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Highlights1

• Highly variable networks are complex networks with long-tailed degree dis-2

tributions.3

• We show that an extrem simplification which considers only two degrees4

captures main features of disease transmission in scale-free networks.5
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Abstract15

Network models for disease transmission and dynamics are popular because they
are among the simplest agent-based models. Highly heterogeneous populations
(in the number of contacts) may be modeled by networks with long-tailed degree
distributions for which the variance is much greater than the mean degree. An
example is given by scale-free networks where the degree distribution follows a
power law. In these type of networks there is not a typical degree. Some nodes
may have low representation in the population but are key to drive disease trans-
mission. Coarse graining may be used to simplify these complex networks. In
this work we present a simple model consisting in of a network where nodes have
only two possible degrees, a low degree close to the mean degree and a high
degree about ten times the mean degree. We show that in spite of this extreme
simplification, main features of disease dynamics in scale-free networks are well
captured by our model.

Keywords: scale-free networks, core-group model, disease dynamics16

1. Introduction17

A networks is a set of nodes connected by edges among them. The number of18

edges connecting a node, known as the degree of the node is, in general, a random19

variable K which takes non negative values (k = 0, 1, 2...) and its distribution is20

called the degree distribution of the network.21
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A random Poisson network, like the Erdös-Rényi (1959) network, has a low22

degree of heterogeneity. In this class of networks, the degree distribution is Pois-23

son and, therefore, the variance is equal to the mean. We will consider these24

networks, with low heterogeneity in the distribution of contacts, as a model for a25

prototypical ‘homogeneous’ population where the mean degree is representative26

of most of the nodes degree.27

A scale-free network has an asymptotic degree distribution which follows a28

power law, f (k) ∼ k−β, and therefore these are networks with a high level of29

variability where the variance of the degree distribution is much greater than its30

mean. In this case the mean is not representative (at all) of the degree distribution.31

In this work we will consider epidemic spread in static networks with a fixed32

number of nodes and fixed connections among them. Nodes can be in one of three33

mutually exclusive states: susceptible, infectious and recovered. Intensity of the34

transmission is the same for every edge and the probability of infection per edge35

will be denoted by ρ.36

Epidemics dynamics is quite different in scale-free and random poisson net-37

works. In both cases the basic reproduction number is given by R0 = neρ (see 5.2.138

below) where the effective mean number of contacts or excess degree is (see, for39

example, Brauer 2008, Lindquist et al. 2011)40

ne
.
=
〈K(K − 1)〉
〈K〉 = 〈K〉 − 1 +

var
〈K〉 (1)

where 〈K〉 and var are the mean and the variance of the degree distribution.41

For the same mean degree, the excess degree of a scale-free network is greater42

than the excess degree of a Poisson network. If we consider that in both networks43

the basic reproduction number is the same, then we should use different values for44

the transmission probability per edge ρ. In such case, epidemics in the Poisson45

networks are significantly larger than the corresponding epidemics in a scale-free46

network (Bansal et al. 2007, see also Fig. 1). On the other hand if we use the47

same probability of transmission ρ, epidemics in the Poisson network are much48

smaller than epidemics in scale-free networks (Fig. 1).49

Dynamics in scale-free networks cannot be described by using a simple ran-50

dom network with low heterogeneity. In this work we will present a simple net-51

work model which captures the main features of disease dynamics in scale-free52

networks.53
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Figure 1: A typical realization of an epidemic in a scale-free network (black line) and two realiza-
tions obtained with random poisson networks. When we consider the same R0 for both networks,
epidemics in the Poisson network are significantly greater (green line), while when we consider
the same probability of transmission, epidemics are significantly smaller (red line).

2. Scale-free networks and the preferential attachment algorithm54

A scale-free network has an asymptotically potential degree distribution f (k) ∼
kβ. For finite networks it is convenient to consider the complementary cumulative
distribution 1 − F(k) (see Li et al 2005). For a scale-free network this distribution
also presents an asymptotically potential distribution 1 − F(k) ∼ k−α where the
cumulative distribution is

F(k) =

k∑

j=1

f ( j)

2.1. The preferential attachment algorithm55

In this work we will consider (approximately) scale-free networks built using56

a preferential attachment algorithm (Barabassi & Albert, 1999). In the rest of this57

work the mean degree 〈K〉 will be denoted by n.58

A network with mean degree n has nN/2 edges. This number of edges were59

allocated among the N nodes as follow. First, we selected N0 equivalent nodes60

and we assigned one contact (chosen at random) to each one. Then, we assigned61

one contact to every other node with probability proportional to the degree of the62

contact. Note that in this part of the process only nodes with degree greater than63

zero can be chosen. Finally we selected the rest of the N n/2 − N pairs (with64

no repetition) of nodes and connect them in the following way. First we chose a65
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node at random, then we chose another node but with a probability proportional66

to the degree of the node. This algorithm produces networks with an approximate67

potential degree distribution (Fig. 2) where nodes with low degree are most likely68

connected to high degree nodes. The variability in the degree distribution and the69

maximum degree obtained in this process depends on N0.70

Figure 2: Degree distribution and complementary cumulative distribution for a typical network
used in this work. Exponents obtained from linear fit are β = −3.64(0.07) and α = −2.10(0.011).

The networks created with this algorithm will be called SF networks. We con-71

sidered two cases, SF networks with mean degree n = 8 and n = 16. In each case72

we created 100 different networks. In the former, maximum degree ranged be-73

tween 339 and 1475, while the variance of the degree distribution varied between74

66 and 106 (mean value 78). For n = 16, maximum degree varied between 45975

and 2060, while the variance ranged between 142 and 221 with a mean value of76

168. In both cases the variance is about ten times the mean of the degree distribu-77

tion, and therefore the variance is a significant contributor to R0.78

3. A simple model for scale-free networks79

In scale free networks most of the nodes have a low degree and are most likely80

connected to high degree nodes. But there are few nodes with degree much higher81

than the mean degree and therefore they are super-spreaders. The most simple82

model consists of a population with only two homogeneous sub-populations: a83

large population of nodes with low connectivity and a small population of super-84

spreaders, that is, a core-group model (Yorke & Hethcote 1978; see also Hethcote85

& Yorke 2014).86
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Our network model is, therefore, composed by a large population of size Nl87

of nodes with low degree nl, and a small population of size Nh of nodes with88

high degree nh. These networks will be called two-degrees networks or just 2D89

networks.90

Such simple network is specified by the values of N j and n j as well as a rule91

for connecting the nodes. As we are interested in a model of a specific SF network92

we will impose some constraints. First, both networks should have the same size93

and, therefore, only one sub-population size is independent (the other is obtained94

from the constraint N = Nl + Nh). In other words, we have to choose only three95

independent values: Nl, nl and nh. Those (integer) values are selected to match96

the first three moments of the specific scale-free (or other complex) network be-97

ing modeled. The preferential attachment algorithm we implemented produced a98

variety of scale-free networks with a prescribed mean degree n. Realizations of99

the process of network construction produce networks differing in the degree of100

variability. Each network presents a frequency distribution of degrees which may101

be considered as a sample of the implicit degree distribution. Sample variance and102

(not normalized) skewness are103

var =
1
N

N∑

j=1

(n j − n)2

skw =
1
N

N∑

j=1

(n j − n)3

where n j is the degree of the node j and n is the mean degree.104

For a given scale-free network, we computed those moments and then we105

obtained the values of Ni, ni (i = l, h) to match the mean, variance and skewness106

of the SF network. Because we also have the constraint that these parameters are107

integers, the equality is, in general, not satisfied. We proceeded, therefore, in two108

steps. First we use the four constraints109
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Nl + Nh = N (2)

nl
Nl

N
+ nh

Nh

N
= n

(nl − n)2 Nl

N
+ (nh − n)2 Nh

N
= var

(nl − n)3 Nl

N
+ (nh − n)3 Nh

N
= skw

to find a first approximation to nl, nh,Nl, and Nh. Then we chose the closest in-110

teger value for nl for which nl < n (otherwise the mean of the two-degree network111

would result greater than the mean degree n). Finally we use only the equations112

for the mean and variance (together with N = Nl + Nh) to find the new values for113

Nl, Nh and nh. Networks created in this form will be called two-degrees networks114

(or just 2D networks).115

Here we show an example of this process. All the networks considered in this116

work has N = 80000 nodes. One of the scale-free network used has a degree117

distribution with mean degree n = 8, variance var = 79 and skewness skw =118

16071. By solving system 2 we obtain nl = 7.6124, Nl = 79848.2, nh = 211.818,119

Nh = 151.847. Closest integer for nl is 8, but in this case mean degree will result120

greater than n = 8, and therefore, we consider nl = 7. Now we use the first three121

equations of the system 2,122

Nl + Nh = N

nl
Nl

N
+ nh

Nh

N
= n

(nl − n)2 Nl

N
+ (nh − n)2 Nh

N
= var

to obtain the rest of the values. In this example these values are Nl = 79000,123

nh = 87, Nh=1000, for which the mean and the variance are 8.00 and 79.00 iden-124

tical (up to 3 decimal places) to the values of the original scale-free network.125

3.1. 2D network model connectivity126

Given the population parameters N j and n j, the nodes may be connected among127

them in different topological ways. Because preferential attachment produces net-128

works where low degree nodes are most likely connected to high degree nodes129
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than among themselves, consequently, we build the simple two-populations net-130

work model by connecting the small population of super-spreaders at random.131

Because Nh � Nl most of this connections would result between high degree132

nodes and low degree nodes. After all of the available connections of the super-133

spreaders were assigned, we randomly connected the rest of the nodes in the Nl134

population among them.135

4. Disease transmission and Basic Reproduction Numbers for Networks136

4.0.1. Simulating disease transmission137

Each node can be in one of three mutually exclusive states: Susceptible, In-
fected (and infectious), and Recovered. We assume that the infectious period
is exponentially distributed with parameter γ (the recovery rate). Probability of
transmission per contact and per unit of time is assumed to be constant and we
denote it by λ. Therefore, the probability of disease transmission to a susceptible
node in contact with one infected node during a period of time δt is given by

P(S → I, s) = 1 − e−λδt

In the case of fixed infectious period (of value T ) the probability of transmission
during the entire infectious period is therefore

ρ = 1 − e−λT

while for exponentially distributed infectious periods (with mean 1/γ) it is

ρ =
λ

λ + γ

In the simulations we considered a fixed time step δt and two-layers to avoid138

spurious correlations. Individuals were enumerated and we checked the state of139

each of them in a sequential way.140

In a time step δt recovered nodes may lose immunity (at the rate δ) becoming
susceptible with probability

p(R→ S , δt) = 1 − e−δδt

while infected individual may recover with probability

p(I → R, δt) = 1 − e−γδt

8

                  



4.1. Basic Reproduction number141

In any network, the first infectious case is exceptional because all of its con-142

tacts are susceptible. Further cases have, at least, one contact not susceptible,143

the node from where it got the infection. For an infinite network the basic repro-144

duction number is defined as the mean number of cases produced per infectious145

individual. It is computed as the ratio between all the cases produced by any146

generation of infectious individuals except the first generation (see for example147

Diekmann and Heesterbeek 2000, Brauer 2008). For a finite network we define148

the basic reproduction number as the expected number of cases produced by an149

average infectious individual of the second generation (see Aparicio and Pascual150

2007).151

In this work we considered networks with negligible clustering coefficients.152

In this case any node of degree k is in contact with k nodes which are not in153

contact among them (this configuration is known as a star). If the central node154

is infectious and i of its k contacts are susceptible, then the number of infections155

produced during the whole infectious period is a random variable that we call r0.156

The basic reproduction number is computed as the expected value of r0 for157

an average infectious node of the second generation and in this case is given by158

(Aparicio and Pascual 2007)159

R0 =
[
(n − 1) +

var
n

]
ρ (3)

where var is the variance of the degree distribution, n is the mean degree, and160 [
(n − 1) + var

n

]
is the effective number of contacts or excess degree 1.161

For homogeneous networks, every node has the same degree; the variance of162

the degree distribution is zero and therefore R0 = (n−1)ρ. That is, at the beginning163

of the epidemics an average infectious individual will produce (n − 1)ρ infections164

because one of the contacts is already infected, the contact from where the node165

caught the infection.166

For a Poisson random network we have a relatively low heterogeneity. De-167

gree distribution is Poisson and therefore, the mean is equal to the variance and168

R0 = nρ. In this case no a significant difference is observed with respect to the ho-169

mogeneous case. However for highly heterogeneous networks, as the ones consid-170

ered in this work, the variance is much greater than the mean and the contribution171

of the variability of the degree distribution plays a significant role.172

5. Testing for the goodness of the approximation173

5.1. Topology174
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Scale-free networks and the two-degrees networks have very different degree175

distributions. In our case, mean and variance are practically the same, by con-176

struction, but the distributions differ in the other moments.177

The clustering coefficient and mean path length are other common topological178

features that characterize network structure. The (global) clustering coefficient is a179

measure of the probability that two contacts of a node are also in contact between180

them. Mean path length is the average minimum distance between two nodes181

chosen at random. All the networks considered in this work have low clustering182

coefficients and short mean path lengths. In table 1 we display the values obtained183

for the networks used in this work.184

Clustering Coeff. Mean Path Length
Mean Degree SF 2D SF 2D

8 0.000439 0.000300 3.430107 4.769741
16 0.000486 0.000438 2.903585 3.958496

Table 1: Clustering coefficients and mean path lengths for some of the networks used in this work.

5.2. Disease dynamics185

5.2.1. Basic reproduction numbers186

Because the two types of networks considered in this work are random net-187

works with negligible clustering coefficients the basic reproduction number, de-188

fined as the number of cases produced by an infectious individual of the second189

generation, is given by 3. Empirical estimations of R0 for each network were ob-190

tained as follow. We set the immunity-loss rate equal to zero and selected I1 index191

cases at random. If the number of secondary cases I2 was greater than zero we192

computed the ratio of tertiary cases (I3) over the number of secondary cases, I3/I2.193

This process was repeated a thousand times and averages and standard errors were194

computed. According to equation (3) it should be a straight line as a function of195

ρ. However this result was deduced for an infinite size network. Finite size ef-196

fects are apparent for large values of ρ lowering the observed value with respect197

to values predicted by expression 3 (but this effect is not shown in the figure 3).198
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Figure 3: Empirical values obtained for R0 for the scale-free network and the two-degree model.
In both cases, a thousand simulations were performed (given I2 > 0) and averages and standard
errors were computed for the ratio I2/I3. Continuous line represent the theoretical value 3

Despite of the significative differences in structure, basic reproduction num-199

bers for the two types of networks are the same since the only significant features200

are a clustering coefficient close to zero, and the mean and variance of the degree201

distribution.202

5.2.2. Disease invasions203

Probability of an epidemic. In an homogeneously mixed population the prob-204

ability of an epidemic is a function of R0. However, in more complex networks,205

the topology plays a significant role. In our case, the two types of networks have206

quite different topology so differences in the probability of an epidemics is ex-207

pected although both networks have the same values for the basic reproductive208

number. The simulations were started with one infected node, randomly chosen,209

with all the other nodes in the susceptible state. We considered that an epidemic210

took place if more than one percent of the population resulted infected while if211

more than 10 cases were observed (but less than 1% of the total population) we212

considered that a small outbreak took place. The process was repeated 1000 times213

and the fraction of simulation for which we observed an epidemic was used as an214

estimator for the probability of disease invasion. In tables 2 and 3 we show the215

results obtained for scale-free and two-degrees networks.216
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Epidemic freq. Small outbreak freq.
R0 SF 2D SF 2D
1.5 0.036 0.06 0.055 0.05
2.5 0.278 0.277 0.02 0.03
5 0.644 0.685 0.0 0.0

Table 2: Observed frequency of epidemics and small outbreak for a scale free network and its two
degrees approximation obtained with of 1000 simulations. In all cases I0=1. The two-degrees
network were built with nl=7, nh=87, Nl=79000, Nh=1000.

Epidemic freq. Small outbreak freq.
R0 SF 2D SF 2D
1.5 0.1350 0.10 0.060 0.069
2.5 0.417 0.374 0.13 0.22
5 0.718 0.734 0.0 0.0

Table 3: Observed frequency of epidemics and small outbreak for a scale free network and its
two degrees approximation obtained from 1000 simulations. In all cases I0=1. The two degrees
network were built with nl=15, nh=184, Nl=79528, Nh=472.

5.2.3. Comparing single epidemics disease dynamics: epidemic size, peak, time-217

to-peak, average curves218

Epidemic curves are quite similar in both, the scale-free and the correspond-219

ing two-degrees networks. Most differences are noted for low values of the ba-220

sic reproductive numbers where stochasticity amplifies the differences in network221

topology and connectivity. In all cases we found significant statistical differences222

between the statistics characterizing disease dynamics in both types of networks223

(see tables 4 and 5), however typical, or averaged epidemic realizations are close224

to each other for the different networks. The two-degrees model captures the dis-225

ease dynamics of the scale-free networks surprisingly well with differences less226

than 15%, which are usually below observational error (see Figures 4 and 5).227
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Figure 4: Epidemics obtained with a scale-free network (Black lines) and its two-degrees approx-
imation (red lines) for R0=1.5 (left panel), R0=2.5 and R0=5, (right panel). Mean degree n = 8

Figure 5: Epidemics obtained with a scale-free network (Black lines) and its two-degrees approx-
imation (red lines) for R0=1.5 (left panel), R0=2.5 and R0=5, (right panel). Mean degree n = 16

In the tables 4 and 5 we compare epidemic size, peak of the epidemic curve,228

and time at which the peak occur for both types of networks for different values229

of ρ.230
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R0 Peak tpeak FS
SF 2D SF 2D SF 2D

1.5 570(14) 368(12) 20.1(0.8) 29(1) 0.101(0.001) 0.08(0.001)
2.5 5273(24) 5106(23) 9.2(0.17) 8.97(0.15) 0.42(7 × 10−4) 0.368(9 × 10−4)
5 23900(27) 22870(24) 3.23(0.03) 3.3(0.02) 0.82(2 × 10−4 0.87(2 × 10−4

Table 4: Epidemic peak, time of the peak and epidemic final size for a scale free network and its
two degrees approximation. Averages and standard errors (in parenthesis) obtained with of 100
simulations. Two degrees network with nl=7, nh=87, Nl=79000, Nh=1000.

R0 Peak tpeak FS
SF 2D SF 2D SF 2D

1.5 1122(14) 1010(16) 20.0(0.45) 21.5(0.6) 0.200(0.001) 0.17(0.001)
2.5 9471(25) 8322(27) 7.90(0.11) 7.96(0.10) 0.62(7 × 5−4) 0.60(9 × 7−4)
5 29272(23) 29323(26) 3.00(0.03) 3.20(0.03) 0.91(1.4 × 10−4 0.95(2 × 1.1−4

Table 5: Epidemic peak, time of the peak and epidemic final size for a scale free network and its
two degrees approximation. Averages and standard errors (in parenthesis) obtained with of 100
simulations. Two degrees network with nl=15, nh=184, Nl=79528, Nh=472.

5.2.4. Immunity loss and endemic equilibria.231

A simple way to obtain an endemic equilibria is by considering that recovered232

nodes may become susceptible again at constant rate δ. We considered that the233

system is in an endemic equilibrium if the infected population does not die out dur-234

ing a long period of time (see figures 6, 7 for example). For a weak homogeneous-235

mixing population, as in a random Poisson network, the group of contacts of any236

node represents a random sample of the population and therefore the expected sus-237

ceptible proportion in this sample is S/N, the total susceptible proportion. In this238

case it is expected that at the endemic equilibrium R0S/N = 1, or R0 = N/S . For239

non-homogeneously mixed population, as in networks with high clustering coef-240

ficient, this relation usually does not hold. In our case we are considering random241

networks with negligible clustering coefficients but which are not homogeneously242

mixed. Numerical simulations show that at the endemic equilibrium R0 , N/S .243

In Fig. 6 we show the evolution of the susceptible proportions for both types of244

networks. The steady state fluctuates around a value significatively higher than245

the value expected according to the homogeneous mixing assumption.246
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Figure 6: Evolution of the susceptible proportion for the SF network (black line) and the 2D model
(red lines) for R0=2.5 (left) and R0 = 5 (right). Horizontal lines represent the values of 1/R0.

Figure 7: Evolution of the Infected populations for the SF network (black line) and the 2D model
(red lines) for R0=2.5 (left) and R0 = 5 (right).

6. Super-spreaders and Disease dynamics247

We applied the simple two-degrees model to gain insight into the disease dy-248

namics in complex networks like the scale free networks. As we show many of the249

main characteristics of scale free networks may be captured considering only two250

sub-populations: a large population of nodes with low degree, close to the mean251

degree, and a small population of super-spreaders, nodes with a much higher de-252

gree. For each group we kept track of the populations of susceptible, infected and253

recovered nodes: S i, Ii and Ri (i = l, h).254
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The two-degrees model has Nl nodes with low degree nl and the population of255

super-spreaders of size Nh and high degree nh. In figure 8 we show the relative256

contributions of Il and Ih in a typical epidemic. At the beginning of the outbreak257

the super-spreaders play a significant role in the dynamics as the proportion of258

high-degree nodes infected Ih/N is greater than the representation of such nodes in259

the population, Nh/N. In figure 8 we display the normalized proportions I j/I
N j/N

( j =260

l, h). When this fraction is greater than one the corresponding infected population261

has a greater representation than expected. For mean degree n = 8 and R0 = 1.5, at262

the beginning of the epidemic we observe that the population of super-spreaders263

is up to 40 times the representation of that population (Nh/N). In the steady,264

endemic equilibrium this proportion fluctuates between 2 and 10. On the other265

hand the normalized proportion for low degree infected nodes fluctuates (almost266

imperceptibly in the figures scale) around 1. For other cases the situation is similar267

(see Fig 8).268
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Figure 8: Relative contributions of the Il (black lines) and Ih (red lines) populations for R0 = 2.5
(left figures) and R0 = 5 (right figures) . Top panel for mean degree n = 8, bottom panel for n = 16
.

Another way to show that the super-spreaders are key to understanding disease269

dynamics is computing the epidemic final sizes. If at least one super-spreader270

node resulted infected, the epidemic final size in each population, obtained with271

100 simulations, are displayed in table 6. For example, when mean degree is n = 8272

and R0 = 1.5, average epidemic final size in the low degree population is about273

7% while in the population of super-spreaders is greater than 40%.274
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R0 FS FS L FS H

n=8 n=16 n=8 n=16 n=8 n=16
1.5 0.074(0.002) 0.169(0.001) 0.0698(0.002) 0.165(0.001) 0.43(0.01) 0.832(0.003)
2.5 0.369(0.007) 0.605(0.006) 0.362(0.007) 0.602(0.006) 0.989(0.003) 1(0)
5 0.872(0.003) 0.9548(0.0001) 0.870(0.03) 0.9545(0.0001) 1(0) 1(0)

Table 6: Epidemic final sizes (given at least one super-spreader node was infected) for different
2D networks. Averages and standard errors (in parenthesis) obtained with of 100 simulations.
Total epidemic final size FS , final size for the population of low degree nodes FS L and for the
population of super-spreaders FS H

6.1. Disease control275

In the networks used in this work the effective degree ne = (n − 1) + var/n276

has two contributions of comparable sizes. For example, the scale free networks277

considered have mean degrees n = 8 and n =16 while the variances are about278

80 and 170 respectively. Using the two-degrees models is straightforward to un-279

derstand the importance of the super-spreaders in disease dynamics. In all the280

cases considered this small sub-population is between 0.5 to 1.25% of the total281

population. However removing this small number of nodes from the transmis-282

sion process (through vaccination for example) has dramatic effects in disease283

dynamics. In such a case we may estimate the reduction in the basic reproduction284

number just by disregarding the variance contribution, that is R0vacc ∼ (n − 1)ρ285

which is, as discussed above, approximately R0/2. Therefore for cases where the286

basic reproduction number is less than two, targeted vaccination of about 1% of287

the population is enough to drive the system below the epidemic threshold.288

While for R0 < 1 the probability of a major outbreak is zero, in the practice,289

a value for R0 slightly greater than one is enough to reduce significantly the oc-290

currence of an epidemic. For example, with the two-degrees model, with mean291

degree 8 and variance 79, ne ∼ 17. Vaccination of the super-spreader population292

reduces the effective number of contacts to 7, almost a 60% reduction. If the basic293

reproduction number is 3 (no vaccination) then R0vacc ∼ 1.24 and major outbreaks294

are very unlikely. From 100 realizations we obtained a 0% of major outbreaks and295

only a 17% of small outbreaks. For R0 = 4 frequency of major outbreaks is only296

33% while for small outbreaks this frequency decreases to 7%. But even in this297

case where major outbreaks may take place with relatively high probability, the298

final size of the epidemics is greatly reduced. Without vaccination, epidemic final299

size is about 0.74 while with vaccination this value drops to 0.42.300
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7. Discussion and Conclusions301

In a strong homogeneous mixing population all individuals are in contact302

among them and a complete graph is the natural network model. A random Pois-303

son network is a more realistic model for an homogeneously mixed population.304

In this case, the number of contacts of each node, that is its degree, is a random305

variable with Poisson distribution and the group of contacts of any node repre-306

sents a random sample of the population. Deterministic, homogeneous-mixing,307

mass-action, models capture the epidemics accurately (Aparicio & Pascual 2007).308

These networks provide some degree of heterogeneity (in the number of con-309

tacts of a random node) but the variance of the degree distribution is the same as310

the mean degree and therefore the excess degree is the same as the mean degree311

(ne = (n − 1) + var/n = n). In this sense we consider that a Poisson random312

network represents an (almost) homogeneous population where the mean degree313

is representative of the degree distribution.314

Scale-free networks, on the other hand, present a high variability in the degree315

distribution and therefore the mean degree is not representative of the degree dis-316

tribution. Simple deterministic homogeneous mixing models are not adequate to317

describe disease dynamics in these type of networks. We show, however, that a318

simple two-degrees network model may capture the main features of the dynam-319

ics.320

Our work highlights that highly heterogeneous population may be modeled321

by a simple model with two homogeneous sub-populations where most of the in-322

dividuals (or nodes), about 99% of the total population have the (same) number323

of contacts and it is close to the mean number of contacts (n − 1 and n respec-324

tively). The other sub-population is composed of super-spreaders with a much325

higher number of contacts (nh is about 10 times nl).326

Further refinements are expected to improve the approximations.327

Acknowledgements328

This work was partially supported by grants CIUNSA 2467 and PICT 2014-329

2476. JPA is a member of the CONICET. MR holds a postdoctoral fellowship330

from CONICET.331

19

                  



References332

[1] Aparicio, J. P., & Pascual, M. (2007). Building epidemiological models from333

R0: an implicit treatment of transmission in networks. Proceedings of the334

Royal Society B: Biological Sciences, 274(1609), 505-512.335

[2] Bansal, S., Grenfell, B. T., & Meyers, L. A. (2007). When individual be-336

haviour matters: homogeneous and network models in epidemiology. Jour-337

nal of the Royal Society Interface, 4(16), 879-891.338

[3] Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random net-339

works. Science, 286(5439), 509-512.340

[4] Brauer, F. (2008). An introduction to networks in epidemic modeling. In341

Mathematical epidemiology (pp. 133-146). Springer, Berlin, Heidelberg.342

[5] Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology343

of infectious diseases: model building, analysis and interpretation (Vol. 5).344

John Wiley & Sons.345

[6] Erdös, P., & Rényi, A. (1959). On random graphs, I. Publicationes Mathe-346

maticae (Debrecen), 6, 290-297.347

[7] Hethcote, H. W., & Yorke, J. A. (2014). Gonorrhea transmission dynamics348

and control (Vol. 56). Springer.349

[8] Li, L., Alderson, D., Doyle, J. C., & Willinger, W. (2005). Towards a the-350

ory of scale-free graphs: Definition, properties, and implications. Internet351

Mathematics, 2(4), 431-523.352

[9] Lindquist, J., Ma, J., Van den Driessche, P. and Willeboordse, F.H., (2011).353

Effective degree network disease models. Journal of mathematical biology,354

62(2), pp.143-164.355

[10] Watts, D. J. & Strogatz, S. H. (1998). Collective dynamics of small-world356

networks. Nature, 393, 440-442.357

[11] Yorke, J. A., Hethcote, H. W., & Nold, A. (1978). Dynamics and control of358

the transmission of gonorrhea. Sex Transm Dis, 5(2), 51-56.359

20

                  


