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ABSTRACT
This work extends to the unrestricted orbital approach the procedure described in our previous report [Alcoba et al., J. Chem. Phys. 148,
024105 (2018)] for determining variationally the two-electron reduced density matrix arising from doubly occupied-configuration-interaction
wave functions by imposing two- and three-index N-representability conditions. An analysis of the numerical results obtained in selected
systems, from both restricted and unrestricted treatments, allows one to assess the performance of these methodologies as well as to show the
influence of the P, Q, G, T1, and T2 positivity conditions. We highlight the satisfactory results obtained within the unrestricted scheme.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5092182

I. INTRODUCTION

Most Hamiltonians describing N-electron systems of chemical
interest, such as atoms, molecules, and aggregates, are formulated in
terms of two-particle interactions. Consequently, the two-electron
reduced density matrix (2-RDM) constitutes a tool which contains
all relevant information required to evaluate exactly all the funda-
mental electronic properties corresponding to the state of a sys-
tem, including its energy.1 Moreover, the 2-RDMs avoid the explicit
use of N-electron wave functions, for which the full configuration-
interaction (FCI) determinantal expansion provides the exact
formulation. In this context, the two-electron-reduced-density
-matrix-based variational (v2RDM) method is the most intuitive

treatment for determining ground-state energies of N-electron sys-
tems; it consists in finding the 2-RDM elements which minimize
the energy of a state. However, the attempts to determine energies
following this procedure may lead to unphysical results. The rea-
son for this failure is that the variational treatment itself does not
guarantee that the obtained 2-RDM arises from an N-electron den-
sity matrix (or from an N-electron wave function). This is known
as the N-representability problem of the reduced density matri-
ces.2,3 This drawback has been partially overcome by imposing con-
straints in the variational determination of the 2-RDM so that this
matrix and other related ones turn out to be positive semidefi-
nite. The so-called P, Q, and G two-index N-representability condi-
tions4 have been extensively used, and more recently, the T1 and T2
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three-index ones5–9 have also been incorporated to these variational
treatments.

From a computational point of view, the variational determi-
nation of the 2-RDM very often becomes impracticable due to its
high cost, what raises the search for affordable approximations. For
closed-shell systems, one alternative, in terms of N-electron wave
functions, is to limit the configuration-interaction (CI) determinan-
tal expansion to doubly occupied Slater determinants. This type of
approximation for wave functions is known as doubly occupied-
configuration-interaction (DOCI) expansion.10,11 The DOCI expan-
sions correspond to Hilbert subspaces of seniority number zero,
where the seniority number has been defined as the number of sin-
gle occupied orbitals in a determinant,12–14 and constitute the first
rung of the seniority-number-based CI treatments whose limit is the
exact FCI solution. It has been proven that the DOCI wave func-
tions capture most of the static correlation15–20 and are an alter-
native to excitation-based CI treatments in which the selection of
determinants is performed according to their excitation level with
respect to a reference determinant.21 The N-electron DOCI wave
functions provide simpler structures of the 2-RDM and reduce the
computational scaling of the variational method while retaining
most of the static correlation. In previous studies, we have stud-
ied the variational determination of the 2-RDM elements corre-
sponding to DOCI wave functions (v2RDM-DOCI)22–25 by impos-
ing the above mentioned N-representability conditions by means of
semidefinite programing algorithms (SDPAs) in which the energy,
being a linear function of the 2-RDM, is minimized over the inter-
section of a linear affine space and the convex cone of block-diagonal
positive semidefinite matrices.9,26 The DOCI procedure is basis-
set dependent since any unitary transformation of its orbital sets
changes the energy of the N-electron system. Consequently, the
implementation of this method requires the determination of orbital
sets minimizing the energy15,27,28 or other quantities.16,29–31 Within
the v2RDM-DOCI approach, this task has been carried out in the
restricted orbital framework, in which the α- and β-spin-orbitals
have identical spatial orbital component.25 The main aim of this
work is to extend the v2RDM-DOCI methodology to a more general
unrestricted treatment, where different orbitals breaking the spin
symmetry are used for the α- and β-electrons, in order to know
whether an independent determination of the α- and β-orbitals
can achieve an energy lowering, approaching to the exact FCI
value.

The organization of this work is as follows. In Sec. II, we report
the main theoretical aspects used in this work as well as their mathe-
matical formulations. Section III describes the computational details
and the results obtained in several H4 clusters with different geomet-
ric arrangements, providing different degrees of orbital quasidegen-
eracy; we have chosen these challenging clusters, widely used in the
literature,32–37 as test examples to check our proposals. The discus-
sion of the results and their comparison with those obtained from
the restricted treatment are also reported in this section. Finally, in
Sec. IV, we highlight the main conclusions of this work.

II. THEORETICAL FRAMEWORK
In this work, we will describe quantum-mechanical operators in

a space defined by a one-electron basis set {iα1 , iα2 . . . iαK , iβ1 , iβ2 . . . iβK},

constituted by the union of two orthonormal basis subsets of K α-
spin orbitals {iα1 , iα2 . . . iαK} and K β-spin orbitals {iβ1 , iβ2 . . . iβK}; the
orbital functions of the corresponding spin-orbitals iαj and iβj are not
necessarily identical nor orthogonal and similarly for the case iαj and
iβk (j ≠ k).

Using the standard creation and annihilation fermion opera-
tors, a†

iσ and aiσ , respectively,38 the elements of the q-RDM, corre-
sponding to an N-electron wave function Ψ, are defined as

qDiσ1
1 ... i

σq
q

jσ1
1 ... j

σq
q
= ⟨Ψ∣

a†
iσ1
1
. . . a†

i
σq
q

aj
σq
q
. . . ajσ1

1

q!
∣Ψ⟩, (1)

where σ1, . . ., σq are spin coordinates (α or β).
With that basis set and by means of those fermion operators,

one can define an N-electron pseudo-Sz operator pŜz as

pŜz =
1
2 ∑i

(a†
iαaiα − a†

iβaiβ). (2)

Obviously, the pŜz operator coincides with the conventional-Sz
one Ŝz .

Similarly, we can define the pseudo-spin-ladder operators

pŜ+
= ∑

i
a†

iαaiβ , (3)

and
pŜ− = ∑

i
a†

iβaiα , (4)

which allow one to formulate a pseudo-spin-squared operator as

pŜ2
=

pŜ+ pŜ− + pŜ2
z −

pŜz =
pŜ− pŜ+ + pŜ2

z + pŜz . (5)

The operators Ŝ2 and pŜ2 coincide when the spatial part of the spin-
orbitals iαj and iβj is identical (∀j).

We will also define an N-electron pseudo-seniority-number
operator pΩ̂ by means of the basis set {iα1 , iα2 . . . iαK , iβ1 , iβ2 . . . iβK} as

pΩ̂ = N̂ − 2 ∑
i

a†
iαa†

iβaiβaiα , (6)

where N̂ stands for the electron number operator. This defini-
tion implies a kind of “pairing” between the spin orbitals iαj and
iβj , ∀j, according to the values of the subscripts j in their spin-
orbital basis subsets. Again, when the orbital functions of the spin-
orbitals iαj and iβj are identical (∀j), the pΩ̂ operator coincides with
the conventional-seniority-number one Ω̂;16 the calculation of the
expectation value of the Ω̂ operator is one of the procedures to deter-
mine the number of effectively unpaired electrons corresponding to
an N-electron state.39,40

Using the well-known commutation and anticommutation
fermion operator rules, one can show that the following commu-
tation relationships between operators are satisfied:
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[
pŜz , pŜ2

] = 0, (7)

[
pŜz , pΩ̂] = 0, (8)

[
pŜ2, pΩ̂] = 0. (9)

Hence, the commutation relationships between the operators pŜz ,
pŜ2, and pΩ̂ are counterparts to the corresponding conventional
ones, showing that the subspaces corresponding to the eigenvalues
of these operators satisfy the relations reported in Refs. 17 and 19.
In particular, an eigenfunction of the pΩ̂ operator of zero eigen-
value possesses identical eigenvalues for the pŜz and pŜ2 operators.
It must be emphasized that a ⟨

pΩ̂⟩ = 0 value implies a value ⟨
pŜ2

⟩

= 0 but it does not necessarily imply a zero value for the ⟨Ŝ2
⟩ quan-

tity, what entails the appearance of spin contamination which could
be reduced applying procedures dealing with wave functions41 or
reduced density matrices.42–44 The ⟨Ŝ2

⟩ values can be evaluated by
means of the well-known relationship45,46

⟨Ŝ2
⟩ =

N
2

+
(Nα −Nβ)

2

4
+ 2 ∑

iαjαkβ lβ
Siα

lβ Skβ
jα

2Diαkβ
jα lβ , (10)

in which Nα and Nβ are the number of α- and β-electrons of the sys-
tem, respectively, Siα

lβ and Skβ
jα are the overlap integrals of the spatial

parts of the corresponding spin-orbitals, and 2Diαkβ
jα lβ are the matrix

elements of the 2-RDM. Formula (10) relates the spatial overlap
integrals with the spin contamination of the wave function.

Likewise, an identical treatment shows that

[Ĥ, pŜz] = 0, (11)

[Ĥ, pŜ2
] ≠ 0, (12)

[Ĥ, pΩ̂] ≠ 0, (13)

where Ĥ is the electronic Hamiltonian of the N-electron system,
which, as is well known, for clamped nuclei can be formulated as

Ĥ = ∑

σ
∑

iσjσ
hiσ

jσ a†
iσajσ +

1
2 ∑σ

∑

iσjσkσ lσ
Riσkσ

jσ lσ a†
iσa†

kσalσajσ

+∑
σ
∑

iσjσ̄kσ lσ̄
Riσkσ̄

jσ lσ̄ a†
iσa†

kσ̄alσ̄ajσ (σ = α,β). (14)

In Eq. (14), σ̄ is the spin conjugate of the spin coordinate σ, hi
j

are the elements of the one-electron integral matrix (the sum of
electron kinetic energy and electron-nucleus potential energy), and
Rik

jl = ⟨ij∣kl⟩ mean the elements of the two-electron repulsion one
(expressed in the ⟨11∣22⟩ convention) for the 2K spin-orbital basis
set {iα1 , iα2 . . . iαK , iβ1 , iβ2 . . . iβK}.

For N-electron DOCI wave functions, the Hamiltonian
expressed in Eq. (14) can be substituted by the effective and simpler

Hamiltonian Ĥeff

Ĥeff
= ∑

σ
∑

iσ
hiσ

iσ a†
iσaiσ +

1
2 ∑σ

∑

iσ≠jσ
Riσjσ

iσjσ a†
iσa†

jσajσaiσ

+∑
σ
∑

iσ≠jσ̄
Riσjσ̄

iσjσ̄ a†
iσa†

jσ̄ajσ̄aiσ +
1
2 ∑σ

∑

iσ≠jσ
Riσjσ

jσiσ a†
iσa†

jσaiσajσ

+∑
σ
∑

iσ≠jσ
Riσiσ̄

jσjσ̄ a†
iσa†

iσ̄ajσ̄ajσ (σ = α,β), (15)

which contains identical information than the more general Hamil-
tonian, Ĥ, but requires much less terms.22 Contrarily to the general
Hamiltonian, the effective Hamiltonian, Ĥeff , commutes not only
with the pŜz operator but also with the pŜ2 and pΩ̂ ones. In fact,
the projections of both Hamiltonians, Ĥ and Ĥeff , over the Hilbert
space of doubly occupied N-electron Slater determinants lead to the
same result. According to the formulation of this effective Hamilto-
nian, only the diagonal elements 1Diσ

iσ of the 1-RDM and the matrix
elements 2Diσjσ

iσjσ , 2Diσjσ̄

iσjσ̄ , 2Diσjσ
jσiσ , and 2Diσiσ̄

jσjσ̄ for the 2-RDM need be cal-
culated; the remainder of the elements of the 1-RDM and 2-RDM
are zero within the DOCI schemes. Consequently, our variational
algorithms will use this effective Hamiltonian, Ĥeff , described in
Eq. (15).

As has been mentioned in Sec. I, this work deals with RDMs
corresponding to DOCI wave functions described by Slater deter-
minants in which all orbitals are doubly occupied. Strictly speak-
ing, a doubly occupied orbital requires that the spatial function of
the α- and β-spin orbitals is identical; however, according to the
defined “pairing” between the spin orbitals iαj and iβj , ∀j, we will
use this pseudodouble occupation for these orbitals. Consequently,
these kinds of wave functions are eigenfunctions of the operators pŜz ,
pŜ2, and pΩ̂ with a numerical value zero for the three correspond-
ing eigenvalues. Due to the commutation relationships (7)–(9), the
RDMs arising from the DOCI wave functions possess identical spin
structure as in the orthogonal orbital case as in the nonorthogonal
orbital one. Hereafter, we will distinguish between the restricted-
doubly occupied-configuration-interaction (RDOCI) wave func-
tions (the orbital functions are orthogonal) and the unrestricted-
doubly occupied-configuration-interaction (UDOCI) ones, in which
not all orbital functions of the basis set are necessarily orthonor-
mal.27 In Sec. III, we report the computational aspects followed
in this work to determine variationally the 2-RDM elements cor-
responding to a DOCI type approximation of the ground state of
an N-electron system. Likewise, in the Appendix, we formulate all
constraints imposed on the elements of the 1- and 2-RDM in the
implementation of that method.

III. COMPUTATIONAL ASPECTS, RESULTS,
AND DISCUSSION

Results arising from the UDOCI procedure, evaluating N-
electron wave functions and the corresponding 2-RDMs, have been
compared with those arising from its variational version, v2RDM-
UDOCI, evaluating directly the 2-RDMs by that method and avoid-
ing the explicit calculation of the wave functions. These tests
have been performed by numerical determinations of ground state
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energies in several H4 clusters possessing different geometric con-
figurations (see Fig. 1). In that figure, we show the shapes of those
clusters as well as the parameters chosen to transform their geome-
tries. We have calculated the potential energy curves (PECs) corre-
sponding to these aggregates and the resulting expectation values of
the spin-squared operator, ⟨Ŝ2

⟩, which allow one to assess the spin
contamination of their states. The results arising from UDOCI and
v2RDM-UDOCI methods have been compared with those obtained
from their counterparts RDOCI and v2RDM-RDOCI treatments.
We have also studied the influence of the diverse N-representability
conditions in the cases of variational schemes. We have used the
atomic basis sets STO-3G, 6-31G, and 6-311G, which provide an
affordable computational cost and allow to study the dependence
of our results on the basis set size. The standard one- and two-
electron integrals have been obtained from the PSI3.4 package47 in
the canonical molecular orbital, restricted and unrestricted, basis
sets. The RDOCI and UDOCI wave function-based results have
been obtained from modified versions of the direct determinant-FCI
algorithm reported in Refs. 48 and 49, which build and diagonal-
ize the projection of the Hamiltonian in the seniority-zero space.
Several local minima appear in the orbital optimization task; con-
sequently, we have extended the simulated annealing procedure
reported in Ref. 28 to search RDOCI and UDOCI energy global min-
ima, enabling to perform orbital rotations of the α- and β-basis sets
independently. This technique yields restricted and unrestricted ver-
sions of the basis sets by optimizing the energy (OPTE). In Fig. 2,
we show the optimized STO-3G basis set orbitals for the P4(D2h)-
B cluster upon variation of the b side length. As can be seen in
that figure, the resulting orbitals break spatial symmetry and in the
unrestricted case, the α- and β-orbitals localize adopting distinct
shapes.

For the two-electron-reduced-density-matrix-based variational
calculations, we have progressively incorporated all constraints
shown in the Appendix, particularly the two- and three-index
N-representability conditions, to a modified SDPA9,26 using the
effective Hamiltonian reported in Eq. (15). In this kind of cal-
culations, we used the semidefinite programing algorithm code

SDPA 7.3.8,26 which solves semidefinite problems at several pre-
cision levels by means of the Mehrotra-type predictor-corrector
primal-dual interior-point method, providing ground-state ener-
gies and the corresponding 2-RDMs. We programed the variational
method as a dual problem in the SDPA code. The sparse struc-
ture of the 2P, 2Q, 2G, T1, and T2 matrices, within the RDOCI
and UDOCI frameworks, gives rise to a scaling of the v2RDM-
UDOCI method nearly identical to that of the v2RDM-RDOCI
one:23 O(K3) for the two-index conditions and O(K4) for the three-
index ones. Consequently, from a computational point of view, the
unrestricted treatment in the variational reduced density matrix
framework does not entail any significant increase in computational
effort.

In Fig. 3, we show the PECs corresponding to the ground states
of the above mentioned nuclear geometric configurations of the H4
cluster. These curves have been obtained from different methods
within the DOCI methodology (RDOCI, UDOCI, v2RDM-RDOCI,
and v2RDM-UDOCI treatments). In the case of variational meth-
ods, their results have been obtained under the PQGT1T2 con-
ditions. We have also included in that figure the results arising
from the restricted Hartree-Fock (RHF) and unrestricted Hartree-
Fock (UHF) methods as well as those of the FCI one in order to
carry out a suitable comparison of all results. As can be seen in
Fig. 3, the v2RDM-RDOCI and RDOCI curves are, for all con-
figurations, nearly coincident. Similarly, the v2RDM-UDOCI and
UDOCI curves present identical performance; they also coincide
with each other. An inherent feature of all unrestricted treatments
is the appearance of spin contamination; this feature has been quan-
tified by the ⟨Ŝ2

⟩ quantity, whose values along the PECs have been
shown in the bottom panels in Fig. 3. The UDOCI and v2RDM-
UDOCI methods present lower ⟨Ŝ2

⟩ values than those correspond-
ing to the UHF one. In the S4(D4h) system, we must highlight that
all of its curves, except the RHF one, show a similar shape, although
those resulting from the UDOCI and v2RDM-UDOCI methods are
the closest to the FCI one. This behavior is also observed in the
P4(D2h)-A cluster, in which the UDOCI and v2RDM-UDOCI curves
are quite parallel to the FCI one, improving the UHF result. The

FIG. 1. Geometric arrangements of the
H4 aggregates studied in this work and
parameters used for their characteriza-
tion. Square S4(D4h): a variable. Rect-
angular (in a ring) P4(D2h)-A: a = 0.748
Å, θ variable. Rectangular (stretched)
P4(D2h)-B: a = 1.058 Å, b variable.
Rhombus: a = 1.497 Å, b variable.
Rhomboid: a = 1.058 Å, b variable.
Twisted: a = 1.058 Å, θ variable.
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FIG. 2. Isosurfaces of the (a) restricted
and (b) unrestricted optimized orbitals
(OPTE) arising from STO-3G basis sets
for the P4(D2h)-B cluster of H4 at several
geometries. Positive values are indicated
in yellow and negative values in pastel
blue. The isovalues are ±0.12 a.u.

P4(D2h)-B system presents an unphysical cusp in the RDOCI and
v2RDM-RDOCI methods, which has also been reported by other
authors,50 but it does not appear in the UDOCI and v2RDM-UDOCI
ones. Likewise, the Rhombus and Rhomboid PECs also show similar
shapes for all methods, and in the Twisted system, which corre-
sponds to a nonplanar configuration, one can observe again supe-
rior closeness to the FCI values in the UDOCI procedures than in
the RDOCI ones. In order to analyze globally all the information
contained in the PECs, we have given in Table I the maximum abso-
lute errors (MAEs) of the DOCI methodology energy values with
respect to the FCI ones. Table I also reports the nonparallelity errors
(NPEs), i.e., the differences between the maximum and minimum
deviations of DOCI energies from the FCI energy. Very similar MAE

and NPE values have been obtained for the RDOCI and v2RDM-
RDOCI procedures and, similarly, for the UDOCI with respect to
the v2RDM-UDOCI one, what points out the suitability of the varia-
tional approximations under the PQGT1T2 N-representability con-
ditions. Moreover, as can be seen in that table, the MAE and NPE
values of the UDOCI and v2RDM-UDOCI methods are markedly
lower (one third or less) than those resulting from their RDOCI
and v2RDM-RDOCI counterparts, showing an important improve-
ment in the description of this kind of systems. In Table II, we show
the maximum root-mean-square deviation (RMSD) of the 1-RDMs
in the ground state of the H4 studied clusters, obtained from the
v2RDM-RDOCI and v2RDM-UDOCI methods with respect to the
RDOCI and UDOCI results, imposing the PQGT1T2 conditions. As
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FIG. 3. Ground-state potential energy curves of the H4 cluster at the nuclear conformations: (a) S4(D4h), (b) P4(D2h)-A, (c) P4(D2h)-B, (d) Rhombus, (e) Rhomboid, and
(f) Twisted. Results were obtained from the STO-3G atomic basis set transformed into the orbital set which minimizes the energy (OPTE) (RDOCI and UDOCI methods).
The variational method results (v2RDM-RDOCI and v2RDM-UDOCI) arise from the PQGT1T2 conditions. The bottom panels show ⟨S2⟩ values for UHF, UDOCI, and
v2RDM-UDOCI methods.
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TABLE I. Maximum absolute errors (MAEs) and nonparallelity errors (NPEs) (in mEh) of the ground state potential energy
curves of H4 clusters calculated by RDOCI, v2RDM-RDOCI, UDOCI, and v2RDM-UDOCI methods with respect to the FCI
values. The variational methods arise from the PQGT1T2 conditions and optimized orbitals (OPTE) from the STO-3G atomic
basis set.

RDOCI v2RDM-RDOCI UDOCI v2RDM-UDOCI

System MAE NPE MAE NPE MAE NPE MAE NPE

S4(D4h) 71.2636 56.3109 71.2627 56.3100 23.0230 18.3385 22.9601 18.3364
P4(D2h)-A 71.2636 45.2320 71.2627 45.2318 18.9561 3.8491 18.9563 4.0019
P4(D2h)-B 71.2636 68.3892 71.2627 68.3884 18.8915 16.0164 18.8791 16.0041
Rhombus 71.2636 71.0390 71.2627 71.0384 21.0857 20.8611 21.0277 20.8034
Rhomboid 71.2636 63.2501 71.2627 63.2518 15.5174 7.5035 15.3550 7.3438
Twisted 71.9697 60.0276 71.9688 60.0268 18.2475 6.3053 18.2424 6.3005

can be observed, very low differences have been found, although the
maximum RMSD values are greater in the v2RDM-UDOCI method
than in the v2RDM-RDOCI one; we interpret this fact in terms of
the basis-set dependence of the strength of the N-representability
conditions within the DOCI framework.10,11,22,23,25

We have assessed the influence of the positive semidefiniteness
constraint condition sets PQG, PQGT1, and PQGT1T2, imposed in
the variational methods, on our results. Table III gives values of
MAE and NPE quantities obtained from the v2RDM-RDOCI and
v2RDM-UDOCI methods with respect to the RDOCI and UDOCI
ones, respectively, for all geometric conformations of the H4 clus-
ter studied in this work. In this table, one can observe low MAE
and NPE values arising from the v2RDM-RDOCI method, what is
in agreement with the overlaps of their PECs and those of RDOCI
method shown in Fig. 3. The sequence of N-representability condi-
tion sets PQG, PQGT1, and PQGT1T2 yields MAE and NPE values
converging to nearly zero for the v2RDM-RDOCI method. Never-
theless, the v2RDM-UDOCI method presents higher MAE and NPE
values, what agrees with the numerical values reported in Table II.
However, the consequences of these deviations do not become too
significant, mainly when one uses the most demanding constraint
condition set PQGT1T2.

In Table IV, we have given the results obtained from numer-
ical determinations implemented on the square H4 cluster S4(D4h)

TABLE II. Maximum root-mean-square deviation (RMSD) of the 1-RDMs in the
ground state of H4 clusters calculated by the v2RDM-RDOCI and v2RDM-UDOCI
methods imposing the PQGT1T2 conditions with respect to the RDOCI and UDOCI
results, using optimized orbitals (OPTE) from the STO-3G atomic basis set.

RMSD

System v2RDM-RDOCI v2RDM-UDOCI

S4(D4h) 6.02× 10−7 6.89× 10−4

P4(D2h)-A 8.91× 10−7 1.94× 10−4

P4(D2h)-B 7.92× 10−7 1.92× 10−4

Rhombus 3.87× 10−5 3.10× 10−4

Rhomboid 3.00× 10−6 1.96× 10−4

Twisted 8.40× 10−7 2.06× 10−4

in order to assess the atomic basis set dependence of this method-
ology. In that table, we show the energy differences, ∆E, arising
from the RDOCI, v2RDM-RDOCI, UDOCI, and v2RDM-UDOCI
methods with respect to the FCI values in the atomic basis sets STO-
3G, 6-31G, and 6-311G. We also show values of ⟨Ŝ2

⟩ assessing the
spin contamination resulting from the UDOCI and v2RDM-UDOCI
methods using these atomic basis sets. A survey of these results again
reveals a superior behavior of the unrestricted methods with respect

TABLE III. Maximum absolute errors (MAEs) and nonparallelity errors (NPEs) (in
mEh) of the ground state potential energy curves of H4 clusters calculated by
the v2RDM-RDOCI and v2RDM-UDOCI methods imposing the PQG, PQGT1, and
PQGT1T2 conditions with respect to the RDOCI and UDOCI results, using optimized
orbitals (OPTE) from the STO-3G atomic basis set.

v2RDM-RDOCI v2RDM-UDOCI

System Conditions MAE NPE MAE NPE

S4(D4h) PQG 0.1178 0.1175 3.9670 3.7026
PQGT1 0.1177 0.1174 1.7466 1.7124
PQGT1T2 0.0009 0.0009 0.1609 0.1338

P4(D2h)-A PQG 0.0277 0.0092 3.9671 3.8449
PQGT1 0.0256 0.0090 1.7466 1.7204
PQGT1T2 0.0009 0.0002 0.1624 0.1544

P4(D2h)-B PQG 0.0277 0.0255 3.9670 3.9648
PQGT1 0.0255 0.0248 1.7466 1.7459
PQGT1T2 0.0009 0.0008 0.1609 0.1608

Rhombus PQG 1.3998 1.3777 4.9160 4.8157
PQGT1 0.1021 0.0961 2.0916 2.0806
PQGT1T2 0.0372 0.0099 0.2291 0.2288

Rhomboid PQG 0.7748 0.7505 3.9763 3.6714
PQGT1 0.0936 0.0863 1.7466 1.7393
PQGT1T2 0.0034 0.0030 0.1624 0.1616

Twisted PQG 0.1637 0.1525 4.0000 3.9881
PQGT1 0.0628 0.0606 1.7515 1.7399
PQGT1T2 0.0009 0.0009 0.1672 0.1672
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TABLE IV. Energy differences, ∆E (in mEh), of diverse methods with respect to the FCI ones and spin contamination and
⟨Ŝ2⟩ (in the UDOCI and v2RDM-UDOCI approaches) in the ground state of the H4 cluster (conformation S4(D4h) with a
= 1.058 Å). Results correspond to optimized orbitals (OPTE) arising from STO-3G, 6-31G and 6-311G atomic basis sets,
imposing the PQGT1T2 conditions (in the v2RDM-RDOCI and v2RDM-UDOCI procedures).

∆E ⟨Ŝ2
⟩

Basis RDOCI v2RDM-RDOCI UDOCI v2RDM-UDOCI UDOCI v2RDM-UDOCI

STO-3G 71.2636 71.2627 15.1152 14.9544 0.9967 0.9926
6-31G 46.1281 46.1246 13.1764 13.1658 0.9063 0.9063
6-311G 45.6988 45.6935 14.6273 14.6171 0.9251 0.9251

to the restricted ones in terms of energy. Moreover, the differences
arising from the unrestricted methods vary very slightly from one
basis set to another and a similar comment can be made in relation
to the ⟨Ŝ2

⟩ values obtained from those methods.

IV. CONCLUSIONS
In this work, we have proposed a procedure based on the use

of unrestricted orbitals to determine variationally the two-electron
reduced density matrices of N-electron systems described by doubly
occupied-configuration-interaction wave functions. We have eval-
uated energies and values of the ⟨Ŝ2

⟩ quantity in six different geo-
metric conformations of the H4 cluster by means of progressive
application of the well-known positive semidefiniteness constraint
condition sets PQG, PQGT1, and PQGT1T2. The results found
have been compared with those obtained from their counterpart
treatments in the restricted orbital approach and with those pre-
dicted by conventional (restricted and unrestricted) wave function-
based procedures. An assessment of all numerical results shows
higher closeness to the exact energies in the unrestricted treat-
ments than in the restricted ones, although the former entail a
spin contamination. We also show the suitability of the use of the
N-representability PQGT1T2 constraint conditions in all studied
variational methods.
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APPENDIX: N -REPRESENTABILITY CONSTRAINTS
USED IN THE VARIATIONAL DETERMINATION OF
2-RDM ARISING FROM RDOCI AND UDOCI WAVE
FUNCTIONS

In this section, we summarize the N-representability con-
straints imposed to the RDMs in the variational determination of

the 2-RDM performed in this work

∑

iσ

1Diσ
iσ =

N
2

(σ = α,β), (A1)

∑

iσ
∑

jσ

2Diσjσ
iσjσ = (

N
2
2
) (σ = α,β), (A2)

∑
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(

N
2 )
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2
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1Diσ
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⎢
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∑

jσ

2Diσjσ
iσjσ +∑
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2Diσjσ̄

iσjσ̄

⎤
⎥
⎥
⎥
⎥
⎦

(σ = α,β), (A4)

∑

σ
∑

iσ

2Diσiσ̄
iσiσ̄ =

N
2

(σ = α,β). (A5)

Equations (A1)–(A3) indicate the normalization conditions
of the different spin blocks for the 1- and 2-RDMs arising
from the RDOCI and UDOCI schemes. Equation (A4) consti-
tutes the contraction relationship between the 2- and 1-RDMs.
Equation (A5) is obtained from Eq. (6) for the case ⟨

pΩ̂⟩ = 0,
which is a necessary condition for the RDOCI and UDOCI wave
functions. Apart from these basic conditions, the 1-RDM and
the hole first-order reduced density matrix, 1Q, must be posi-
tive semidefinite, that is, 1Diσ

jσ = ⟨Ψ∣a†
iσajσ ∣Ψ⟩ ⪰ 0 and 1Qiσ

jσ

= ⟨Ψ∣ajσa†
iσ ∣Ψ⟩ ⪰ 0, and for RDOCI and UDOCI wave functions,

both of them are diagonal matrices. Consequently, their matrix
elements satisfy

1Diσ
iσ = ⟨Ψ∣a†

iσaiσ ∣Ψ⟩ ≥ 0 (σ = α,β), (A6)

and
1Qiσ

iσ = ⟨Ψ∣aiσa†
iσ ∣Ψ⟩ ≥ 0 (σ = α,β). (A7)

The P condition requires that the matrix 2Piσ1 kσ2

jσ1 lσ2 =

⟨Ψ∣a†
iσ1 a†

kσ2 alσ2 ajσ1 ∣Ψ⟩ ⪰ 0 (σ1,σ2 = α,β). For RDOCI and UDOCI
cases, this matrix is decomposed into the spin blocks

2Piσiσ̄
jσjσ̄ = 2 2Diσiσ̄

jσjσ̄ and 2Piσjσ̄

iσjσ̄ = 2 2Diσjσ̄

iσjσ̄ (σ = α,β), (A8)

and
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2Piσjσ
iσjσ = 2 2Diσjσ

iσjσ (i ≠ j,σ = α,β). (A9)

Each spin block constitutes a positive semidefinite matrix.
Similarly, the Q condition means that the matrix 2Qiσ1 kσ2

jσ1 lσ2

= ⟨Ψ∣ajσ1 alσ2 a†
kσ2 a†

iσ1 ∣Ψ⟩ ⪰ 0 (σ1,σ2 = α,β). For the DOCI frame-
works, this matrix is constituted by the spin blocks

2Qiσiσ̄
jσjσ̄ = 2 2Diσiσ̄

jσjσ̄ + (1 − 1Diσ
iσ −

1Diσ̄
iσ̄)δij (σ = α,β) and

2Qiσjσ̄

iσjσ̄ = 2 2Diσjσ̄

iσjσ̄ + 1 − 1Diσ
iσ −

1D jσ̄

jσ̄ (i ≠ j,σ = α,β), (A10)

and
2Qiσjσ

iσjσ = 1 − 1Diσ
iσ −

1D jσ
jσ + 22Diσjσ

iσjσ (i ≠ j,σ = α,β) (A11)

which must be again positive semidefinite.
The G condition is defined in terms of the particle-hole matrix,

that is, 2Giσ1 lσ3

jσ2 kσ4 = ⟨Ψ∣a†
iσ1 alσ3 a†

kσ4 ajσ2 ∣Ψ⟩ ⪰ 0 (σ1,σ2,σ3,σ4 = α,β).
The elements of this matrix are zero if the spin-coordinate distribu-
tion satisfies the condition (σ1 + σ4 ≠ σ2 + σ3), what leads to the
following spin blocks for the DOCI frameworks:
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2Giσjσ̄

iσjσ̄ =
1Diσ

iσ − 2 2Diσjσ̄

iσjσ̄ (σ = α,β). (A14)

Each block of the matrix 2G must be positive semidefinite.
The T1 condition is

(T1)iσ1 kσ3 mσ5

jσ2 lσ4 nσ6 = ⟨Ψ∣a†
iσ1 a†

kσ3 a†
mσ5 anσ6 alσ4 ajσ2 + ajσ2 alσ4 anσ6 a†

mσ5 a†
kσ3 a†

iσ1 ∣Ψ⟩

⪰ 0 (σ1,σ2,σ3,σ4,σ5,σ6 = α,β). (A15)

The T1 matrix elements satisfying the spin-coordinate distribution
(σ1 + σ3 + σ5 ≠ σ2 + σ4 + σ6) are zero.51

The T2 condition is

(T2)iσ1 kσ3 mσ5

jσ2 lσ4 nσ6 = ⟨Ψ∣a†
iσ1 a†

kσ3 amσ5 a†
nσ6 alσ4 ajσ2 + a†

nσ6 alσ4 ajσ2 a†
iσ1 a†

kσ3 amσ5 ∣Ψ⟩

⪰ 0 (σ1,σ2,σ3,σ4,σ5,σ6 = α,β). (A16)

These T2 matrix elements are zero when the following spin-
coordinate distribution is satisfied (σ1 + σ3 + σ6 ≠ σ2 + σ4
+ σ5).51

These spin restrictions allow one to express the matrices T1 and
T2 as a direct sum of submatrices, which must be positive semidefi-
nite. The spin blocks of these matrices, in the DOCI case, have been
reported in Ref. 23.

Moreover, it has been taken into account that 1D, 1Q, 2P, 2Q, 2G,
T1, and T2 are Hermitian matrices and antisymmetric with respect
to all pair and triple creation indices (or annihilation ones) in the
case of 2P, 2Q, and T1 matrices. The matrix T2 must be antisym-
metric with respect to the first two indices of each trio. The T2′
condition, which has been used in Ref. 23, turns out to be identical to

the T2 one not only for the RDOCI scheme but also for the UDOCI
one, and consequently, it has not been considered in this work. A
more detailed expression for the matrix elements of the conditions
T1 and T2 is also indicated in that reference.

Finally, it must be noted that the elements of the spin blocks
corresponding to the 2-RDM arising from the UDOCI wave func-
tions satisfy the relationships

2 2Diαjα
iαjα = 2 2Diβjβ

iβjβ = 2 2Diαjβ

iαjβ − δj
i

1Diα
jα . (A17)

Consequently, the semidefinite program may be reformulated by
considering a lower number of variables, following a similar pro-
cedure to that outlined in Ref. 52. In fact, our codes have been
programed taking into account those relationships.
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