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Abstract16

Replicated Data Types (rdts) have been introduced as suitable abstractions for dealing with weakly17

consistent data stores, which may (temporarily) expose multiple, inconsistent views of their state. In18

the literature, rdts are commonly specified in terms of two relations: visibility, which accounts for19

the different views that a store may have, and arbitration, which states the logical order imposed on20

the operations executed over the store. Different flavours, e.g., operational, axiomatic and functional,21

have recently been proposed for the specification of rdts. In this work, we propose a categorical22

characterisation of rdt specifications. We define categories of visibility relations and arbitrations,23

show the existence of relevant limits and colimits, and characterize rdt specifications as functors24

between such categories that preserve these additional structures.25
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1 Introduction29

The cap theorem establishes that a distributed data store can simultaneously provide two of30

the following three properties: consistency, availability, and tolerate network partitions [8]. A31

weakly consistent data store prioritises availability and partition tolerance over consistency. As32

a consequence, a weakly consistent data store may (temporarily) expose multiple, inconsistent33

views of its state; hence, the behaviour of operations may depend on the particular view over34

which they are executed. Replicated data types (rdt) have been proposed as suitable data35

type abstractions for weakly consistent data stores. The specification of such data types36

usually takes into account the particular views over which operations are executed. A view is37

usually represented by a visibility relation, which is a binary, acyclic relation over executed38

operations (a.k.a. events). The state of a store is described instead as total order over events,39

called arbitrations, which describes the way in which conflicting concurrent operations are40

resolved. Different specification approaches for rdts build on the notions of visibility and41

arbitration [2, 3, 4, 5, 7, 9, 11, 13, 14]. A purely functional approach for the specification42

of rdts has been presented in [7], where an rdt is associated with a function that maps43

visibility into set of arbitrations.44
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SCtr

 〈inc, ok〉

��
〈rd, 1〉

 =

 〈inc, ok〉

〈rd, 1〉

〈rd, 1〉

〈inc, ok〉


(a) Specification of a Counter

SCtr

 〈inc, ok〉

��
〈rd, 0〉

 = ∅

(b) Non-admissible arbitrations

Figure 1 Counter specifications

For illustration purposes, consider the rdt Counter, which mantains an integer value45

and provides two operations for incrementing and reading its current value. The specification46

of Counter states that every increment is always successful, while the expected result for47

a read operation is the number of increments seen by that read, regardless of the order48

in which such operations are arbitrated. Following the approach in [7], the rdt Counter49

is specified as a function SCtr that maps visibility relations into sets of arbitrations. For50

instance, Figure 1a illustrates the case for a visibility relation that involves an increment51

event seen by a read event: events are depicted by pairs 〈operation, expected_result〉,52

and inc stands for increment and rd for read. Note that the expected result for the read53

event is 1, which coincides with the quantity of events labelled by 〈inc, ok〉 seen by that54

read. The function SCtr maps that visibility relation into a set containing two arbitrations55

of the events, i.e., two total orders, for the events of the visibility relation. We remark that56

arbitration does not mean real time ordering, but just a way in which a store can totally57

order events, which may not respect the causal order of operations. In fact, the second58

arbitration orders the read event before the increment one, despite the first event causally59

depends on the second one. Figure 1b shows instead a case in which the specification maps a60

visibility relation into an empty set of arbitrations, which means that such visibility relation61

is not accepted by the specification. Basically, that visibility is rejected because there is a62

read event that sees an increment event but returns 0 instead of the expected result 1.63

This work develops the approach suggested in [7] for the categorical characterisation64

of rdt specifications. We consider the category PIDag(L) of labelled, directed acyclic65

graphs and pr-morphisms, i.e., label-preserving morphisms that reflect directed edges, and66

the category SPath(L) of sets of labelled, total orders and ps-morphisms, i.e., morphisms67

between set of paths. A ps-morphism f : X1 → X2 from a set of paths X1 to a set of path68

X2 states that any total order in X2 can be obtained by extending some total order in69

X1. In this work we show that a large class of specifications, dubbed iso-coherent, can be70

characterised functorially. Roughly, a coherent specification accounts for those rdts such that71

the arbitrations associated with a visibility relation can be obtained by extending arbitrations72

associated with “smaller” visibilities. An iso-coherent specification is a coherent specification73

that maps isomorphic graphs into isomorphic sets of paths. We establish a bijection between74

functors and specifications, showing that an iso-coherent specification induces a functor from75

PIDag(L) into SPath(L) that preserves colimits and binary pullbacks and vice versa.76

The paper has the following structure. Section 2 offers some preliminaries on categories77

of relations, which are used for proposing some basic results on categories of graphs and78

paths in Section 3. Section 4 recalls the set-theoretical presentation of rdts introduced in [7].79

Section 5 introduces our semantical model, the category of set of paths, describing some of its80

basic properties with respect to limits and colimits. On Section 6 we presents some categorical81

operators for rdts, which are used in Section 7 to present our main characterisation results.82

The paper is closed with some final remarks and some hints towards future works.83
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2 Preliminaries on Relations84

Relations. Given a set E, a (binary) relation over E is a sub-set ρ ⊆ E× E of the cartesian85

product of E with itself. We write 〈E, ρ〉 for a relation over E, and ∅ to denote the empty86

relation. The downward closure of E′ ⊆ E is a set such that ∀e ∈ E, e′ ∈ E′.e ρ e′ implies e ∈ E′.87

In addition, we write bec to stand for the downward closure of a single element e.88

IDefinition 1 ((Binary Relation) Morphisms). A (binary relation) morphism f : 〈E, ρ〉 → 〈T, γ〉
is a function f : E→ T such that

∀e, e′ ∈ E.e ρ e′ implies f(e) γ f(e′)

A morphism f : 〈E, ρ〉 → 〈T, γ〉 is past-reflecting (shortly, pr-morphism) if

∀e ∈ E, t ∈ T. t γ f(e) implies ∃e′ ∈ E.e′ ρ e ∧ t = f(e′)

Note that both classes of morphisms are closed under composition: we denote as Rel the89

category of relations and their morphisms and PRel the sub-category of pr-morphisms.90

I Lemma 2 (Characterising pr-morphisms). Let f : 〈E, ρ〉 → 〈T, γ〉 be a morphism. If it is91

order-reflecting and downward closed, that is92

1. f(e) γ f(e′) implies e ρ e′
93

2.
⋃

e∈E f(e) is downward closed,94

then it is a pr-morphism. If f is injective, then the vice-versa holds.95

Clearly, Rel has both finite limits and finite colimits, which are computed point-wise as96

in Set. The structure is largely lifted to PRel.97

I Proposition 3 (Properties of PRel). The inclusion functor PRel → Rel reflects finite98

colimits and binary pullbacks.99

In other words, since Rel has finite limits and finite colimits, finite colimits and binary100

pullbacks in PRel always exist and are computed as in Rel. There is no terminal object,101

since morphisms in Rel into the singleton are clearly not past-reflecting.102

Monos in Rel are just morphisms whose underlying function is injective, and similarly in103

PRel, so that the inclusion functor preserves (and reflects) them.104

I Lemma 4 (Monos under pushouts). Pushouts in Rel (and thus in PRel) preserve monos.105

We now introduce labelled relations. Consider the forgetful functors Ur : Rel→ Set and106

Up : PRel→ Set, the latter factoring through the inclusion functor PRel→ Rel. Chosen a107

set L of labels, we consider the comma categories Rel(L) = Ur ↓ L and PRel(L) = Up ↓ L:108

it is well known that all the relevant structure is preserved in such comma categories.109

Explicitly, an object in Ur ↓ L is a triple (E, ρ, λ) for a labeling function λ : E → L. A110

label-preserving morphism (E, ρ, λ)→ (E′, ρ′, λ′) is a morphism f : (E, ρ)→ (E′, ρ′) such that111

∀s ∈ E.λ(s) = λ′(f(s)). Moreover, finite limits and finite colimits are computed as in Rel.112

The same characterisation also holds for the objects and the morphisms of Up ↓ L.113

FSTTCS 2019



23:4 A Categorical Account for the Specification of Replicated Data Type

3 Categories of Graphs and Paths114

We now move to introduce specific sub-categories that are going to be used for both the115

syntax and the semantics of specifications.116

I Definition 5 (Directly acyclic graphs category). PDag is the full sub-category of PRel117

whose objects are directed acyclic graphs.118

In other terms, objects are relations whose transitive closure is a strict partial order.119

I Remark 6. The category whose arrows are morphisms is not that interesting, categorically120

speaking, because, e.g., it does not admit pushouts, not even along monos. The one with121

pr-morphisms is much more so, still remaining computationally simple.122

I Proposition 7 (Properties of PDag). The inclusion functor PDag→ PRel reflects finite123

colimits and binary pullbacks.124

We now move to consider paths, i.e., relations that are total orders.125

I Definition 8 (Paths Category). Path is the full sub-category of Rel whose objects are126

paths.127

Note that the sub-category of just pr-morphisms is not so relevant, since there exists a128

pr-morphism between two paths if and only if one path is a prefix of the other.129

I Proposition 9 (Properties of Path). The inclusion functor Path → Rel reflects finite130

colimits.131

As for relations, we consider suitable comma categories in order to capture labelled paths132

and graphs. In particular, we use the forgetful functors Urp : Path→ Set and Upd : PDag→133

Set: for a set of labels L we denote PDag(L) = Urp ↓ L and Path(L) = Upd ↓ L. Once134

more, the relevant categorical structure is preserved and computed as in Rel.135

4 Replicated Data Type Specification136

We briefly recall the set-theoretical model of replicated data types (rdt), introduced in [7].137

Our main result is its categorical characterisation, which is given in the following sections.138

First, some notation. We denote a graph as 〈E ,≺, λ〉 and a path as 〈E ,≤, λ〉, in order to139

distinguish them. Moreover, given a graph G = 〈E ,≺, λ〉 and a subset E ′ ⊆ E , we denote by140

G|E′ the obvious restriction (and the same for a path P).141

We now define a product operation on a set of paths X = {〈Ei,≤i, λi〉}i. We require that142

paths in X are compatible, i.e., ∀e, i, j.e ∈ Ei ∩ Ej implies λi(e) = λj(e).143

I Definition 10 (Product). Let X be a set of compatible paths. The product of X is144 ⊗
X = {P | P is a path over

⋃
i

Ei and P|Ei
∈ X }145

Intuitively, the product of paths is analogous to the synchronous product of transition146

systems, in which common elements are identified and the remaining ones can be freely147

interleaved, as long as the original orders are respected. A set of sets of paths X1,X2, . . . is148

compatible if
⋃
i Xi is so. In such case we can define the product

⊗
i Xi as

⊗⋃
i Xi.149

Now, let us further denote with G(L) and P(L) the sets of graphs and paths, respectively,150

labelled over L and with ε the empty graph. Also, when the set of labels L is chosen, we let151

G(E , λ) and P(E , λ) the sets of graphs and paths, respectively, whose elements are those in E152

and are labelled by λ : E → L.153
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I Definition 11 (Specifications). A specification S is a function S : G(L)→ 2P(L) such that154

S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG).155

In other words, a specification S maps a graph (interpreted in terms of the visibility relation156

of a rdt) to a set of paths (that is, the admissible arbitrations of the rdt). Indeed, note157

that P ∈ S(G) is a path over EG, hence a total order of the events in G.158

As shown in [7], Definition 11 offers an alternative characterisation of rdts [4] for a159

suitable choice of the set of labels. In particular, an rdt boils down to a specification labelled160

over pairs 〈operation, value〉 that is saturated and past-coherent. The former property is a161

technical one: roughly, if G′ is an extension of G with an fresh event e, then the admissible162

arbitrations that a saturated specification S assigns to G′ (i.e., the set of paths S(G′)) are163

the admissible arbitrations of G saturated with respect to e, i.e., all the paths that extends a164

path in S(G) with e inserted at an arbitrary position. Coherence instead is fundamental and165

expresses that admissible arbitrations of a visibility graph can be obtained by composing the166

admissible arbitrations of smaller visibilities.167

I Definition 12 ((Past-)Coherent Specification). Let S be a specification. We say that S is168

past-coherent (briefly, coherent) if169

∀G 6= ε. S(G) =
⊗
e∈EG

S(G|bec)170

Explicitly, in a coherent specification S the arbitrations of a configuration G (i.e., the set171

of paths S(G)) are the composition of the arbitrations associated with its sub-graphs G|bec.172

Next example illustrates a saturated and coherent specification for the Counter rdt.173

I Example 13 (Counter). Fix the following set of labels: L = {〈inc, ok〉} ∪ ({rd} × N).174

Then, the specification of the rdt Counter is given by the function SCtr defined such that175

P ∈ SCtr(G)
iff

∀e ∈ EG.∀k.λ(e) = 〈rd, k〉 implies k = #{e′ | e′ ≺G e and λ(e′) = 〈inc, ok〉}
176

Intuitively, a visibility graph G is mapped to a non-empty set of arbitrations (i.e., SCtr(G) 6=177

∅) only when each event e in G associated with a read operation has a return value k that178

matches the number of increments preceding e in G. We remark that this specification is179

coherent and saturated. Saturation follows immediately because the definition of SCtr does not180

impose any constraint on the ordering of events for the arbitrations P in SCtr(G). Coherence181

can be shown as follows. By definition of SCtr , P ∈ SCtr(G) implies P|bec ∈ SCtr(G|bec) for182

all e ∈ EG. Consequently, P ∈
⊗

e∈EG
S(G|bec). On the contrary, take P ∈

⊗
e∈EG
S(G|bec).183

Then, e ∈ EG implies e ∈ EP. Moreover, e ∈ EP implies λ(e) = 〈rd, k〉 iff k = #{e′ | e′ ≺G184

e and λ(e′) = 〈inc, ok〉}. Hence, P ∈ SCtr(G). Therefore, the equality in Definition 12 holds.185

5 The model category186

In order to provide a categorical characterisation of coherent specifications, we must first187

define precisely the model category. So far, we know that its objects have to be sets of188

compatible paths. We fix a set of labels L, and we start looking at morphisms.189

I Definition 14 (Saturation). Let P be a path and f : (EP, λP)→ (E , λ) a function preserving190

labels. The saturation of P along f is defined as191

sat(P, f) = {Q | Q ∈ P(E , λ) and f induces a path morphism f : P→ Q}192

The notion of saturation is extended to sets of paths X ⊆ P(E , λ) as
⋃

P∈X sat(P, f).193

FSTTCS 2019
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Note that, should f not be injective, it could be that sat(P, f) = ∅.194

I Example 15. Consider the (injective, label-preserving) function f mapping two events195

with labels {a, b} to three events with labels {a, b, c}. Then we have196

sat

(
a

b
, f

)
=


a

b

c

,

a

c

b

,

c

a

b

197

Intuitively, saturation adds c – and in general events not in the image of f – to the original198

path in all possible ways, preserving the order of original events.199

We can exploit saturation to get a simple definition of our model category.200

I Definition 16 (ps-morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2) be sets of paths. A201

path-set morphim (shortly, ps-morphism) f : X1 → X2 is a function f : (E1, λ1) → (E2, λ2)202

preserving labels such that203

X2 ⊆ sat(X1, f)204

Intuitively, there is a ps-morphism from the set of paths X1 to the set of path X2 if any205

path in X2 can be obtained by adding events to some path in X2. This notion captures the206

idea that arbitrations of larger visibilities are obtained as extensions of smaller visibilities.207

I Example 17. Consider the following three sets and the function f from Example 15.208

X1 =
{

a

b

}
X2 =


a

b

c

,

a

c

b

 X3 =


a

b

c

,

b

c

a

209

f induces a ps-morphism f : X1 → X2 because X2 ⊆ sat(X1, f) (sat(X1, f) is depicted in210

Example 15). On the contrary, there is no ps-morphism from X1 to X3 because the second211

path of X3 cannot be obtained by extending some path of X1 with an event labelled by c.212

I Definition 18 (Retraction). Let Q be a path and f : E → EQ a function. The retraction of Q213

along f is defined as214

ret(Q, f) = {P | P ∈ P(E , λ) and f induces a path morphism f : P→ Q}215

The notion of retraction is extended to sets of paths X ⊆ P(E , λ) as
⋃

Q∈X ret(Q, f).216

Note that λ is fully characterised as the restriction of λQ along the mapping. Should f be217

injective, ret(Q, f) would be a singleton, and if f is an inclusion, then ret(Q, f) = Q|E .218

We may now start considering the relationship between the two notions.219

I Lemma 19. Let X1 ⊆ P(E1, λ1) be a set of paths and f : (E1, λ1) → (E2, λ2) a function220

preserving labels. Then X1 ⊆ ret(sat(X1, f), f). If f is injective, then the equality holds.221

I Lemma 20. Let X2 ⊆ P(E2, λ2) be a set of paths and f : E1 → E2 a function. Then222

X2 ⊆ sat(ret(X2, f), f).223

We say that an injective function f is saturated with respect to X2 if the equality holds.224
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I Example 21. Consider the ps-morphism225

f :
{

a

b

}
→


a

b

c

226

whose underlying function is f from Example 15. This is not saturated. In fact, we have227 
a

b

c

 6= sat(ret(


a

b

c

, f), f) = sat(
{

a

b

}
, f) =


a

b

c

,

a

c

b

,

c

a

b

228

I Definition 22 (Sets of Paths Category). We define SPath(L) as the category whose objects229

are sets of paths X ⊆ P(E , λ) and morphisms are ps-morphisms.230

I Proposition 23 (Properties of SPath). The category SPath(L) has finite colimits along231

monos and binary pullbacks.232

Proof. (Strict) initial object. The choice is 〈∅, {ε}, ∅〉, with ε ∈ P(∅, ∅) the empty path. Let233

X ⊆ P(E , λ) and ! : ∅ → E the unique function. We have a function ! : (∅, ∅) → (E , λ) such234

that X ⊆ sat({ε}, !) = P(E , λ).235

Binary Pushouts. Let X ,X1, and X2 be sets of paths and fi : X → Xi ps-morphisms.236

Consider the underlying functions fi : E → Ei and their pushout f′
i : Ei → E1 +E E2 in the237

category of sets. This induces a pushout f′
i : Xi → sat(X1, f′

1) ∩ sat(X2, f′
2) in SPath(L).238

Binary Pullbacks. Let X ,X1, and X2 be sets of paths and fi : Xi → X ps-morphisms.239

Consider the underlying functions fi : Ei → E and their pullback f′
i : E1 ×E E2 → E in the240

category of sets. This induces a pullback f′
i : ret(X1, f′

1) ∪ ret(X2, f′
2)→ Xi in SPath(L).241

J242

The characterisation of pushouts might not work, should not be on a span of injective243

functions. To help intuition, we now instantiate the constructions above to suitable inclusions.244

I Lemma 24. Let fi : X → Xi be ps-morphisms such that the underlying functions fi : E → Ei245

are inclusions and E = E1 ∩ E2. Then the pushout is given by f′
i : Xi → X1 ⊗X2.246

Proof. By definition X1 ⊗X2 = {P | P is a path over
⋃
i Ei and P|Ei

∈ Xi}. Note also that247

sat(Xi, f′
i) =

⋃
Q∈Xi
{P | P ∈ P(

⋃
i Ei,

⋃
i λi) and f′

1 induces a path morphism f′
i : P → Q}.248

Since f′
i is an inclusion, the latter condition equals to P|Ei

= Q, thus the property holds. J249

I Example 25. Consider the following ps-morphisms250

f1 :
{

a

b
,

b

a

}
→


a

b

c

 f2 :
{

a

b
,

b

a

}
→


a

b

d

,

b

a

d

251

then, the pushout is given by the following two morphisms252

g1 :


a

b

c

→


a

b

c

d

,

b

a

d

c


g2 :


a

b

d

,

b

a

d

→


a

b

c

d

,

b

a

d

c


253
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An analogous property holds for pullbacks. Let fi : Xi → X be pr-morphisms such that
the underlying functions are inclusions: the pullback is given as f′

i :
⋃
i Xi|E1∩E2

→ Xi. In
particular, the square below is both a pullback and a pushout.⋃

i Xi|E1∩E2
X1

X2 X1 ⊗X2

6 Operators for Visibility254

We now introduce a family of operations that will be handy for our categorical characterisation.255

First, we provide a new operation on visibility relations.256

I Definition 26 (Extension). Let G = 〈E ,≺, λ〉 and E ′ ⊆ E. We define the extension of G257

over E ′ with ` as the graph G`E′ = 〈E>,≺ ∪ (E ′ × {>}), λ[> 7→ `]〉.258

Intuitively, G`E′ is obtained by adding to the visibility relation G one additional event which259

sees the events in E ′. We will just write G` whenever E ′ is the set of top elements of G – i.e.,260

the additional event may see all the events of G – and we call it top extensions. Note how261

top extensions can be lifted to endofunctors (and actually, monads) on PDag(L). Extension262

allows us to characterise saturated specifications.263

I Definition 27 (Saturated specification). Let S be a specification. It is saturated if for all264

graphs G the inclusion f : EG → EG` is saturated with respect to S(G`E) (see Lemma 20), that is265

∀G. S(G`E) = sat(ret(S(G`E), f), f)266

We now show that all graphs are generated from suitable top extensions via pushout267

contructions. We consider tree extensions T→ T` for a tree T, i.e., a graph such that each268

event has a unique successor. Intuitively, trees represent the simplest visibility relations, and269

can be seen as “generators” for PDag(L). We first show that trees are freely generated via270

pushouts and tree extensions.271

I Lemma 28. The sub-category of PIDag(L) of trees if freely generated from the empty272

tree via coproduct and tree extensions.273

Now we can show that trees and monic arrows between them generate the whole PIDag(L)274

via pushouts.275

I Lemma 29. Every monic arrow f : G′ → G of PIDag(L) is given by a pushout in PDag(L)276

of the form277

T′ T

G′ G

f′

f

278

where f′ : T′ → T is a monic arrow between trees.279

Proof. Given a graph G, we proceed by induction on the set E of the events of G.280

For the base case let us now consider a graph G = G|bec for a (necessarily unique) e ∈ E .281

Note that we can find an epic pr-morphism f : T → G, for a tree T. This induces another282
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epic pr-morphism T|ET\{f−1(e)} → G|EG\{e}. Since (T|ET\{f−1(e)})` is isomorphic to T, G is now283

obtained as the obvious pushout.284

The inductive step is immediate. In fact, note that G =
⋃

e∈E G|bec for E the set of top285

elements and let e1 ∈ E and E1 = E \ {e1}. Then, G = G|E1
∪ G|be1c is the obvious pushouts286

of two inclusions.287

J288

7 A categorical correspondence289

It is now time to move towards our categorical characterisation of specifications. In this290

section we will show that coherent specifications induce functors preserving relevant structure291

(soundness) and, viceversa, that a certain class of functors induce coherent specifications292

(completeness). Finally, we show that these functors are “mutually inverse”.293

We first provide a simple technical result for coherent specifications.294

I Lemma 30. Let S be a coherent specification and E ⊆ EG. If E =
⋃
e∈E bec (that is, if E is295

downward closed in G), then S(G)|E ⊆ S(G|E).296

Proof. Since E is downward closed, for all e ∈ E we have that (G|E)|bec = G|bec. Now,297

by the latter and by coherence we have that S(G)|E = (
⊗

e∈EG
S(G|bec))

∣∣∣
E
and S(G|E) =298 ⊗

e∈E S(G|bec). Note that (
⊗

e∈EG
S(G|bec))

∣∣∣
E
⊆
⊗

e∈E S(G|bec), because a path P can always299

be restricted to a suitable path on fewer events (the viceversa in general does not hold). This300

concludes the proof. J301

Our second step is to further curb the arrows in our syntax category to monic ones. Intuitively,302

we are only interested in what happens if we add further events to visibility relations. Note303

that a morphism in PDag(L) is a mono if and only if the underlying function is injective. We304

thus consider the sub-category PIDag(L) of direct acyclic graphs and monic pr-morphisms.305

We now give our soundness results. We assume that specifications are iso-coherent, i.e,306

they map isomorphic graphs to isomorphic sets of paths (along the same isomorphism on307

events).308

I Proposition 31 (functors induced by specifications). An iso-coherent specification S induces309

a functor M(S) : PIDag(L)→ SPath(L).310

Proof. We define M(S)(G) = S(G) and M(S)(f) as the ps-morphism with underlying injective311

function f : (EG, λG) ↪→ (EG′ , λG′). The proof boils down to show that f really is a ps-morphism312

from S(G) into S(G′), i.e., S(G′) ⊆ sat(S(G), f) and, since we are considering specifications313

preserving isos, we can restrict our attention to the case where f is an inclusion.314

Since f is a pr-morphism,
⋃

e∈EG
f(e) is downward-closed in G′ and thus by Lemma 30 we315

have S(G′)|EG
⊆ S(G′|EG

) = S(G), the latter equality by iso-coherence. Now, consider a path316

P ∈ S(G′). Since P|EG
∈ S(G), we have P ∈ sat(S(G), f), because saturation adds missing317

events – namely those in EG′ \ EG – to P|EG
in all possible ways. Therefore we can conclude318

S(G′) ⊆ sat(S(G), f).319

J320

A simple corollary instantiates the result to saturated specifications. So, let SSPath(L)321

be the sub-category of SPath(L) of saturated monos.322

I Corollary 32 (functors induced by saturated specifications). An iso-coherent, saturated323

specification S induces a functor S(S) : PIDag(L)→ SSPath(L).324
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As is the case for the category of sets and injective functions, PIDag(L) lacks pushouts.325

However, we have an easy way out via the inclusion functor into PDag(L).326

I Lemma 33 (Mono of PDag). Pushouts in PDag preserve monos.327

Thus in the following we say that a functor F : PIDag(L)→ SPath(L) weakly preserves328

binary pushout (and in fact, finite colimits) if any commuting square in PIDag(L) that is a329

pushout (via the inclusion functor) in PDag(L) is mapped by F to a pushout in SPath(L).330

I Theorem 34. Let S be an iso-coherent specification. The induced functor M(S) :331

PIDag(L)→ SPath(L) weakly preserves finite colimits and preserves binary pullbacks.332

Proof. The initial object is easy, since it holds by construction. As for pushouts and pullbacks:333

since S is coherent, it boils down to Lemma 24. J334

We can now move to the completeness part.335

I Theorem 35. Let F : PIDag(L)→ SPath(L) be a functor such that F(G) ⊆ P(EG, λG). If336

F weakly preserves finite colimits and preserves binary pullbacks, it induces an iso-coherent337

specification S(F).338

Proof. Let S(F)(G) = F(G). We shall show that F(G) is coherent. Consider the following339

pushout in PDag(L):340

G|be1c∩be2c G|be2c

G|be1c G|be1c∪be2c

341

Since F preserves pullbacks, thus monos, and weakly preserves pushouts, this diagram is342

mapped by F to the following pushout in SPath(L):343

F(G|be1c∩be2c) F(G|be2c)

F(G|be1c) F(G|be1c∪be2c)

344

where all underlying functions between events are inclusions. By Lemma 24 we have:345

F(G|be1c∪be2c) ' F(G|be1c)⊗ F(G|be2c)346

Since clearly G = G|⋃
e∈EG

bec, by associativity of pushouts we obtain coherence:347

F(G) '
⊗
e∈EG

F(G|bec)348

Iso-coherence follows from F being a functor, hence preserving isos. J349

Furthermore, the two constructions are inverse to each other.350

I Proposition 36. We have M(S(F)) ' F.351
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Proof. For notational convenience, we denote M(S(F)) by M′. We will show the existence352

of a natural isomorphism ϕ : M′ ⇒ F. By definition, we have M′(G) = S(F)(G) = F(G),353

therefore we can define ϕG = IdF(G). We need to prove that it is natural, which in this354

case amounts to show M′(f) = F(f), for f : G → G′ in PIDag(L). This follows from355

M′(f) and F(f) having the same underlying function between events, namely the inclusion356

(EF(G), λF(G))→ (EF(G′), λF(G′)). J357

We can sharpen the result above by removing the on-the-nose requirement F(G) ⊆ P(EG, λG).358

To this end, we need to further constraint the class of functors. First, we consider the effect359

of top extension on sets of paths.360

I Definition 37. Let X ⊆ P(E , λ) be a set of paths and ` ∈ L a label. Its top extension is361

defined as {P` | P ∈ X}. Its saturated top extension is defined as sat(P, f) for f : (E , λ)→362

(E>, λ[> 7→ `]] the obvious inclusion.363

We say that F preserves top extensions if it maps top extensions (of dags) to top extensions (of364

paths). We can now state two additional instances of Theorem 35. We call topological those365

specifications such that S(G) ⊆ {P | ≺G ⊆ ≤P}. In other words, a topological specification366

maps a dag G to paths that are topological sorts of G.367

I Proposition 38. Let F : PIDag(L) → SPath(L) that preserves top extensions. If F368

weakly preserves finite colimits and preserves binary pullbacks, it induces an iso-coherent369

topological specification S(F).370

Finally, we consider the sub-category of SSPath(L) of saturated ps-morphisms,371

I Proposition 39. Let F : PIDag(L)→ SSPath(L) be a functor that preserves top exten-372

sions. If F weakly preserves finite colimits and preserves binary pullbacks, it induces an373

iso-coherent saturated specification S(F).374

8 Conclusions375

In this paper we have provided a functorial characterisation of rdts specifications. Our376

starting point is the denotational approach proposed in [6], in which rdts specifications are377

associated with those functions mapping visibility graphs into sets of admissible arbitrations378

that are also saturated and coherent. In this work, we consider the category PDag(L) that379

has labelled, acyclic graphs as objects and pr-morphisms as arrows for representing visibility380

graphs. We equip PDag(L) with operators that model the evolution of visibility graphs and381

we show that monic arrows in PDag(L) can be obtained as pushouts. We call PIDag(L)382

the full-subcategory of acyclic graphs and monic pr-morphisms. For arbitrations, we take383

SPath(L), which is the category of sets of labelled, total orders and ps-morphisms. Then,384

we show that each coherent specification mapping isomorphic graphs into isomorphic set of385

paths ( i.e., iso-coherent) induces a functor M(S) : PIDag(L)→ SPath(L). Conversely, we386

prove that a functor F : PIDag(L)→ SPath(L) that preserves finite colimits and binary387

pullbacks induces an iso-coherent specification S(F). Moreover, M(S) and S(F) are shown388

to be inverse of each other.389

We believe that our characterisation of rdts provides an ideal setting for the development390

of techniques for handling rdt composition. Our long term goal is to equip rdt specific-391

ations with a set of operators that enable us to specify and reason about complex rdts392

compositionally, i.e., in terms of constituent parts. We aim to provide a uniform formal393

treatment of compositional approaches such as those proposed in [1, 10, 12].394
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A Proof of Lem. 2.431

Proof.432

For ⇐), assume that f is a pr-morphism, then433

1. By definition of pr-morphism

f(s) γ f(s′) implies ∃s ∈ E.s ρ s′ ∧ f(s) = f(s)

Since f is injective, e = e holds, and hence e ρ e′.434

2. Let T =
⋃

e∈E f(e). We want to show that

∀t ∈ T.∀t′ ∈ T .tγ t′ implies t ∈ T

The proof follows by contradiction. Assume that ∃t ∈ T.∃t′ ∈ T .tγ t′ ∧ t 6∈ T . By
definition of T ,∃e ∈ E such that f(e) = t′. Since f is pr-morphism, then

t γ f(e) implies ∃e′ ∈ E.e′ ρ e ∧ t = f(e′)

Therefore t = f(e′) ∈ T , which contradicts the assumption t /∈ T .435

For ⇒), assume that 1) and 2) hold. Take e ∈ E and t ∈ T. If t γ f(e), then there exists436

e′ ∈ E such that t = f(e′) because of (2). By (1) holds, f(e′) γ f(e) implies e′ ρ e. J437
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