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SUMMARY

Transcription factors (TFs) must access chromatin to
bind to their response elements and regulate gene
expression. A widely accepted model proposes that
only a special subset of TFs, pioneer factors, can
associate with condensed chromatin and initiate
chromatin opening. We previously reported that ste-
roid receptors (SRs), not considered pioneer factors,
can assist the binding of an archetypal pioneer, the
forkhead box protein 1 (FOXA1), at a subset of recep-
tor-activated enhancers. These findings have been
challenged recently, with the suggestion that newly
acquired data fully support the prevailing pioneer
model. Here, we reexamine our results and confirm
the original conclusions.We also analyze and discuss
a number of available datasets relevant to chromatin
penetration by SRs and find a general consensus
supporting our original observations. Hence, we pro-
pose that chromatin opening at some sites can be
initiated by SRs, with a parallel recruitment of factors
often treated as having a unique pioneer function.
This Matters Arising paper is in response to Glont
et al. (2019), published in Cell Reports.

INTRODUCTION

How transcription factors (TFs) penetrate chromatin and break

the nucleosome barrier to access their specific response ele-

ments is central to an understanding of transcriptional regula-

tion. A widely followed paradigm argues that a special class of

proteins, pioneer factors, have the unique ability to access

nucleosome embedded DNA. These factors facilitate chromatin

remodeling and allow the binding of secondary TFs, which other-

wise would not be able to access their target DNA sequence

(Zaret andCarroll, 2011). This select group of pioneer proteins in-

cludes reprograming factors such as OCT4, SOX2, and KLF4

and lineage-specifying TFs such as GATA binding protein

(GATA) and forkhead box protein (FOXA) family members,

PU.1, and C/EBPa, among others (Mayran and Drouin, 2018).
This is an open access article under the CC BY-N
Multiple mechanisms have been proposed for the penetration

of closed chromatin by pioneer factors. The forkhead box protein

1 (FOXA1) can bind and induce nucleosome rearrangements via

its winged-helix domain, similar to the H1 linker histone, by an

adenosine triphosphate (ATP)-independent mechanism (Cirillo

et al., 2002, 1998). However, this mechanism cannot be univer-

sal, as many pioneer factors lack the winged-helix domain. In

addition, ATP-dependent chromatin remodelers have been

linked to GATA3 and OCT4 actions (King and Klose, 2017; Ta-

kaku et al., 2016), suggesting ATP plays an important role in

pioneer activity. Moreover, pioneer factors have some limitations

in their ability to access chromatin, as ectopic expression of

FOXA2 and GATA4 still exhibits cell-type specific binding (Dona-

ghey et al., 2018). The latter suggests the chromatin landscape,

in addition to intrinsic properties of a given TF, is a major deter-

minant to access enhancer elements.

Steroid receptors (SRs) are ligand-regulated TFs involved in

several key physiological processes (Chen, 2008). Under the

pioneer paradigm, these receptors are classified as secondary

factors (Zaret and Carroll, 2011). However, several lines of evi-

dence disagree with this model. For example, the glucocorticoid

receptor (GR) shows bona fide pioneer properties, as it can ac-

cess nucleosomal enhancers (Archer et al., 1991; Richard-Foy

and Hager, 1987) and open chromatin by recruiting the chro-

matin remodeler BRG1 (Hoffman et al., 2018; Johnson et al.,

2018). Moreover, a ‘‘super receptor’’ version of the GR (GR-

P481R) transcends tissue specificity by accessing (and opening)

enhancer sites that wild-type receptors can only access in other

tissues (Paakinaho et al., 2019).

The ability to assist secondary TFs’ access to chromatin does

not appear to be a defining or exclusive characteristic of pioneer

factors, as the GR and the estrogen receptor (ER) can assist

each other to bind enhancers by a mechanism called dynamic-

assisted loading (Miranda et al., 2013; Voss et al., 2011). Also,

activation of the GR can facilitate recruitment of AP1 and

C/EBPb to chromatin (Grøntved et al., 2013; He et al., 2013).

Taken together, SRs present ‘‘pioneer-like’’ properties in a chro-

matin context-dependent manner, effectively blurring the hith-

erto defined line between pioneer and non-pioneer factors. In

fact, a binary classification may not be sufficient to capture the

complexity and diversity of the interaction between TFs and

chromatin, as at least five types of interactions between TFs
Cell Reports 28, 3523–3534, September 24, 2019 3523
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and the nucleosome have been recently described in vitro (Zhu

et al., 2018).

In 2016, we reported that ERs and GRs can induce the binding

of the pioneer factor FOXA1 to chromatin through dynamic tran-

sitions of chromatin accessibility (Swinstead et al., 2016). This

result challenged the prevailing pioneer factor model, as elabo-

rated on by Carroll and colleagues (Hurtado et al., 2011; Zaret

and Carroll, 2011), arguing that FOXA1 is an obligate factor

needed for an ER’s interaction with chromatin. Two subsequent

reports have questioned the quality and interpretation of the

original datasets contradicting the canonical FOXA1 pioneer

model (Glont et al., 2019; Zaret et al., 2016). Here, we re-analyze

our original data (Swinstead et al., 2016), compare the newly ac-

quired results with the opposing findings (Glont et al., 2019), and

subsequently reconfirm our original conclusions. Moreover, we

have analyzed several publicly available datasets relevant to

chromatin penetration by SRs (Franco et al., 2015; Hurtado

et al., 2011; Kong et al., 2011; Liu et al., 2014; Malinen et al.,

2017; Pihlajamaa et al., 2014; Toropainen et al., 2015). All of

these studies show that a considerable subset of FOXA1 binding

depends on the activation of a SR, in agreement with our original

publication.

RESULTS

Activation of the ER Induces the Binding of FOXA1 in
MCF-7 and ZR-75-1 Cells
To carefully address the concerns raised by Glont et al. (2019),

using the same criteria for peak identification, tag quantification,

and data visualization, we re-analyzed the recent FOXA1 ChIP-

seq datasets generated by Carroll and colleagues together

with our original FOXA1 ChIP-seq datasets (Swinstead et al.,

2016). One critique Glont et al. (2019) highlighted was an incon-

sistency between replicates of our original data. Indeed, the vari-

ability between replicates did not allow subsequent statistical

analysis by approaches such as EdgeR and DESeq2 (Love

et al., 2014; Robinson et al., 2010). To account for this, we called

replicate concordant peaks. In contrast to this approach, Glont

et al. (2019) did not call ChIP-seq peaks from each individual

replicate samples, but instead called peaks after combining all

replicates together. We reperformed FOXA1 peak identification

from each individual biological replicate sample (Figures

1A�1C and S1B�S1D) from both studies. This shows a similar

overlap of called peaks between replicates of our original sets

(Swinstead et al., 2016) and most of Glont et al. (2019) datasets.

One ZR-75-1 FOXA1 replicate (ab5089) from Glont et al. showed
Figure 1. E2-Induced Binding of FOXA1 in MCF-7 Cells

(A�C) Comparison of identified FOXA1+E2 peaks from biological replicate sampl

C). Numbers of peaks identified in each replicate and the concordant peaks are

(D�F) Heatmaps represent FOXA1 (black) ChIP-seq data from Swinstead et al.

heatmap and E2-induced FOXA1 sites on the bottom of the heatmap. Heatmaps o

binding sites is shown on the left of the heatmap. Each heatmap represents ±1 kb

a linear scale. Heatmaps are sorted based on FOXA1+E2 binding intensity. All he

Used FOXA1 antibody is depicted in the parentheses.

(G) Three representative genome browser track examples of E2-induced FOXA1

reads.

See also Figure S1.
more than 50% fewer called peaks compared to the other repli-

cates (Figure S1D). Furthermore, our peak calling and replicate

concordant analysis was much more stringent than that used

by Carroll and colleagues (Glont et al. (2019), as we called

roughly 50% fewer FOXA1 ChIP-seq peaks with each antibody

in both the MCF-7 and ZR-75-1 cell lines. This highlights that

the less stringent peak calling used by Glont et al. can potentially

lead to an overestimation of FOXA1 peaks and an underrepre-

sentation of ligand-induced FOXA1 binding.

Subsequently, we determined whether activation of the ER by

17b-estradiol (E2) can induce the chromatin binding of FOXA1,

as we indicated in our original work (Swinstead et al., 2016)

(see STAR Methods for details). All FOXA1 ChIP-seq datasets

show E2-induced FOXA1 binding sites (Figures 1D�1F and

S1E�S1G), including separate biological replicate samples

(Figures S1A and S1H). Our data showed 2,897 E2-induced

FOXA1 (with ab23738) sites in MCF-7 cells (Figure 1D), while

Glont et al. (2019) showed 610 sites with ab23738 (Figure 1E)

and 1,358 sites with ab5089 (Figure 1F). We found a similar trend

but lower numbers of E2-induced FOXA1 sites in the ZR-75-1

cells (Figures S1E�S1G). As expected, ER binding was preva-

lent at the E2-induced FOXA1 binding sites, suggesting an active

role of the ER in reprogramming chromatin for FOXA1 binding.

This is further highlighted in representative genome browser

tracks (Figures 1G and S1I). Thus, we identify hormone-induced

FOXA1 binding in MCF-7 cells and ZR-75-1 cells using two inde-

pendent datasets, and the original conclusions are valid. It is of

value to note that the variability between the independent

datasets likely reflects slight differences in the clonal cell lines

(Ben-David et al., 2018), culture conditions, and ChIP protocols.

Motifs for Both the ER and FOXA1 Are Enriched at E2-
Induced FOXA1 Sites
Amajor conclusion byGlont et al. (2019) was that the E2-induced

FOXA1 sites are generated by ‘‘shadow’’ binding events due to

chromatin looping of FOXA1. Carroll and colleagues based this

conclusion on the lack of forkhead motifs at the E2-induced

FOXA1 sites. However, no details from the motif analyses were

provided, and only one enriched motif was indicated. We per-

formed extensive motif analyses of the E2-induced FOXA1 sites

(see STAR Methods for details). A de novo motif analysis indi-

cates a strong enrichment of both the estrogen response

element (ERE) and the forkhead motifs at E2-induced FOXA1

sites in all datasets, and in both MCF-7 and ZR-75-1 cells (Fig-

ures 2A and S2A). To assess the motif enrichment data in more

detail, we compared the motif scores of the ERE and FOXA1
es using datasets from Swinstead et al. (2016) (A) and Glont et al. (2019) (B and

shown. Used FOXA1 antibody is depicted in the parentheses.

(2016) (D) and Glont et al. (2019) (E and F) with unchanged sites on top of the

f ER (red) represent ChIP-seq data from Swinstead et al. (2016).The number of

around the center of the FOXA1 peak. Binding intensity scale is noted below on

atmaps are normalized to a total of 10 million reads and to tags per bp per site.

binding sites. Genome browser tracks are normalized to a total of 10 million
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Figure 2. ERE and Forkhead Motifs Are Both Enriched at E2-Induced FOXA1 Sites in MCF-7 Cells

(A) De novo motif analysis of the ERE and FOXA1 motif enrichments at E2-induced FOXA1 sites from indicated datasets. Percentage of occurrence and motif

enrichment p value are shown.

(B) Log-odd motif scores of FOXA1 or the ERE at unchanged (black) or E2-induced (red) FOXA1 sites from indicated datasets. Also displayed are FOXA1 motif

scores from random DHSs in MCF-7 cells. Motif score distribution depicted as boxplots.

(C) Cumulative distribution function (CDF) of the distance between an E2-induced FOXA1 site and the closest ERE in indicated datasets. Median is depicted by

gray dashed line, and median from each dataset is indicated with color coding.

(D) Aggregate plot of FOXA1 motif (black) and ERE (red) enrichment at E2-induced FOXA1 sites from indicated datasets. Plots are normalized to a total of

10 million reads and to motif per bp per site.

See also Figure S2.
motifs between unchanged and E2-induced FOXA1 sites. The

motif score of FOXA1 was slightly lower in both MCF-7 (Fig-

ure 2B) and ZR-75-1 (Figure S2B) cells in E2-induced conditions,

compared to unchanged FOXA1 sites. Regardless, most of the
3526 Cell Reports 28, 3523–3534, September 24, 2019
E2-induced sites displayed clearly higher FOXA1 motif scores,

compared to random DNase hypersensitive sites (DHSs). The

most striking difference was observed with the EREs that

showed clearly higher motif scores in E2-induced compared to
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unchanged FOXA1 sites. These effects were seen with our

(Swinstead et al., 2016) and with Glont et al. (2019) datasets.

Interestingly, it has also been shown by the Myers laboratory

that ER binding sites containing strong EREs are most often

found at locations associated with closed chromatin (Gertz

et al., 2013), and these sites open in response to E2 in a

mode they term ‘‘pioneering.’’ This is in line with our original

observation that ER binding induces the opening of chromatin,

assisting the recruitment of FOXA1 (Swinstead et al., 2016).

Thus, the striking enrichment of the ERE and FOXA1 motifs at

the E2-induced FOXA1 sites further highlights the active role of

the ER in reprogramming chromatin for subsequent FOXA1

accessibility.

If the ER reprograms chromatin for subsequent FOXA1 bind-

ing at these sites, the FOXA1 binding site should be in close

linear proximity (i.e., in cis) to an ERE (Swinstead et al., 2016).

We analyzed the distance between E2-induced FOXA1 sites to

the closest ERE (see STAR Methods for details). In the MCF-7

cells, the median distance between an E2-induced FOXA1 site

and an EREwas between 200 bp and 3.4 kb (Figure 2C), depend-

ing on the dataset. The median distance was even closer in the

ZR-75-1 cells, ranging between 60 and 450 bp (Figure S2C),

depending on the dataset. To aggregate these results, we

assessed the ERE and forkhead motifs’ enrichment at the E2-

induced FOXA1 sites. Both cell lines in all datasets showed a

clear enrichment of both the ERE and forkheadmotifs at the cen-

ter of the E2-induced FOXA1 sites (Figures 2D and S2D). In

conclusion, our detailed motif analyses indicate that both the

ERE and forkhead motifs are enriched at the E2-induced

FOXA1 sites, suggesting that ‘‘shadow’’ binding events sug-

gested by Carroll and colleagues (Glont et al. (2019) are based

on inadequate motif analyses.

Datasets from Multiple Laboratories Indicate E2-
Induced Binding of FOXA1
Although we observed E2-induced FOXA1 binding in both our

and Glont et al. (2019) datasets, we wished to address these

aspectsmore broadly, extending the analysis to all published ex-

periments. Several other investigators have published FOXA1

ChIP-seq datasets in MCF-7 cells in the presence or absence

of E2 (Franco et al., 2015; Kong et al., 2011; Liu et al., 2014).

We re-analyzed these datasets, along with the original FOXA1

ChIP-seq data published by Carroll and colleagues (Hurtado

et al., 2011) (see STAR Methods for details). Carroll and col-

leagues did not perform FOXA1 ChIP-seq in E2-treated MCF-7

cells; however, they did FOXA1 ChIP-seq experiments in starved
Figure 3. Datasets from Several Different Laboratories Show E2-Induc

(A�D) Heatmaps represent FOXA1 (black) and ER (red) ChIP-seq from Kong et al.

(D). Unchanged FOXA1 sites are shown on top of the heatmap, and E2 and full-me

(B) has E2+TNF-induced FOXA1 sites on the bottom of the heatmap. The number

±1 kb around the center of the FOXA1 peak. Binding intensity scale is noted below

intensity. All heatmaps are normalized to a total of 10 million reads and to tags p

(E) De novo motif analysis of the ERE and FOXA1 motif enrichments at E2-induc

enrichment p value are shown.

(F) Log-oddmotif scores of FOXA1 or the ERE at unchanged (black) or E2-induced

boxplots.

See also Figure S3.
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versus full-media conditions (Hurtado et al., 2011). We used

these as proxy for non-hormone treated conditions (starved)

and E2-treated conditions (full media). FOXA1 ChIP-seq data-

sets from the Liu (Figure 3A) (Kong et al., 2011), Kraus (Figure 3B)

(Franco et al., 2015), and Rosenfeld (Figure 3C) (Liu et al., 2014)

laboratories showed a significant number of E2-induced FOXA1

sites. The E2-induced binding of FOXA1 can be observed from

separate biological replicates (Figure S3A). Furthermore, all

three laboratories had used different FOXA1 antibodies in their

ChIP-seq experiments, indicating that an antibody epitope arti-

fact is unlikely to explain the appearance of E2-induced FOXA1

sites. In addition, the original datasets from Carroll and col-

leagues showed over 15,000 full-media-induced FOXA1 binding

events not present under hormone-starved conditions (Fig-

ure 3D). Again, ER binding was prevalent at all E2-induced

FOXA1 binding sites, showing that ER reprogramming of

FOXA1 binding can be observed from datasets generated by

multiple investigators. Although the E2-induced FOXA1 sites

have been disparaged in the past due to their relatively low

signals (Zaret et al., 2016), it should be noted that the signal

strength for both FOXA1 and the ER at the E2-induced sites

can be very strong (Figure 3A). It should also be noted that simul-

taneous activation of the ER and p65 by a tumor necrosis factor

(TNF) can result in additional FOXA1 binding events (Figure 3B)

(Franco et al., 2015). This illustrates that other signal-dependent

TFs can influence FOXA1 chromatin binding. Representative

genome browser tracks are shown for all datasets (Figures

S3B�S3E).

To complement our earlier conclusions, we performed similar

motif analyses from all additional FOXA1 ChIP-seq datasets. As

we observed earlier (Figure 2A), the ERE and forkhead motifs

were both enriched at E2- and full-media-induced FOXA1 sites

(Figure 3E). In addition, the motif score analysis of the ERE and

FOXA1 motifs (Figure 3F) showed similar results, as observed

earlier (Figure 2B). Although Kong et al. (2011) datasets showed

a clear decrease in the FOXA1 motif scores between unchanged

and E2-induced sites, the other datasets showed similar scores.

Furthermore, the median distance between an E2-induced

FOXA1 site and an ERE was between 600 bp and 3.1 kb (Fig-

ure S3F), depending on the dataset, which is similar to what

was observed earlier (Figure 2C). Finally, all datasets (except

Kong et al.) showed a clear enrichment of both the ERE and fork-

head motifs at the center of the E2-induced FOXA1 sites (Fig-

ure S3G). In conclusion, E2-induced FOXA1 sites, as depicted

in our original study (Swinstead et al., 2016), can be observed

in all datasets representing five different laboratories.
ed Binding of FOXA1

(2011) (A), Franco et al. (2015) (B), Liu et al. (2014) (C), and Hurtado et al. (2011)

dia-induced FOXA1 sites are on the bottom of the heatmap. Franco et al. (2015)

of binding sites is shown on the left of the heatmap. Each heatmap represents

on a linear scale. Heatmaps are sorted based in FOXA1+E2/full-media binding

er bp per site. Used FOXA1 antibody is depicted in the parentheses.

ed FOXA1 sites from indicated datasets. Percentage of occurrence and motif

(red) FOXA1 sites from indicated datasets. Motif score distribution depicted as
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Androgen Receptor Activation Induces the Chromatin
Binding of FOXA1 in Prostate Cancer Cells
Like the interplay between the ER and FOXA1 in breast cancer

cells, the importance of FOXA1 in the regulation of the androgen

receptor (AR) in prostate cancer cells has been extensively

investigated (Pihlajamaa et al., 2015; Sahu et al., 2011). Carroll

and colleagues have suggested that AR binding is regulated by

FOXA1 in an asymmetrical fashion (Lupien et al., 2008; Robinson

et al., 2014). However, depletion of FOXA1 from prostate cancer

cells influences only a subset of AR chromatin binding (Sahu

et al., 2011). This suggests that the AR could reprogram

FOXA1 binding to chromatin, like the ER in breast cancer cells.

To assess this, we re-analyzed available FOXA1 ChIP-seq data-

sets (see STAR Methods for details) generated from prostate

cancer cells treated with or without androgens (Malinen et al.,

2017; Toropainen et al., 2015). In addition, we re-analyzed

FOXA1 ChIP-seq datasets generated from castrated mouse

prostates treated with or without androgens (Pihlajamaa et al.,

2014). Androgens induced the chromatin binding of FOXA1 in

human vertebral cancer of the prostate (VCaP; Figure 4A) and

lymph node carcinoma of the prostate (LNCaP; Figure 4B) cells

and in castrated mouse prostates (Figure 4C). The androgen-

induced binding of FOXA1 can be observed from separate bio-

logical replicates (Figure S4A). Especially prevalent are the

over 11,000 R1881-induced FOXA1 binding sites in VCaP cells,

where the FOXA1 signal strength is similar to the remaining

�38,000 sites. The AR-dependent FOXA1 binding sites were

highly enriched with AR binding showing the strongest receptor

binding. Strong AR binding was also observed at induced

FOXA1 sites in LNCaP and mouse prostate datasets. Represen-

tative genome browser tracks are shown for all datasets (Figures

S4B�S4D).

To complement our ER observations, we performed motif

analyses from FOXA1 datasets generated from prostate cancer

cells or mouse prostates. As observed with ER data earlier (Fig-

ures 2A and 3E), the androgen response element (ARE) and fork-

head motifs were both enriched at androgen-induced FOXA1

sites (Figure 4D). In addition, the motif score analysis of the

ARE and FOXA1 motifs (Figure 4E) showed similar results to

those observed with the ER earlier (Figures 2B and 3F). Further-

more, the median distance between an androgen-induced

FOXA1 site and an ARE was between 1 and 3.0 kb (Figure S4E),

depending on the dataset. This was similar to what was

observed with the ER data (Figures 2C and S3F). Finally, all data-

sets showed a clear enrichment of both the ARE and the fork-

head motifs at the center of the androgen-induced FOXA1 sites
Figure 4. The AR Induces the Chromatin Binding of FOXA1 in Prostate

(A�C) Heatmaps represent FOXA1 (black) and AR (blue) ChIP-seq from Toropai

Unchanged FOXA1 sites are shown on top of the heatmap, and androgen-induc

Toropainen et al. (2015) with metribolone (R1881), by Malinen et al. (2017) with

(Testo). The number of binding sites is shown on the left of the heatmap. Each hea

scale is noted below on a linear scale. Heatmaps are sorted based on FOXA1+a

reads and to tags per bp per site. Used FOXA1 antibody is depicted in the paren

(D) De novo motif analysis of the ARE and FOXA1 motif enrichment at androgen-

motif enrichment p value are shown.

(E) Log-odd motif scores of FOXA1 or ARE at unchanged (black) or androgen-

depicted as boxplots.

See also Figure S4.
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(Figure S4F). In conclusion, the reprogramming of FOXA1 chro-

matin binding is observed with multiple SRs, in multiple cell lines,

with datasets generated by multiple investigators.

DISCUSSION

The idea of pioneering descends from the concept of master TFs

first developed in the 1980s. Early examples include Myo-D (Da-

vis et al., 1987) and the regulatory genes of the bithorax complex

(Lewis, 1985). In the original thinking (Ohno, 1979), master regu-

lators were proposed as genetic elements selected during evo-

lution to serve as controlling elements in a given developmental

pathway. The elements could include factors with a variety of ac-

tivities, not necessarily TFs. With the realization in the mid-80s of

the importance of chromatin as a barrier to TF access, the pene-

tration of closed chromatin became a key issue to the under-

standing of selective TF binding to the genome, and the concept

of ‘‘pioneer factors’’ eventually emerged (Cirillo et al., 2002).

Thus, two central issues arise concerning the alternate views

of pioneering by SRs, or any set of factors: Are these factors cho-

sen early in the evolution of genetic networks from a primitive set

of factors, or are they selected based on a specific property (i.e.,

a special ability to invade chromatin)? For the SRs, this issue

acquired a special prominence with the reports that FOXA1

was a frequent initiating factor for ER action in breast cancer

(Carroll et al., 2005), suggesting a potentially new target for ther-

apy with this important disease. With further study (Carroll et al.,

2006; Lupien et al., 2008), the concept developed that FOXA1 is

an obligate pioneer for ER binding (Zaret and Carroll, 2011). A

corollary of thismodel is that the ER and the other SRs are unable

to invade chromatin without the assistance of a pioneer factor

(Iwafuchi-Doi et al., 2016).

For an unbiased approach to the issue, we have addressed

here many SR datasets that bear on the question. To be consid-

ered, such data must include deep sequencing for chromatin

opening (DNase-seq, ATAC-seq) and parallel high-quality

ChIP-seq analyses. Looking at the totality of the data, it is clear

that the ER, GR, and AR can each serve as initiating factors to

open chromatin and, in a significant subset of events, induce

the recruitment of the FOXA1 pioneer. In this mode, FOXA1 is

essentially serving as a cofactor for the receptors (Figure 5A).

We introduced the term ‘‘initiating factor’’ to describe chromatin

penetration by the SRs as a symmetric process. That is, the role

of initiator among two or more factors can switch, depending on

the local chromatin conformation (Voss et al., 2011). This line of

reasoning would be in concordance with the recently introduced
Cancer Cells and in the Mouse Prostate

nen et al. (2015) (A), Malinen et al. (2017) (B), and Pihlajamaa et al. (2014) (C).

ed FOXA1 sites are on the bottom of the heatmap. The cells were treated by

dihydrotestosterone (DHT), and by Pihlajamaa et al. (2014) with testosterone

tmap represents ±1 kb around the center of the FOXA1 peak. Binding intensity

ndrogen binding intensity. All heatmaps are normalized to a total of 10 million

theses.

induced FOXA1 sites from indicated datasets. Percentage of occurrence and

induced (blue) FOXA1 sites from indicated datasets. Motif score distribution
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concept that there are a variety of nucleosome attack modes,

and a clear demarcation between pioneer and cofactor may be

too extreme (Zhu et al., 2018).

A New Wrinkle
Two recent studies shed new light on the issue of chromatin

opening by SRs. GR binding events were profiled on high-resolu-

tion nucleosome positioning data genome-wide (Johnson et al.,

2018). In mammalian cells, this type of data requires very deep

sequencing and has been rarely attempted. The GR sites were

characterized in three general states (Figure 5B): (1) the most

accessible sites are nucleosome depleted, with the BRG1

(SMARCA4) ATP-dependent remodeling complex preloaded on

the site, presumably by other factors; (2) a second class of sites,

less accessible, are nucleosomal but marked by the H2A.Z

variant histone and again harbor BRG1; and (3) the third class

of sites are nucleosomal, with no evidence of nuclease accessi-

bility (see Figure S5). In this third class, the GR is a true initiating

factor, recruiting BRG1 and opening chromatin. In this study, it

was also found that GR binding on nucleosomal sites (classes

2 and 3) was predominantly centered on the nucleosome dyad

(Figure 5C). This discovery stands in contrast to the frequent

assertion that ‘‘non-pioneer’’ factor binding is largely limited to

nucleosome edges or inter-nucleosomal regions (Klemm et al.,

2019; Thurman et al., 2012). Thus, the GR frequently binds to

the double gyres on an intact nucleosome surface during the initi-

ator step. This finding is quite striking and in line with the original

observation (Perlmann andWrange, 1988) that a purified GR can

bind to a reconstituted nucleosome.

A second study (Paakinaho et al., 2019) introduces a new

‘‘wrinkle’’ to the chromatin opening story. Using live cell fluores-

cence correlation spectroscopy methods, Presman and col-

leagues reported in 2016 that GR-response element binding

induces tetramerization of the receptor (Presman et al., 2016).

Yamamoto and colleagues had earlier developed the concept

that DNA binding introduces an allosteric transition in the recep-

tor that could alter its cofactor interactions (van Tilborg et al.,

2000). During this work, they isolated a GR DNA binding domain

mutation that mimicked the DNA-bound conformation. Intro-

ducing this mutation in the full-length receptor (called GRtetra)

was found to create a ‘‘super receptor,’’ able to penetrate

many sites in mammary cells (Figure 5D) not available to the

wild-type receptor (Paakinaho et al., 2019). The vast majority of

these new sites correspond to glucocorticoid response elements
Figure 5. Steroid Receptor Binding to Chromatin

(A) FoxA1 serves as a pioneer factor for steroid receptors at some closed chroma

increase the nuclease accessibility of the sites. At other sites, attack on the closed

ATP-dependent remodeling systems (right).

(B) Glucocorticoid receptor binds chromatin in three modes (Johnson et al., 2018

or nuclease accessible sites with nucleosomes containing variant and otherw

detectable nuclease accessibility (see Figure S5). Live cell studies show that t

induced transition is constitutively induced by the P481R mutation (GRtetra) th

domain (Presman et al., 2016).

(C) High-resolution nucleosomemapping combined with ChIP-seq reveals a prep

et al., 2018).

(D) The GRtetra invades many more closed chromatin sites than the wild-type

mammary cells but available to wild-type receptors in other cell types (Paakinah

See also Figure S5.

3532 Cell Reports 28, 3523–3534, September 24, 2019
(GREs) bound by the wild-type receptor in cells from other

tissue types. That is, the GRtetra receptor overcomes chromatin

repression in mammary cells and pioneers authentic sites spe-

cific to other tissues. The working model from this study argues

that the DNA-induced receptor transition is a normal but tran-

sient process, which in some cases allows the receptor to initiate

chromatin opening. Conversion of the receptor to the constitu-

tive DNA-bound form (Figure 5B) amplifies the ability of the

mutant receptor to penetrate and open closed chromatin, the

‘‘initiator’’ activity.

Conclusions
A careful examination of all datasets relevant to chromatin bind-

ing by SRs documents the general ability of these factors as a

group to initiate the process of chromatin opening and, in

some cases, recruit the FOXA1 protein as a cofactor. It is likely

more accurate to consider this process (referred to as the initi-

ator activity) as one of many chromatin attack modes that may

involve a wide variety of TFs, rather than the arbitrary division

of factors as ‘‘pioneers’’ and ‘‘followers.’’ To date, essentially

all treatments of this issue involve static datasets from dead cells

and large cell populations. A rigorous approach to this central

‘‘who is first’’ question in gene expression biology will require

work that addresses the process in real time in living cells. Fortu-

nately, recent developments in high-resolution single-molecule

microscopy offer great promise on this front. The issue of

sequence of arrival has not yet been addressed but will likely

be tackled in the near future.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

FoxA1 and ER ChIP-seq, and DNase-seq from

MCF-7 and ZR-75-1 cells

Swinstead et al., 2016 GEO: GSE72249

FoxA1 ChIP-seq from MCF-7 and ZR-75-1 cells Glont et al., 2019 GEO: GSE112969

FoxA1 and ER ChIP-seq from MCF-7 cells Kong et al., 2011 GEO: GSE26831; GEO: GSE23893

FoxA1 and ER ChIP-seq from MCF-7 cells Franco et al., 2015 GEO: GSE59530

FoxA1 and ER ChIP-seq from MCF-7 cells Liu et al., 2014 GEO: GSE60272

FoxA1 and ER ChIP-seq from MCF-7 cells Hurtado et al., 2011 GEO: GSE25710

FoxA1 and AR ChIP-seq from VCaP cells Toropainen et al., 2015 GEO: GSE56086

FoxA1 and AR ChIP-seq from LNCaP cells Malinen et al., 2017 GEO: GSE83860

FoxA1 and AR ChIP-seq from castrated mouse

prostate

Pihlajamaa et al., 2014 GEO: GSE47192

Software and Algorithms

FastQC 0.11.7 NA https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/; RRID:SCR_014583

FASTX-toolkit 0.0.13 NA http://hannonlab.cshl.edu/fastx_toolkit/;

RRID:SCR_005534

Bowtie 0.12.7 Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.shtml;

RRID:SCR_005476

HOMER 4.10 Heinz et al., 2010 http://homer.ucsd.edu/homer/; RRID:SCR_010881

IGV 2.3 Robinson et al., 2011 http://software.broadinstitute.org/software/igv/home;

RRID:SCR_011793
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Gordon L.

Hager (hagerg@dce41.nci.nih.gov). This study did not generate new unique reagents.

METHOD DETAILS

Downloaded raw fastq data were quality checked and filtered using FastQC 0.11.7 (https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/) and FASTX-toolkit 0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/) with -q 10, -p 97 and duplicate reads collapsed

before alignment of reads against the human genome (hg19) or mouse genome (mm10) using bowtie 0.12.7 (http://bowtie-bio.

sourceforge.net/index.shtml) (Langmead et al., 2009), allowing only one mismatch and accepting only the best alignment. Subse-

quent downstream analyses were performed with HOMER 4.10 (http://homer.ucsd.edu/homer/) (Heinz et al., 2010).

Tag directories were generated using makeTagDirectory with default parameters from each individual replicate. ChIP-seq

peak calling was performed using findPeaks with default parameters (FDR < 0.001, fold over control > 4, fold over local

background > 4) using style factor for both FOXA1 and steroid receptor ChIP-seq data. The control sample chosen for each individual

sample was either from the same dataset or from the same laboratory. Details are provided in Table S1. To obtain replicate concor-

dant peaks, called peaks from each individual replicate sample were overlapped. Concordant peaks had to overlap at least 1 bp to

be called concordant. Hormone-induced FOXA1 binding sites were determined using getDifferentialPeaks using Poisson p value

(< 0.001) and fold over untreated (> 3 or > 4) as cutoffs. Fold over untreated depended on the dataset, with > 3 for Glont et al.,

Liu et al., Hurtado et al., Malinen et al., Pihlajamaa et al., and > 4 with Swinstead et al., Kong et al., Franco et al., and Toropainen

et al. datasets. For determination combined tag directory from each replicate sample was used. To check the hormone-induced

FOXA1 binding sites from each biological replicate sample, normalized log2 tag density from each replicate was extracted. This

was done for all datasets with biological replicate experiments. Distribution of log2 tag density for each biological replicate was

shown as Tukey boxplot with notches depicting the confidence of the median. Outliers were not shown. Heatmaps were generated
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using annotatePeaks with size ± 1kb with 20 bp bins. Generated heatmaps were normalized to 10 million mapped reads and to tags

per bp per site. Data were sorted based on signal intensity of FOXA1+hormone sample before visualization. Genome browser tracks

were generated from combined tag directory using makeUCSCfile, converting the obtained bedGraph to TDF using igvtool and

visualized with IGV 2.3 (http://software.broadinstitute.org/software/igv/home) (Robinson et al., 2011). De novo motif analysis was

performed using findMotifsGenome with defaults parameters. Log-odd motif scores were determined with annotatePeaks using

foxa1.mcf7.motif, and ere.motif or are.motif. For determination of FOXA1 motif scores from random DHS, 2 000 sites were randomly

selected from all DHS identified from MCF-7 or ZR-75-1 cells. DHS determination was performed as ChIP-seq peak calling using

HOMER. Distribution of scores was shown as Tukey boxplot with notches depicting the confidence of the median. The distance

between hormone-induced FOXA1 site and closest ERE/ARE was determined using annotatePeaks with ere.motif or are.motif.

CDF was calculated based on the individual distances. Aggregate plots of FOXA1 motif and ERE/ARE were generated using anno-

tatePeaks with size ± 1kb with 10 bp bins. Generated aggregate plots were normalized to 10 million mapped reads and to motif per

bp per site.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis details are provided above in Method Details section, and in the figures and figure legends.

DATA AND CODE AVAILABILITY

This study did not generate any new datasets or code. The following published original ChIP-seq datasets were used in the analyses:

Swinstead et al., GEO: GSE72249; Glont et al., GEO:GSE112969; Kong et al., GEO: GSE26831, GEO:GSE23893; Franco et al., GEO:

GSE59530; Liu et al., GEO: GSE60272; Hurtado et al., GEO: GSE25710; Toropainen et al., GEO: GSE56086; Malinen et al., GEO:

GSE83860; Pihlajamaa et al., GEO: GSE47192. More details are provided in Table S1.
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Figure S1. E2-induced binding of FOXA1 in ZR-75-1 cells. Related to Figure 1. (A) Normalized 
log2 tag density of E2-induced FOXA1 binding sites from MCF-7 cells. Data are shown for each 
biological replicate sample. Log2 tag density depicted as box plots and normalized to a total of 10 
million reads. NT, vehicle or non-treated sample. (B-D) Comparison of identified FOXA1+E2 peaks 
from biological replicate samples using data sets from Swinstead et al. (B) and Glont et al. (C-D). 
Number of peaks identified in each replicate and the concordant peaks are shown. Used FOXA1 
antibody is depicted in the parenthesis. (E-G) Heat maps represent FOXA1 (black) and ER (red) 
ChIP-seq, with unchanged sites on top of the heat map, and E2-induced FOXA1 sites on the bottom 
of the heat map. The number of binding sites is shown on the left of the heat map. Each heat map 
represents ±1kb around the center of the FOXA1 peak. Binding intensity scale is noted below on a 
linear scale. Heat maps are sorted based in FOXA1+E2 binding intensity. All heat maps are 
normalized to a total of 10 million reads, and to tags per bp per site. Used FOXA1 antibody is 
depicted in the parenthesis. (H) Normalized log2 tag density of E2-induced FOXA1 binding sites from 
ZR-75-1 cells. Data are presented as in (A). (I) Three representative genome browser track examples 
of E2-induced FOXA1 binding sites. Genome browser tracks are normalized to a total of 10 million 
reads.  



 

Figure S2. ERE and forkhead motif are both enriched at E2-induced FOXA1 sites in ZR-75-1 
cells. Related to Figure 2. (A) De novo motif analysis of ERE and FOXA1 motif enrichment at E2-
induced FOXA1 sites from indicated data sets. Percentage of occurrence, and motif enrichment p-
value is shown. (B) Log-odd motif scores of FOXA1 or ERE at unchanged (black) or E2-induced (red) 
FOXA1 sites from indicated data sets. Also displayed is FOXA1 motif scores from random DHS in ZR-
75-1 cells. Motif score distribution depicted as box plots. (C) Cumulative distribution function (CDF) of 
distance between E2-induced FOXA1 site and closest ERE in indicated data sets. Median is depicted 
by grey dashed line, and median from each data set is indicated with color coding. (D) Aggregate plot 
of FOXA1 motif (black) and ERE (red) enrichment at E2-induced FOXA1 sites from indicated data 
sets. Plots are normalized to a total of 10 million reads, and to motif per bp per site.  



 

Figure S3. ERE and forkhead motif are both enriched at E2-induced FOXA1 sites in MCF-7 data 
from several investigators. Related to Figure 3. (A) Normalized log2 tag density of E2/full media-
induced FOXA1 binding sites from Franco et al. and Hurtado et al. data sets. Data are shown for each 
biological replicate sample. Log2 tag density depicted as box plots and normalized to a total of 10 
million reads. NT, vehicle or non-treated sample. (B-E) Representative genome browser track 
examples of E2/full media -induced FOXA1 binding sites for Kong et al. (B), Liu et al. (C), Franco et 
al. (D), and Hurtado et al. (E) data sets. Genome browser tracks are normalized to a total of 10 million 
reads. (F) Cumulative distribution function (CDF) of distance between E2-induced FOXA1 site and 
closest ERE in indicated data sets. Median is depicted by grey dashed line, and median from each 
data set is indicated with color coding. (G) Aggregate plot of FOXA1 motif (black) and ERE (red) 
enrichment at E2/full media-induced FOXA1 sites from indicated data sets. Plots are normalized to a 
total of 10 million reads, and to motif per bp per site.  



 

Figure S4. ARE and forkhead motif are both enriched at androgen-induced FOXA1 sites. 
Related to Figure 4. (A) Normalized log2 tag density of androgen-induced FOXA1 binding sites from 
Toropainen et al. and Malinen et al. data sets. Data are shown for each biological replicate sample. 
Log2 tag density depicted as box plots and normalized to a total of 10 million reads. NT, vehicle or 
non-treated sample. (B-D) Representative genome browser track examples of androgen-induced 
FOXA1 binding sites for Toropainen et al. (B), Malinen et al. (C), and Pihlajamaa et al. (D) data sets. 
Genome browser tracks are normalized to a total of 10 million reads. (E) Cumulative distribution 
function (CDF) of distance between androgen-induced FOXA1 site and closest ARE in indicated data 
sets. Median is depicted by grey dashed line, and median from each data set is indicated with color 
coding. (F) Aggregate plot of FOXA1 motif (black) and ARE (blue) enrichment at androgen-induced 
FOXA1 sites from indicated data sets. Plots are normalized to a total of 10 million reads, and to motif 
per bp per site.  



 

Figure S5. GR enhancers can be hypersensitive or insensitive to DNase I. Related to Figure 5. 
Heat maps of DNase I accessibility (cut count density) and GR occupancy at all GR-enhancers in 
3134 cells (Johnson et al., 2018). GR enhancers were sorted by the average level of DNase I 
sensitivity before hormone treatment (highest at the top). The heat map scale is linear; red: high 
occupancy; blue: low occupancy. 
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