{PMe}_{3}=$ trimethylphosphine $)$, which results in specific synthetic applications of the trans species, potentially cis useful as a platform for designing highly efficient visible light activated caged compounds. We show, as a proof of concept, some examples of trans complexes bearing N -donor and P -donor ligands and their comparison with the cis isomers.

- INTRODUCTION

Ruthenium bipyridine complexes have been profusely studied. They present a rich and interesting photochemistry that arises from a strong $\mathrm{Ru}(\mathrm{II}) \rightarrow \pi^{*}$ bpy MLCT absorption band followed by the thermal population of a nearby ${ }^{3} \mathrm{~d}-\mathrm{d}$ dissociative state after being irradiated. This state lasts long enough to undergo photochemical reactions, usually expelling monodentate ligands and leaving a $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\right.$ (Solvento) $]$ species. ${ }^{1}$
These characteristics have been employed in photochemical synthesis 2 and also in the design of visible light activatable caged compounds. The first caged compound based on $\left\{\mathrm{Ru}(\mathrm{bpy})_{2}\right\}^{2+}$ chemistry 3 was cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(4 \mathrm{AP})_{2}\right]^{2+}$, a complex that delivers 4 -aminopyridine (4AP), a blocker of K^{+}channels, ${ }^{4}$ either in a linear regime under irradiation with blue light or in a two-photon regime when NIR light is used. ${ }^{5}$
Many other phototriggers based on Ru-bpy complexes have been subsequently reported, including caged glutamate, ${ }^{6} \gamma$ aminobutyric acid, ${ }^{7}$ nicotine, ${ }^{8}$ serotonine, ${ }^{9}$ dopamine, ${ }^{10}$ and biomedically relevant nitriles. ${ }^{11}$ A similar approach, although based on a different chemistry, has been employed to devise nitric oxide deliverers. ${ }^{12}$
Relevant theoretical studies of this family of complexes have also been reported, ${ }^{13}$ all of them devoted to the thermally more favorable cis form, while just a few works report calculated data of the trans isomers, for the diaquo trans$\left[\mathrm{Ru}(\text { bpy })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+14}$ or the light harvesting related complex trans-[Ru(dcbpy) $\left.)_{2}(\mathrm{NCS})_{2}\right]^{15} \quad$ (dcbpy $=4,4^{\prime}$-dicarboxy- $2,2^{\prime}$ bipyridine).
In this work we present a study of the photochemical interconversion between cis- and trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$, showing that the trans aquo isomer can be regarded as a useful platform to devise new highly efficient [Ru$\left.(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{L}\right]^{\mathrm{n}+}$ phototriggers with a trans conformation.

EXPERIMENTAL SECTION

Syntheses. All procedures were done under Argon. 51 cis- $\left.\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}\right)\right] \mathrm{Cl}$ was obtained as described elsewhere. ${ }^{16}{ }_{52}$ trans-[Ru(bpy) $\left.)_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\left([1]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right)$. A 100 mg 53 portion of cis- $\left.\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}\right)\right] \mathrm{Cl}$ was dissolved in 3.0 mL of 54 distilled water. The solution was stirred with 500 mg of Dowex-22 55 anionic resin previously loaded with mesylate ion. Aquation of the 56 complex proceeds simultaneously with the ion exchange step, yielding 57 cis- $\left[\mathrm{Ru}(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right)_{2}$. The obtained solution was 58 filtered and diluted to 20 mM , and 5 equiv of trifluoromethane- 59 sulfonic acid was added. The mixture was put into an ice bath and 60 irradiated with a 150 W metal halide lamp for 3.5 h . After 30 min of 61 irradiation the complex $[\mathbf{1}]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ began to precipitate from the 62 mixture. It was filtered and washed with portions of $0.1 \mathrm{M} \mathrm{KPF}_{6}$ until 63 $\mathrm{pH}>4$, further washed with tert-butyl alcohol, and vacuum-dried. An 64 intense red crystalline solid was obtained. Yield: $42 \% . \varepsilon_{\max }(460 \mathrm{~nm})=65$ $9.7 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} /$ acetone- d_{6}): $\delta(\mathrm{ppm}) 66$ $9.30(4 \mathrm{H}, \mathrm{d}, 5.46 \mathrm{~Hz}) ; 8.47(4 \mathrm{H}, \mathrm{d}, 8.36 \mathrm{~Hz}) ; 8.19(4 \mathrm{H}, \mathrm{t}, 7.86 \mathrm{~Hz}) ; 67$ $7.73(4 \mathrm{H}, \mathrm{t}, 6.87 \mathrm{~Hz})$; $0.574(9 \mathrm{H}, \mathrm{d}, 9.99 \mathrm{~Hz})$ (see Figure S1) MS 68 $\left(\mathrm{ESI}^{+}\right): m / z 639.0417\left[[1]-\mathrm{H}_{2} \mathrm{O}+\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{+} ; 254.0459[1]^{2+} ; 69$ $245.0444\left[[1]-\mathrm{H}_{2} \mathrm{O}\right]^{2+} ; 216.0273\left[[1]-\mathrm{PMe}_{3}\right]^{2+} ; 207.0218[[1]-70$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{PMe}_{3}\right]^{2+}$ (see Table S1, Figure S2).

71
cis- $\left[\mathrm{Ru}(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} \quad\left([2]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right)$. A 50 mg 72 portion of $[\mathbf{1}]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ was dispersed in 3.0 mL of distilled water. 73 The mixture was heated to $60{ }^{\circ} \mathrm{C}$ under argon for 3 days and the 74 obtained solution lyophilized. In case the mesylate salt was needed, a 75 further ion exchange with Dowex- 22 previously charged with 76 $\mathrm{CH}_{3} \mathrm{SO}_{3}{ }^{-}$ion was performed to yield [2] $\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right)_{2} . \varepsilon_{\max }(444 \mathrm{~nm}) 77$ $=6.7 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 78$ $9.19(1 \mathrm{H}, \mathrm{d}, 5.79 \mathrm{~Hz}) ; 8.95(1 \mathrm{H}, \mathrm{d}, 5.50 \mathrm{~Hz}) ; 8.48(1 \mathrm{H}, \mathrm{d}, 8.16 \mathrm{~Hz}) ; 79$ $8.43(1 \mathrm{H}, \mathrm{d}, 8.08 \mathrm{~Hz}) ; 8.39(1 \mathrm{H}, \mathrm{d}, 8.25 \mathrm{~Hz}) ; 8.20(1 \mathrm{H}, \mathrm{d}, 8.25 \mathrm{~Hz}) ; 80$ $8.17(1 \mathrm{H}, \mathrm{t}, 8.25 \mathrm{~Hz}) ; 8.12(1 \mathrm{H}, \mathrm{t}, 8.25 \mathrm{~Hz}) ; 7.94(1 \mathrm{H}, \mathrm{t}, 7.83 \mathrm{~Hz}) ; 81$ $7.74(4 \mathrm{H}, \mathrm{m}) ; 7.46(1 \mathrm{H}, \mathrm{s}) ; 7.24(1 \mathrm{H}, \mathrm{t}, 6.58 \mathrm{~Hz}) ; 7.02(1 \mathrm{H}, \mathrm{t}, 6.7682$ $\mathrm{Hz}) ; 1.03(9 \mathrm{H}, \mathrm{d}, 8.89 \mathrm{~Hz})$ (see Figure S3). MS (ESI ${ }^{+}$): $m / z 83$ $639.0388\left[[2]-\mathrm{H}_{2} \mathrm{O}+\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{+} ; 245.0432\left[[2]-\mathrm{H}_{2} \mathrm{O}\right]^{2+} ; 84$

[^0]$$
85
$$

86
87 88 89 p 90 f $97 \mathrm{~Hz}) ; 8.54(1 \mathrm{H}, \mathrm{d}, 7.35 \mathrm{~Hz}) ; 8.41(1 \mathrm{H}, \mathrm{d}, 7.85 \mathrm{~Hz}) ; 8.36(1 \mathrm{H}, \mathrm{d}, 8.10$ $98 \mathrm{~Hz}) ; 8.33(1 \mathrm{H}, \mathrm{d}, 8.35 \mathrm{~Hz})$; $8.20(1 \mathrm{H}, \mathrm{t}, 7.85 \mathrm{~Hz}) ; 8.09(1 \mathrm{H}, \mathrm{t}, 7.97$ $99 \mathrm{~Hz}) ; 7.91(1 \mathrm{H}, \mathrm{t}, 7.97 \mathrm{~Hz}) ; 7.84(1 \mathrm{H}, \mathrm{t}, 7.97 \mathrm{~Hz}) ; 7.73(3 \mathrm{H}, \mathrm{m}) ; 7.51$ 100 101
 103245.0444 [[3] - ImH $]^{2+} ; 207.0221$ [[3] - $\left.\operatorname{ImH}-\mathrm{PMe}_{3}\right]^{2+}($ see 104 Table S3, Figure S6).
105 trans-[Ru $\left.(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)(I \mathrm{mH})\right]\left(\mathrm{PF}_{6}\right)_{2}\left([4]\left(\mathrm{PF}_{6}\right)_{2}\right)$. A 39 mg portion of $106[1]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ was dissolved in 2 mL of dry MeOH . A 21 mg portion 107 of imidazole was dissolved in $500 \mu \mathrm{~L}$ of dry MeOH and mixed with 108 the previous solution. This mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 40 min 109 and then cooled to $0{ }^{\circ} \mathrm{C}$ and precipitated by addition of $500 \mu \mathrm{~L}$ of 110 aqueous $\mathrm{KPF}_{6} 0.5 \mathrm{M}$. The precipitate was filtered, washed two times 111 with $\mathrm{KPF}_{6} 0.1 \mathrm{M}$ and then with water, and dried under vacuum. Yield: $11277 \% . \varepsilon_{\max }(464 \mathrm{~nm})=8.9 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, 113 acetone- d_{6}): $\delta(\mathrm{ppm}) 9.81(4 \mathrm{H}, \mathrm{d}, 5.63 \mathrm{~Hz}) ; 8.67(4 \mathrm{H}, \mathrm{d}, 8.22 \mathrm{~Hz})$; $1148.33(4 \mathrm{H}, \mathrm{t}, 7.79 \mathrm{~Hz}) ; 7.94(4 \mathrm{H}, \mathrm{t}, 6.92 \mathrm{~Hz}) ; 7.43(1 \mathrm{H}, \mathrm{s}), 7.00(1 \mathrm{H}$, $115 \mathrm{~s}) ; 6.47(1 \mathrm{H}, \mathrm{s}) ; 0.80(9 \mathrm{H}, \mathrm{d}, 9.30 \mathrm{~Hz})$ (see Figure S7). MS (ESI ${ }^{+}$): $116 \mathrm{~m} / \mathrm{z} 703.0875\left[[4]+\mathrm{PF}_{6}\right]^{+} ; 279.0617[4]^{2+} ; 245.0430$ [[4] $117 \mathrm{ImH}]^{2+} ; 207.0207$ [[4] - ImH - $\mathrm{PMe}_{3}{ }^{2+}$ (see Table S4, Figure S8). 118 119 120 p 121 of dry MeOH and mixed with the previous solution. This mixture was 122 stirred at $50^{\circ} \mathrm{C}$ for 3 h and then cooled to $0^{\circ} \mathrm{C}$. The excess PPh_{3} was 123 separated, and 5 equiv of KPF_{6} was added. The orange solid was 124 filtered, washed with MeOH and diethyl ether, and dried under 125 vacuum. Yield: $48 \% . \varepsilon_{\max }(440 \mathrm{~nm})=10.2 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $126\left(300 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right): \delta(\mathrm{ppm}) 9.29(4 \mathrm{H}, \mathrm{d}, 5.65 \mathrm{~Hz}) ; 8.58(4 \mathrm{H}, \mathrm{d}$, $1278.00 \mathrm{~Hz}) ; 8.32(4 \mathrm{H}, \mathrm{t}, 8.00 \mathrm{~Hz}) ; 7.80(4 \mathrm{H}, \mathrm{t}, 5.63 \mathrm{~Hz}) ; 7.40(3 \mathrm{H}, \mathrm{t}$, $1287.55 \mathrm{~Hz}) ; 7.16(6 \mathrm{H}, \mathrm{t}, 7.32 \mathrm{~Hz}) ; 6.41(6 \mathrm{H}, \mathrm{t}, 8.46 \mathrm{~Hz}) ; 0.55(9 \mathrm{H}, \mathrm{dd}$, 1299.40 Hz) (see Figure S9). MS (ESI ${ }^{+}$): $m / z 376.0892$ [5] ${ }^{2+}$; 338.0668 $130\left[[5]-\mathrm{PMe}_{3}\right]^{2+} ; 245.0430\left[[5]-\mathrm{PPh}_{3}\right]^{2+} ; 207.0206\left[[5]-\mathrm{PMe}_{3}-\right.$ $\left.131 \mathrm{PPh}_{3}\right]^{2+}$ (see Table S5, Figure S10).
trans-[Ru(bpy) $\left.)_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \quad\left([6]\left(\mathrm{PF}_{6}\right)_{2}\right)$. A 95 mg portion of [1] $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ was dissolved in 2 mL of dry MeOH . A $400 \mu \mathrm{~L}$ portion of a $1 \mathrm{M} \mathrm{PMe}_{3}$ solution in THF was added, yielding an immediate color change of the solution. After 2 h of stirring at room temperature, 13 the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $500 \mu \mathrm{~L}$ of 0.5 M aqueous 37 solution of KPF_{6} was added. The orange precipitate was collected by filtration and washed three times with a $1 / 1$ water $/ \mathrm{MeOH}$ mixture 3 and once with diethyl ether. Yield: $89 \% . \varepsilon_{\max }(445 \mathrm{~nm})=10.2 \times 10^{3}$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}): $\delta(\mathrm{ppm}) 9.66(4 \mathrm{H}, \mathrm{d}$, $15.60 \mathrm{~Hz}) ; 8.82(4 \mathrm{H}, \mathrm{d}, 8.04 \mathrm{~Hz}) ; 8.40(4 \mathrm{H}, \mathrm{t}, 7.86 \mathrm{~Hz}) ; 7.97(4 \mathrm{H}, \mathrm{t}$, 6.50 Hz); $0.65\left(18 \mathrm{H}, \mathrm{t}, 3.34 \mathrm{~Hz}\right.$) (see Figure S11). MS (ESI ${ }^{+}$): m / z $283.0651[6]^{2+} ; 245.0450\left[[6]-\mathrm{PMe}_{3}{ }^{2+} ; 207.0231[6]-2 \mathrm{PMe}_{3}\right]^{2+}$ (see Table S6, Figure S12).

Spectroscopic Measurements and Photolysis. The optical bench used for UV-vis measurements consisted of a $532 \mathrm{~nm}, 10 \mathrm{~mW}$ 7 DPSS laser or $405 \mathrm{~nm}, 45 \mathrm{~mW}$ laser diode, collimated and directed 8 toward a four-faceted cuvette, kept at $25{ }^{\circ} \mathrm{C}$; the sample tested was 19 stirred. The absorbance was monitored perpendicularly to the laser path using an OceanOptics PC2000 CCD spectrophotometer run by OOIChem sofware.

Quantum yield measurements of photouncaging were performed 153 by recording the spectra while the photoreaction occurred under a
calibrated laser source. Then, the quantum yield of photolysis was 154 adjusted as a parameter in order to fit the corresponding equations. 155

NMR spectra were obtained with Bruker AM-500, Bruker Advance 156 Neo 500, and Bruker Fourier 300 spectrometers. Internal standard 157 NMR ${ }^{1} \mathrm{H}$ (standard EtOH) measurements were performed to obtain 158 molar absorptivity values. All molar absorptivity values are given in 159 aqueous solution. Samples for mass spectrometric measurements were 160 prepared in LC-MS quality methanol and were performed by straight 161 injection of the samples into the spectrometer, equipped with an 162 ionization electrospray (ESI) source and using a high-resolution and 163 high-accuracy hybrid quadrupole (Q) and orthogonal time of flight 164 (Tof) mass spectrometer and Xevo G2S Q-TOF (Waters Corp.) 165 operating in the positive ion mode. Typically, the cations were 166 detected as the naked doubly charged gaseous species but also via a 167 series of cations with reduced charge states achieved via ion pairing. In 168 every case, only the observed m / z value of the most abundant 169 isotopologue ion of the multi-isotopic species forming multifaceted 170 isotope clusters is mentioned.

Theoretical Computations. Density functional theory (DFT) 172 was employed to fully optimize the ground and lowest energy triplet- 173 state geometries of cis- and trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$. The 174 calculations were performed with Gaussian 09^{17} using Becke's three- 175 parameter hybrid functional with the correlation functional of Lee, 176 Yang, and Parr formalized as the B3LYP hybrid functional ${ }^{18}$ and the 177 effective core potential basis set LanL2DZ implemented in G09, ${ }^{17} 178$ which describes first-row elements using Dunning's D95V basis set 179 and the Los Alamos ECP plus DZ basis for the heavier elements. ${ }^{19}{ }^{180}$ This combination proved to be suitable for electronic structure 181 computations, geometry predictions, and spectral assignment in 182 coordination compounds related to those described in this 183 report. ${ }^{12 c, 20}$ Tight SCF convergence criteria and no symmetry 184 constraints were used along the geometry optimizations. The 185 polarizable continuum model (PCM) approximation was used all 186 along the computations to account for solvation effects in water. 187 Coordinated $\mathrm{H}_{2} \mathrm{O}$ might engage in specific solute-solvent inter- 188 actions. No improvement in the computed (TD)DFT electronic 189 spectra (vide infra) was observed upon inclusion of discrete explicit 190 water molecules in the computations. While this strategy proved 191 necessary in other situations, ${ }^{20,21}$ it was avoided here to reduce the 192 computational cost. The nature of the stationary points obtained in 193 the optimization procedures was checked by means of vibrational 194 analyses. Electronic spectra for the different species were computed by 195 (TD)DFT, involving at least 100 excited states at the same level of 196 theory as that employed in the minimization step.
Energy profiles calculated for the electronic ground state as well as 198 for the low-lying triplet excited states provide a microscopic 199 description of the lowest energy reaction pathway. Taking into 200 account that the exchange of ligands in ruthenium octahedral 201 complexes usually proceeds via a dissociative pathway, the elongation 202 coordinate of the $\mathrm{Ru}-\mathrm{O}$ bond in cis-/trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)-203\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ was explored. The pentacoordinated species cis-/trans- 204 $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\right]^{2+}$ derived from the complete dissociation of an 205 $\mathrm{H}_{2} \mathrm{O}$ molecule were fully optimized as both singlet and triplet species. 206 Transition state geometries associated with the cis- to trans- 207 $\left[\mathrm{Ru}(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)\right]^{2+}$ interconnection were identified and optimized. 208 The synchronous transit-guided quasi-Newton (STQN) method ${ }^{22} 209$ implemented in G09 was used for this purpose. The vibrational 210 analyses of the species optimized in this way showed a single 211 imaginary frequency, consistent with a first-order saddle point on the 212 potential energy surface (PES). The reaction coordinate linking the 213 TS with the pentacoordinated cis-/trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\right]^{2+}$ local 214 minima in both the ground and excited state's PES was revealed by 215 Fukui's intrinsic reaction coordinate (IRC) computations. ${ }^{23}$

- RESULTS AND DISCUSSION

It is known that refluxing the complex $\left[\mathrm{Ru}(\mathrm{bpy})_{2} \mathrm{Cl}_{2}\right]$ in water/ 218 EtOH mixtures makes it possible to obtain the mono and bis 219 aqua complexes $\left[\mathrm{Ru}(\mathrm{bpy})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$and $[\mathrm{Ru}-220$ (bpy) $\left.2_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$, both in a cis configuration. ${ }^{1,2}$ Durham et 221
al. showed that trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ can be photochemically prepared ${ }^{24}$ by irradiation of a solution of the cis isomer in the presence of a suitable anion that might induce the fractional precipitation of the trans form, leaving the unreacted cis precursor in solution. This trans species spontaneously reverts to the cis form in solution. Although it can be used to perform some further reactions, ${ }^{25}$ its lifetime in aqueous solution at moderate temperatures is in the tens of minutes, preventing its use in most syntheses.

If the electron-acceptor ligand PMe_{3} is introduced, the lability of the resulting complex toward ligand exchange is reduced. The same trend occurs regarding cis-trans thermal isomerization. By irradiation of a solution of cis-[Ru(bpy) $\left.)_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ in the presence of triflate ions, a precipitate of pure trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ is obtained. The characteristic four aromatic signals of the NMR spectrum (Figure 1) unequivocally confirms the trans nature of

Figure 1. Structure and ${ }^{1} \mathrm{H}$ NMR spectrum of trans- $[\mathrm{Ru}-$ (bpy) $\left.)_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ in $\mathrm{D}_{2} \mathrm{O}$.

$$
\text { cis }-\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+} \underset{\substack{\phi_{2}}}{\stackrel{\phi_{1}}{\leftarrow}} \text { trans }-\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}
$$

256 where φ_{1} and φ_{2} are the isomerization quantum yields and k 257 the kinetic constant of the trans/cis thermal isomerization. 258 Therefore

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{cis}]}{\mathrm{d} t}=k[\text { trans }]+I_{0}\left(1-10^{-\varepsilon_{\mathrm{l}}[\text { [rans }]}\right)-I_{0}\left(1-10^{-\varepsilon_{c}[[\mathrm{cis}]}\right) \tag{1}
\end{equation*}
$$

259
260 where I_{0} is the irradiation power, ε_{t} and ε_{c} are the molar 261 absorptivities of the trans and cis forms at the irradiation 262 wavelength, respectively, and l is the optical path length. At T $263 \cong 25{ }^{\circ} \mathrm{C}$ and high irradiation intensities, k can be regarded as
negligible. On the other hand, for low absorbances at the 264 irradiation wavelength and 1 cm path length, the differential 265 equation can be linearized. Under this condition

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{cis}]}{\mathrm{d} t}=2.3 I_{0} l\left(\varepsilon_{\mathrm{t}}[\mathrm{trans}]-\varepsilon_{\mathrm{c}}[\mathrm{cis}]\right) \tag{2}
\end{equation*}
$$

The integration of the latter equation yields a monoexponen- 268 tial of the general form

$$
\begin{equation*}
[\text { trans }]=A\left(1-\mathrm{e}^{-k t}\right)+B \quad k=\frac{2.3 I_{0}}{V}\left(\varepsilon_{\mathrm{c}} \phi_{\mathrm{c}}+\varepsilon_{\mathrm{t}} \phi_{\mathrm{t}}\right) \tag{3}
\end{equation*}
$$

where V is the reaction volume of the cuvette and ϕ_{c} and ϕ_{t} are 271 the quantum efficiencies of isomerization for the direct and 272 inverse photoreactions, respectively.

Due to the fact that the photoisomerization proceeds in both 274 cis to trans and trans to cis ways, irradiation of cis- or trans- 275 $\left[\mathrm{Ru}(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ solutions always yields an isomeric 276 mixture. In the photostationary steady state the [cis]/[trans] 277 ratio is given by the quotient $\phi_{\mathrm{t}} \varepsilon_{\mathrm{t}} / \phi_{\mathrm{c}} \varepsilon_{\mathrm{c}}$.

Figure 2 shows a typical photolysis experiment of trans- 279 f 2 $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ in a UV-vis cuvette using a 532280

Figure 2. UV-vis spectra taken during photolysis of trans-[Ru$\left.(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ in water using a 532 nm laser.
nm laser. The presence of an isosbestic point indicates that just 281 two colored species are present, as expected. Full spectrum 282 analysis of the product using pure cis and trans complexes as 283 standards shows a [cis]/[trans] ratio of 2.08 in the photosta- 284 tionary state. As ε_{t} and ε_{c} can be measured from the pure 285 complexes, it is possible to determine that ϕ_{t} is 1.5 times 286 higher than ϕ_{c}. This result is at least striking, considering the 287 fact that a totally opposite trend has been reported when the 288 photosubstitution processes in the related cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2} \mathrm{XY}\right]^{n+}{ }_{289}$ species have been studied. ${ }^{1}$ By fitting the complete photolysis 290 to eq 3 , it is possible to obtain the values $\phi_{\mathrm{t}}=0.158$ and $\phi_{\mathrm{c}}=291$ 0.105 , respectively. It is important to note that full photolysis 292 of the trans isomer does not yield a pure cis species but a 293 photostationary state. Figure 3 shows the spectra of the pure 294 fz species and the different photostationary states that can be 295 established by changing the irradiation wavelength. Due to its 296 bathochromic shift, the trans species is less absorptive at short 297 wavelengths (405 nm) and a higher molar fraction of this 298 isomer is obtained. Conversely, the cis form predominates 299 under irradiation at 532 nm .

Thermal Interconversion. The thermal decay of the trans 301 form to its cis isomer is another key feature in order to evaluate 302 synthetic potentiallity. The half-life in aqueous solution ranges 303 from 14 h at $30^{\circ} \mathrm{C}$ to about 30 min at $60^{\circ} \mathrm{C}$, long enough to 304 obtain reasonably pure trans complexes by ligand exchange 305 (vide infra). An Eyring plot of the thermal decay (see 306

Figure 3. (a) Absorption spectra of cis- and trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ ([2] and [1]). (b) Photoconversion between isomers by irradiation with different wavelengths.

07 Supporting information, Figure S15) yields $\Delta H^{\ddagger}=118 \mathrm{~kJ} / \mathrm{mol}$ 8 and $\Delta S^{\ddagger}=50 \mathrm{~kJ} / \mathrm{mol}$, suggesting a dissociative path for the isomerization process. (see Figure S15 in the Supporting Information)

In order to understand the differences and similarities of the isomers of $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$, several simulations based in DFT were performed.

Ground-State DFT Analysis. DFT has been employed to explore the electronic properties of the compounds described 6 in this work. The calculations lead to two stationary points corresponding to the hexacoordinated cis and trans isomers, with the latter lying ca. $39 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher in energy. This value explains the impossibility of accessing the trans species 20 by thermal means and suggests that, in the absence of kinetic 1 restrictions, trans to cis interconversion is strongly favored. The 2 optimized geometry of cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ (Figure 323 4) shows the presence of an Ru^{2+} ion in a distorted-octahedral 4 coordination environment. As is usual at this level of theory, the $\mathrm{Ru}-\mathrm{N}, \mathrm{Ru}-\mathrm{O}$, and $\mathrm{Ru}-\mathrm{P}$ bond lengths are consistently longer than those observed experimentally in related

Figure 4. Optimized geometries (DFT) for cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}([2])$ (left) and trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}([\mathbf{1}])$ (right.)
compounds, for which there are numerous examples. Structural 327 parameters are overall consistent with other reports involving 328 the same computational methodology. The same can be said 329 for the trans species, even though very few examples of 330 structurally characterized trans compounds based on the 331 $\left\{\mathrm{Ru}(\mathrm{bpy})_{2}\right\}^{2+}$ core have been reported. ${ }^{24,26}$ Table S7 in the 332 Supporting Information summarizes relevant structural in- 333 formation for both species.

The electronic spectrum predicted by (TD)DFT for cis- 335 $\left.[\mathrm{Ru}(\mathrm{bpy}))_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ shows very good agreement with 336 the experimental spectrum, as can be seen in Figure 5 (top). 337 fs

Figure 5. Experimental and computed electronic spectra for cis$\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}([2])$ (top) and trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}([\mathbf{1}])$ (bottom).

The visible region of the spectrum is dominated by a broad 338 band that can be assigned as MLCT $\mathrm{Ru}(\mathrm{II})-\pi^{*}{ }_{\text {bpy }}$ predicted at 339 432 nm , in excellent agreement with experimental observa- 340 tions. The same is true for the quality of the predicted 341 electronic spectrum for the trans species (Figure 5, bottom), 342 with visible transitions centered at 464 nm also of the MLCT 343 type. At a symmetry lower than octahedral, the degeneration of 344 the $\mathrm{t}_{2 \mathrm{~g}}$ orbitals is lifted. In the two cases discussed here, these 345 three orbitals become the molecular orbitals HOMO, H-1, and 346 H-2 of the molecule (see Supporting Information, Figures S16 347 and S17). These three orbitals are mostly Ru in character for 348 both cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}(82 \%, 85 \%$, and $79 \% \mathrm{Ru} 349$ for $\mathrm{H}, \mathrm{H}-1$, and $\mathrm{H}-2$, respectively) and trans- $[\mathrm{Ru}-350$ (bpy) $\left.)_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}(82 \%, 76 \%$, and $92 \% \mathrm{Ru}$ for H, H-1, 351 and $\mathrm{H}-2$, respectively), the remaining contributions arising 352 mostly from π orbitals of the bpy ligands. On the other hand, 353

Figure 6. Schematic representation of the reaction coordinate involved in the cis-trans interconversion over the ground and excited PES. All energies are expressed in $\mathrm{kJ} \mathrm{mol}^{-1}$.
the LUMO and LUMO+1 orbitals are bpy-centered (96\% and 94% bpy for L and $L+1$ in the cis species and 97% and 94% bpy for L and $\mathrm{L}+1$ in the trans species) and are π^{*} in nature. In both compounds the MLCT bands result from the convolution of transitions involving the $\mathrm{H}-1$ and $\mathrm{H}-2$ donor orbitals while the L and $\mathrm{L}+1 \mathrm{MOs}$ behave as acceptors. Transitions involving the HOMO are of very low intensity even when they are symmetry allowed, because of the very poor overlap between the metal and ligand orbitals. Consequently, the lowest energy HOMO-LUMO excited MLCT state contributes only marginally to the experimental absorption profile (see Supporting Information, Tables S8-S11).
Starting from the trans species, and always exploring pathways over the ground-state potential energy surface, we found that the thermal interconversion between the isomers proceeds by a three-step mechanism. The most likely pathway connecting the trans reagent with the cis product seems to involve two intermediate local minima that correspond to pentacoordinated (5C) species due to the dissociation of a water molecule from the stable hexacoordinated (6C) species. The first step involves the elongation of the $\mathrm{Ru}-\mathrm{O}$ bond, a process that occurs uphill, to allow for the formation of the first 5C intermediate, in which the arrangement of the ligands is reminiscent of that of the 6 C reagent. In fact, the $\mathrm{Ru}-\mathrm{N}$ and $\mathrm{Ru}-\mathrm{P}$ bond lengths in 5C remain roughly unchanged in comparison to trans-6C and the angle between vectors perpendicular to the planes containing the bpy molecules varies only from 32.0° in trans-6C to 33.3° in trans-5C (Figure 6). The theoretical dissociation energy associated with the process is $67.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The second step is associated with the rotation of one bpy moiety around the $\mathrm{Ru}-\mathrm{N}_{3}$ bond, inducing a change in the relative angle between the bpy molecules, ultimately bringing it to a value of 86.4°, in a conformation of ligands similar to that of the 6 C cis product (angle between bpys of 89.4°). The latter is an activated step; the optimization of the first-order saddle point in the trajectory between both 5C species leads to the transition state for the process, with a bipyridine angle of 51.7° and a theoretical activation barrier of $36.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The final step requires the downhill addition of
a water molecule to the 5 C species to finally yield the more 393 stable 6C cis species.

Excited-State Interconversion. On irradiation in the 395 MLCT transitions located in the visible region, solutions of cis- 396 $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ photoisomerize to yield trans- 397 $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$. At prolonged irradiation times 398 the concentrations of both species become stationary, due to 399 the reversibility of the photoprocess and the simultaneous 400 occurrence of the back thermal reaction. The microscopic 401 sequence involves the following, as already described for the 402 photodetachment of monodentate ligands in Ru-polypyridine 403 complexes. (a) Absorption of light occurs in the visible region 404 to render an excited ${ }^{1}$ MLCT which relaxes to the lowest 405 energy HOMO-LUMO ${ }^{1}$ MLCT excited state. (b) Intersystem 406 crossing takes places which leads to a ${ }^{3}$ MLCT excited state, 407 with this state displaying geometric parameters similar to those 408 in the ground state (see Supporting information, Table S12, 409 Figure S18). (c) The photoactive ${ }^{3} \mathrm{~d}-\mathrm{d}$ state is thermally 410 populated. The antibonding nature of the newly populated d 411 orbital, which is aligned with the $\mathrm{O}-\mathrm{Ru}-\mathrm{P}$ axis, induces the 412 elongation of the $\mathrm{Ru}-\mathrm{O}$ bond, to yield a thermalized ${ }^{3} \mathrm{~d}-\mathrm{d} 413$ relaxed excited state stabilized $29.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ with respect to 414 the ${ }^{3}$ MLCT. The weakening of the $\mathrm{Ru}-\mathrm{O}$ bond is followed by 415 (d) dissociation of a $\mathrm{H}_{2} \mathrm{O}$ molecule to render the ${ }^{3} \mathrm{~d}-\mathrm{d}$ excited 416 cis-5C species. The separation of a water molecule from the 417 coordination sphere is slightly endothermic, involving 10.9 kJ 418 mol^{-1}. Apart from the different coordination number, no 419 significant changes in the bpy conformation are associated with 420 the dissociation process (the bpy molecules lie at 87.1° in cis- 421 $6 \mathrm{C}-3 \mathrm{dd}$ and 89.5° in cis-5C). The rotation of a bpy molecule 422 around the $\mathrm{Ru}-\mathrm{N}_{3}$ bond up to 55.3° allows the conversion 423 between the cis- and trans-5C forms. The transformation 424 occurs over the lowest energy ${ }^{3} \mathrm{~d}-\mathrm{d}$ PES and involves a shallow 425 barrier of only $3.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to yield the slightly more stable 426 $\left(2.9 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$) trans-5C isomer. Addition of $\mathrm{H}_{2} \mathrm{O}$ to the 427 coordination sphere finally leads to the ${ }^{3} \mathrm{~d}-\mathrm{d}$ excited state of 428 the trans-6C species. As is clear from Figure 6, the overall cis- 429 trans interconversion over the ${ }^{3} \mathrm{~d}-\mathrm{d}$ PES involves barriers 430 significantly lower than those in the ground state.

Synthetic Applications. One of the central (and often undesirable) aspects in the chemistry of monoaqua complexes of Ru-bpy is the deprotonation of the coordinated water to yield more inert hydroxo complexes at high pH values. The $\mathrm{p} K_{\mathrm{a}}(\mathrm{cis})$ of cis $-\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ is 11.05 . We have explored the deprotonation equilibrium in the analogous trans complex, which turned to be less acidic $\left(\mathrm{p} K_{\mathrm{a}}(\operatorname{trans})=12.15\right)$. This apparently small $\mathrm{p} K_{\mathrm{a}}$ difference actually facilitates its use in synthetic procedures, enlarging the pH window to perform ligand change.
Heating of trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ in the presence of an L ligand holding a donor N atom, at an appropriate temperature, yields trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{L}\right]^{2+}$. In this way, we have been able to synthesize and isolate the complex trans$\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{ImH}\right]^{2+}(\operatorname{ImH}=$ imidazole $)$, which presents a higher quantum yield of photoaquation than its cis isomer. Figure 7 shows a typical photolysis of an aqueous solution of

Figure 7. UV-vis spectra of an aqueous solution of trans$\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{ImH}\right]^{2+}([4])$ during photolysis using a 532 nm laser. Inset: best fit of photoproduct vs irradiation time, for a quantum yield $\varphi_{\mathrm{PD}}(\operatorname{trans})=0.23$.
ison of their properties was not possible. Another complex that 481 presents an interesting property is the symmetric trans- 482 $\left[\mathrm{Ru}(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]^{2+}$, which is very stable both thermally 483 and photochemically. Once more, its cis isomer could not be 484 synthesized following the standard procedures.

- CONCLUSIONS

We have synthesized for the first time the trans isomers of the 487 $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ form. The reaction, which in- 488 volves an isomerization in the excited state reached by light 489 absorption, was rationalized by employing DFT calculations. 490 We showed that, although the trans isomer can revert to the cis 491 form, it is stable enough in solid form and even in aqueous 492 solutions, allowing ligand exchange and photorelease studies 493 and further synthetic uses in a direct, clean way.

Both cis- and trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ undergo 495 photoisomerization under ${ }^{1}$ MLCT irradiation. In water 496 solution a photostationary state is reached, which mainly 497 depends on the irradiation wavelength, due to the red-shifted 498 absorption of the trans form. Interestingly, while among cis 499 isomers a red-shifted ${ }^{1}$ MLCT band is usually linked to a lower 500 photolysis quantum yield, the trans isomers present simulta- 501 neously a lower energy ${ }^{1}$ MLCT and a higher quantum yield. 502 This fact could be useful in devising efficient red-shifted 503 phototriggers. Complexes bearing two phosphines were also 504 synthesized, although it was not possible to produce their cis 505 isomers in a similar way. While the heteroleptic $\mathrm{PMe}_{3}-\mathrm{PPh}_{3} 506$ complex delivers PPh_{3} under visible irradiation, the complex 507 having two PMe_{3} groups did not present an appreciable 508 photochemistry.

- ASSOCIATED CONTENT

(S) Supporting Information

The Supporting Information is available free of charge on the 512 ACS Publications website at DOI: 10.1021/acs.inorg- 513 chem.9b01485.

Mass spectrometric, NMR, and UV-vis characterization 515 of the compounds, complementary computational de- 516 tails and results, and time evolution of trans- $[\mathrm{Ru}-517$ $\left.(\text { bpy })_{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{2+}$ irradiated at 525 nm as 518 monitored by NMR (PDF)

- AUTHOR INFORMATION

Corresponding Authors

*E-mail for L.D.S.: slep@qi.fcen.uba.ar.
*E-mail for R.E.: rober@qi.fcen.uba.ar.

ORCID

Leonardo D. Slep: 0000-0001-6447-2216
Roberto Etchenique: 0000-0002-5485-8710
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the University of Buenos Aires, CONICET, 530 and ANPCyT for their financial assistance to conduct the 531 research. R.E. and L.D.S. are members of the scientific staff of 532 CONICET.

- REFERENCES

(1) Pinnick, D. V.; Durham, B. Photosubstitution reactions of 535 $\mathrm{Ru}(\text { bpy })_{2} \mathrm{XY}^{\mathrm{n}+}$ complexes. Inorg. Chem. 1984, 23, 1440-1445.
(2) Durham, B.; Walsh, J. L.; Carter, C. L.; Meyer, T. J. Synthetic applications of photosubstitution reactions of poly(pyridyl) complexes of ruthenium(II). Inorg. Chem. 1980, 19, 860-865.
(3) Zayat, L.; Calero, C.; Albores, P.; Baraldo, L.; Etchenique, R. A new strategy for neurochemical photodelivery: Metal-ligand heterolytic cleavage. J. Am. Chem. Soc. 2003, 125, 882-883.
(4) Müller, M.; Dierkes, P. W.; Schlue, W.-R. Ionic mechanism of 4aminopyridine action on leech neuropile glial cells. Brain Res. 1999, 826, 63-73.
(5) Nikolenko, V.; Yuste, R.; Zayat, L.; Baraldo, L. M.; Etchenique, R. Two-photon uncaging of neurochemicals using inorganic metal complexes. Chem. Commun. 2005, 1752-1754.
(6) Salierno, M.; Marceca, E.; Peterka, D. S.; Yuste, R.; Etchenique, R. A fast ruthenium polypyridine cage complex photoreleases glutamate with visible or IR light in one and two photon regimes. J. Inorg. Biochem. 2010, 104, 418-422.
(7) (a) Filevich, O.; Etchenique, R. RuBiGABA-2: a hydrophilic caged GABA with long wavelength sensitivity. Photochem. Photobiol. Sci. 2013, 12, 1565-1570. (b) Zayat, L.; Noval, M. G.; Campi, J.; Calero, C. I.; Calvo, D. J.; Etchenique, R. A new inorganic photolabile protecting group for highly efficient visible light GABA uncaging. ChemBioChem 2007, 8, 2035-2038.
(8) Filevich, O.; Salierno, M.; Etchenique, R. A caged nicotine with nanosecond range kinetics and visible light sensitivity. J. Inorg. Biochem. 2010, 104, 1248-1251.
(9) Cabrera, R.; Filevich, O.; García-Acosta, B.; Athilingam, J.; Bender, K. J.; Poskanzer, K. E.; Etchenique, R. A visible-light-sensitive caged serotonin. ACS Chem. Neurosci. 2017, 8, 1036-1042.
(10) Araya, R.; Andino-Pavlovsky, V.; Yuste, R.; Etchenique, R. Two-Photon Optical Interrogation of Individual Dendritic Spines with Caged Dopamine. ACS Chem. Neurosci. 2013, 4, 1163-1167.
(11) (a) Garner, R. N.; Gallucci, J. C.; Dunbar, K. R.; Turro, C. $\left[\mathrm{Ru}(\text { bpy })_{2}(5 \text {-cyanouracil })_{2}\right]^{2+}$ as a Potential Light-Activated DualAction Therapeutic Agent. Inorg. Chem. 2011, 50, 9213-9215. (b) Knoll, J. D.; Turro, C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord. Chem. Rev. 2015, 282-283, 110-126. (c) Respondek, T.; Garner, R. N.; Herroon, M. K.; Podgorski, I.; Turro, C.; Kodanko, J. J. Light Activation of a Cysteine Protease Inhibitor: Caging of a Peptidomimetic Nitrile with RuII(bpy) ${ }_{2}$. J. Am. Chem. Soc. 2011, 133, 17164-17167.
(12) (a) da Rocha, Z. N.; Marchesi, M. S. P.; Molin, J. C.; Lunardi, C. N.; Miranda, K. M.; Bendhack, L. M.; Ford, P. C.; da Silva, R. S. The inducing NO-vasodilation by chemical reduction of coordinated nitrite ion in cis $-\left[\mathrm{Ru}\left(\mathrm{NO}_{2}\right) \mathrm{L}(\mathrm{bpy})_{2}\right]^{+}$complex. Dalton Trans 2008, 4282-4287. (b) Franco, L. P.; Cicillini, S. A.; Biazzotto, J. C.; Schiavon, M. A.; Mikhailovsky, A.; Burks, P.; Garcia, J.; Ford, P. C.; Silva, R. S. d. Photoreactivity of a Quantum Dot-Ruthenium Nitrosyl Conjugate. J. Phys. Chem. A 2014, 118, 12184-12191. (c) Levin, N.; Osa Codesido, N.; Bill, E.; Weyhermuller, T.; Segantin Faspari, A. P.; da Silva, R. S.; Olabe, J. A.; Slep, L. D. Structural, Spectroscopic, and Photochemical Investigation of an Octahedral NO-Releasing $\{\text { RuNO }\}^{7}$. Inorg. Chem. 2016, 55, 7808-7810.
(13) (a) Salassa, L.; Garino, C.; Salassa, G.; Gobetto, R.; Nervi, C. Mechanism of Ligand Photodissociation in Photoactivable [Ru(bpy) $\left.)_{2} \mathrm{~L}_{2}\right]^{2+}$. Complexes: A Density Functional Theory Study. J. Am. Chem. Soc. 2008, 130, 9590-9597. (b) Salassa, L.; Borfecchia, E.; Ruiu, T.; Garino, C.; Gianolio, D.; Gobetto, R.; Sadler, P. J.; Cammarata, M.; Wulff, M.; Lamberti, C. Photo-Induced Pyridine Substitution in cis- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{py})_{2}\right] \mathrm{Cl}_{2}$: A Snapshot by TimeResolved X-ray Solution Scattering. Inorg. Chem. 2010, 49, 1124011248.
(14) Word, T. A.; Karolak, A.; Cioce, C. R.; Van Der Vaart, A.; Larsen, R. W. Using Photoacoustic Calorimetry to Study the cis to Complex in Aqueous Solution. Comments Inorg. Chem. 2016, 36, 343-354.
(15) Ali, B. A.; Allam, N. K. Propping the optical and electronic 604 properties of potential photo-sensitizers with different π-spacers: TD- 605 DFT insights. Spectrochim. Acta, Part A 2018, 188, 237-243. 606 (16) Rojas Pérez, Y.; Etchenique, R. Optical manipulation of animal 607 behavior using a ruthenium-based phototrigger. Photochem. Photobiol. 608 Sci. 2019, 18, 208-212.
(17) Frisch, M. J. Gaussian 09, Rev. A.02; Gaussian Inc., Wallingford, 610 CT, 2009.
(18) (a) Becke, A. D. Density functional calculations of molecular 612 bond energies. J. Chem. Phys. 1986, 84, 4524-4529. (b) Becke, A. D. 613 Density-functional thermochemistry. III. The role of exact exchange. J. 614 Chem. Phys. 1993, 98, 5648-5652. (c) Lee, C.; Yang, W.; Parr, R. G. 615 Development of the Colle-Salvetti correlation-energy formula into a 616 functional of the electron density. Phys. Rev. B: Condens. Matter Mater. 617 Phys. 1988, 37, 785-789. (d) Perdew, J. P. Density-functional 618 approximation for the correlation energy of the inhomogeneous 619 electron gas. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 620 8822-8824.
(19) (a) Dunning, T. H., Jr.; Hay, P. J. In Modern Theoretical 622 Chemistry; Schaefer, H. F., III, Ed.; Plenum: New York, 1976; pp 1-623 28. (b) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for 624 molecular calculations. Potentials for the transition metal atoms Sc to 625 Hg. J. Chem. Phys. 1985, 82, 270-283. (c) Hay, P. J.; Wadt, W. R. Ab 626 initio effective core potentials for molecular calculations. Potentials 627 for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 628 82, 299-310. (d) Wadt, W. R.; Hay, P. J. Ab initio effective core 629 potentials for molecular calculations. Potentials for main group 630 elements Na to Bi. J. Chem. Phys. 1985, 82, 284-298.

631
(20) (a) Videla, M.; Jacinto, J. S.; Baggio, R.; Garland, M. T.; Singh, 632 P.; Kaim, W.; Slep, L. D.; Olabe, J. A. New Ruthenium Nitrosyl 633 Complexes with Tris(1-pyrazolyl)methane (tpm) and $2,2^{\prime}$-Bipyridine 634 (bpy) Coligands. Structure, Spectroscopy, and Electrophilic and 635 Nucleophilic Reactivities of Bound Nitrosyl. Inorg. Chem. 2006, 45, 636 8608-8617. (b) Carrone, G.; Zayat, L.; Slep, L. D.; Etchenique, R. 637 Transient photocyclization in ruthenium(II) polypyridine complexes 638 of indolamines. Phys. Chem. Chem. Phys. 2017, 19, 2140-2147. 639 (c) De Candia, A. G.; Marcolongo, J. P.; Etchenique, R.; Slep, L. D. 640 Widely Differing Photochemical Behavior in Related Octahedral \{Ru- 641 NO $\}^{6}$ Compounds: Intramolecular Redox Isomerism of the Excited 642 State Controlling the Photodelivery of NO. Inorg. Chem. 2010, 49, 643 6925-6930. (d) Petroni, A.; Slep, L. D.; Etchenique, R. Ruthenium- 644 (II) 2,2-Bipyridyl Tetrakis Acetonitrile Undergoes Selective Axial 645 Photocleavage. Inorg. Chem. 2008, 47, 951-956. (e) Levin, N.; Osa 646 Codesido, N.; Marcolongo, J. P.; Weyhermueller, T.; Olabe, J. A.; 647 Slep, L. D. Remarkable changes of acidity of bound nitroxyl (HNO) 648 in the $\left[\mathrm{Ru}\left(\mathrm{Me}_{3}[9] \mathrm{aneN}_{3}\right)\left(\mathrm{L}^{2}\right)(\mathrm{NO})\right]^{\mathrm{nt}}$ family $(\mathrm{n}=1-3)$. Systematic 649 structural and chemical exploration and bioinorganic chemistry 650 implications. Inorg. Chem. 2018, 57, 12270-12281.
(21) Videla, M.; Roncaroli, F.; Slep, L. D.; Olabe, J. A. Reactivity of 652 Reduced Nitroprusside, $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO} \bullet\right]^{3-}$, toward Oxygen. J. Am. 653 Chem. Soc. 2007, 129, 278-279. Transit and Quasi-Newton Methods to Find Transition States. Isr. J. 656 Chem. 1993, 33, 449-454.
(23) (a) Fukui, K. Formulation of the reaction coordinate. J. Phys. 658 Chem. 1970, 74, 4161-4163. (b) Fukui, K. The path of chemical 659 reactions - the IRC approach. Acc. Chem. Res. 1981, 14, 363-368. 660 (c) Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. 661 Intrinsic reaction coordinate: Calculation, bifurcation, and automated 662 search. Int. J. Quantum Chem. 2015, 115, 258-269.
(24) Durham, B.; Wilson, S. R.; Hodgson, D. J.; Meyer, T. J. Cis- 664 trans photoisomerization in $\mathrm{Ru}(\text { bpy })_{2}\left(\mathrm{OH}_{2}\right)_{2}{ }^{2+}$. Crystal structure of 665 trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{OH})\right]\left(\mathrm{ClO}_{4}\right)_{2}$. J. Am. Chem. Soc. 1980, 102, 666 600-607.

667
(25) Walsh, J. L.; Durham, B. Trans isomers of ruthenium(II) 668 complexes containing two bipyridine ligands. Inorg. Chem. 1982, 21, 669 329-332.

670
(26) (a) Cordes, A. W.; Durham, B.; Swepston, P. N.; Pennington, 671 W. T.; Condren, S. M.; Jensen, R.; Walsh, J. L. Structural chemistry of 672

673 necessarily distorted bis(bipyridine) complexes. The crystal structure 674 of the trans-[bis(2,2'-bipyridine) bis(triphenyl-phosphine)ruthenium675 (ii)] and trans-[bis(4, 4^{\prime}-dimethyl-2, 2^{\prime}-bipyridine)bis(pyridine)676 ruthenium(II)] cations. J. Coord. Chem. 1982, 11, 251-260. 677 (b) Blake, A. J.; Marr, A. M.; Rankin, D. W. H.; Schroder, M. 678 Structure of trans-[bis($2,2^{\prime}$-bipyridyl)bis(methyldiphenylphosphine)679 ruthenium(II)] perchlorate tetrahydrofuran solvate. Acta Crystallogr., 680 Sect. C: Cryst. Struct. Commun. 1988, 44, 935-936. (c) Nagao, H.; 681 Nishimura, H.; Funato, H.; Ichikawa, Y.; Howell, F. S.; Mukaida, M.; 682 Kakihana, H. Synthesis, properties, and molecular structure of trans683 chloro(nitrosyl)bis($2,2^{\prime}$-bipyridine)ruthenium ($2+$): trans and cis 684 isomer characteristics compared. Inorg. Chem. 1989, 28, 3955685 3959. (d) Togano, T.; Kuroda, H.; Nagao, N.; Maekawa, Y.; 686 Nishimura, H.; Howell, F. S.; Mukaida, M. Synthesis, properties and 687 molecular structure of trans-hydroxobis(2, 2'-bipyridine)688 nitrosylruthenium (2+): influence of axial ligand on characteristics of 689 nitrosyl moiety in trans- $\left[\mathrm{Ru}(\mathrm{NO}) \mathrm{XL}_{4}\right]^{\mathrm{n}+}(\mathrm{X}=\mathrm{OH}, \mathrm{Cl} ; \mathrm{L}=\mathrm{py}, 1 /$ 690 2(bpy)) type complexes. Inorg. Chim. Acta 1992, 196, 57-63. 691 (e) Cordes, A. W.; Durham, B.; Pennington, W. T. Crystal and 692 molecular structures of trans-bis(acetonitrile)bis(bipyridine)693 ruthenium(II) perchlorate and trans-diamminebis(bipyridine)694 ruthenium(II) perchlorate. J. Crystallogr. Spectrosc. Res. 1992, 22, 695 699-704. (f) Weathers, N. R.; Sadoski, R. C.; Durham, B.; Cordes, A. 696 W. trans-Diaquabis ($2,2^{\prime}$-bipyridine-N,N')ruthenium(II) Bis697 (hexafluorophosphate). Acta Crystallogr., Sect. C: Cryst. Struct. 698 Commun. 1997, 53, 1047-1049. (g) Klufers, P.; Zangl, A. trans-bis 699 ($2,2^{\prime}$-bipyridine)dichloridoruthenium(II). Acta Crystallogr., Sect. E: 700 Struct. Rep. Online 2007, 63, No. m3088. (h) Jude, H.; White, P. S.; 701 Dattelbaum, D. M.; Rocha, R. C. trans-Diaquabis ($2,2^{\prime}$-bipyridine702 [kappa] ${ }^{2} \mathrm{~N}, \mathrm{~N}^{\prime}$)ruthenium(II)bis(trifluoromethanesulfonate). Acta 703 Crystallogr., Sect. E: Struct. Rep. Online 2008, 64, m1388-m1389. 704 (i) Haghighi, F. H.; Hadadzadeh, H.; Farrokhpour, H.; Serri, N.; 705 Abdi, K.; Amiri Rudbari, H. Computational and experimental study 706 on the electrocatalytic reduction of CO_{2} to CO by a new 707 mononuclear ruthenium(II) complex. Dalton Trans 2014, 43, 708 11317-11332.
709 (27) (a) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Mixed phosphine $7102,2^{\prime}$-bipyridine complexes of ruthenium. Inorg. Chem. 1978, 17, 711 3334-3341. (b) Litke, S. V.; Ershov, A. Y. Photophysics of bis712 bipyridyl complexes of ruthenium(II) with triphenylphosphine. Opt. 713 Spectrosc. 2011, 110, 522.

[^0]: Received: May 21, 2019

