
CONCURRENCY AND PROBABILITY: REMOVING CONFUSION,

COMPOSITIONALLY

ROBERTO BRUNI, HERNÁN MELGRATTI, AND UGO MONTANARI

University of Pisa, Italy
e-mail address: bruni@di.unipi.it

ICC - Universidad de Buenos Aires - Conicet, Argentina
e-mail address: hmelgra@dc.uba.ar

University of Pisa, Italy
e-mail address: ugo@di.unipi.it

Abstract. Assigning a satisfactory truly concurrent semantics to Petri nets with confusion
and distributed decisions is a long standing problem, especially if one wants to resolve
decisions by drawing from some probability distribution. Here we propose a general solution
to this problem based on a recursive, static decomposition of (occurrence) nets in loci of
decision, called structural branching cells (s-cells). Each s-cell exposes a set of alternatives,
called transactions. Our solution transforms a given Petri net, possibly with confusion,
into another net whose transitions are the transactions of the s-cells and whose places are
those of the original net, with some auxiliary nodes for bookkeeping. The resulting net
is confusion-free by construction, and thus conflicting alternatives can be equipped with
probabilistic choices, while nonintersecting alternatives are purely concurrent and their
probability distributions are independent. The validity of the construction is witnessed by a
tight correspondence with the recursively stopped configurations of Abbes and Benveniste.
Some advantages of our approach are that: i) s-cells are defined statically and locally in a
compositional way; ii) our resulting nets faithfully account for concurrency.

1. Introduction

Concurrency theory and practice provide a useful abstraction for the design and use of a
variety of systems. Concurrent computations (also processes), as defined in many models,
are equivalence classes of executions, called traces, where the order of concurrent (i.e.,
independent) events is inessential. A key notion in concurrent models is conflict (also
known as choices or decisions). Basically, two events are in conflict when they cannot
occur in the same execution. The interplay between concurrency and conflicts introduces a
phenomenon in which the execution of an event can be influenced by the occurrence of another
concurrent (and hence independent) event. Such situation, known as confusion, naturally
arises in concurrent and distributed systems and is intrinsic to problems involving mutual
exclusion [30]. When interleaving semantics is considered, the problem is less compelling,

Key words and phrases: Petri nets, confusion, dynamic nets, persistent places, OR causality, concurrency,
probabilistic computation.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© R. Bruni, H. Melgratti, and U. Montanari
Creative Commons

1

2 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

•
�� %%
1

a
��

d
��

•
�� %%

2

��
3 6

b
��

c
��

4 5

a
��

d

b c

(a) Asymmetric confusion

•
yy %%

1

a
��

d
�� ##

�� %%
3 •

��yy %%
2 6

{{ ¬c
c
��

b1
��

b2
yy

5 4

a
{{ ��

d
��

b1 c b2

(b) Removing confusion

Figure 1. Some nets (top) and their event structures (bottom)

however it has been recognised and studied from the beginning of net research [29], and
to address it in a general and acceptable way can be considered as a long-standing open
problem for concurrency theory.

To illustrate confusion, we rely on Petri nets [27, 28], which are a basic, well understood
model of concurrency. The simplest example of (asymmetric) confusion is the net in Fig. 1a.
We assume the reader is familiar with the firing semantics of Petri nets, otherwise see the
short summary in Section 2.2. The net has two traces involving the concurrent events a
and b, namely σ1 = a; b and σ2 = b; a. Both traces define the same concurrent execution.
Contrastingly, σ1 and σ2 are associated with completely different behaviours of the system
as far as the resolution of choices is concerned. In fact, the system makes two choices while
executing σ1: firstly, it chooses a over d, enabling c as an alternative to b; secondly, b is
selected over c. Differently, the system makes just one choice in σ2: since initially c is not
enabled, b is executed without any choice; after that, the system chooses a over d. As
illustrated by this example, the choices made by two different traces of the same concurrent
computation may differ depending on the order in which concurrent events occur.

The fundamental problem behind confusion relates to the description of distributed,
global choices. Such problem becomes essential when choices are driven by probabilistic
distributions and one wants to assign probabilities to executions, as it is the case with
probabilistic, concurrent models. Consider again Fig. 1a and assume that a is chosen over d
with probability pa while b is chosen over c with probability pb. When driven by independent
choices, the trace σ1 has probability pa · pb, while σ2 has probability 1 · pa = pa. Hence, two
linear representations of the same concurrent computation, which are deemed equivalent,
would be assigned different probabilities.

Different solutions have been proposed in the literature for adding probabilities to
Petri nets [12, 23, 24, 13, 19, 16, 6, 17, 7]. As a matter of fact, most of them replace
nondeterminism with probability only in part, or take an interleaving semantics approach
that disregards concurrency, or introduce time dependent stochastic distributions, thus giving
up the abstract flavour of untimed truly concurrent models. Confusion-free probabilistic
models have been studied in [32], but this class, which subsumes free-choice nets, is usually
considered quite restrictive. More generally, the distributability of decisions has been studied,
e.g., in [31, 18], but while the results in [31] apply to some restricted classes of nets, the
approach in [18] requires nets to be decorated with agents and produces distributed models

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 3

a
��

C1 d

b c

(a) Initial configuration

a
��

b
C2

c

(b) a is chosen

d

b
C3

(c) d is chosen

Figure 2. AB’s dynamic branching cells for the example in Fig. 1a

with both nondeterminism and probability, where concurrency depends on the scheduling of
agents.

A substantial advance has been contributed by Abbes and Benveniste (AB) [1, 2, 3].
They consider prime event structures and provide a branching cell decomposition that
establishes the order in which choices are resolved (see Section 4.2). Intuitively, the event
structure in Fig. 1a has the three branching cells outlined in Fig. 2. First a decision between
a and d must be taken (Fig. 2a): if a is executed, then a subsequent branching cell {b, c}
is enabled (Fig. 2b); otherwise (i.e., if d is chosen) the trivial branching cell {b} is enabled
(Fig. 2c). In this approach, the trace σ2 = b; a is not admissible, because the branching
cell {b} does not exist in the original decomposition (Fig. 2a): it appears after the choice
of d over a has been resolved. Branching cells are equipped with independent probability
distributions and the probability assigned to a concurrent execution is given by the product
of the probabilities assigned by its branching cells. Notably, the sum of the probabilities of
maximal configurations is 1. Every decomposition of a configuration yields an execution
sequence compatible with that configuration. Unfortunately, certain sequences of events,
legal w.r.t. the configuration, are not executable according to AB.

Problem statement. The question addressed in this paper is a foundational one: can
concurrency and general probabilistic distributions coexist in Petri nets? If so, under which
circumstances? By coexistence we mean that all the following issues must be addressed:

(1) Time independence: Truly concurrent semantics usually assumes computation to be
independent from the relative speed of processes. In this sense, although truly concur-
rent models have been extended in the literature with some notion of time such that
occurrences of events are studied in terms of stochastic distributions, here we consider
the more abstract case of untimed models only.

(2) Schedule independence: Concurrent events must be driven by independent probability
distributions. This item is tightly related to the confusion problem, where the set of
alternatives, and thus their probability distribution, can be changed by the execution of
some concurrent event.

(3) Probabilistic computation: Nondeterministic choices must be replaceable by probabilistic
choices. This means that whenever two transitions are enabled, the choice to fire one
instead of the other is either inessential (because they are concurrent) or is driven by
some probability distribution.

(4) Complete concurrency : It must be possible to establish a bijective correspondence
between equivalence classes of firing sequences and a suitable set of concurrent processes.
In particular, given a concurrent process it must be possible to recover all its underlying
firing sequences.

(5) Sanity check #1 : All firing sequences of the same process carry the same probability, i.e.,
the probability of a concurrent computation is independent from the order of execution.

4 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

•
�� %%
1 •

�� %%
7

a
��

d
��

e
��

f
��

•
�� %%

2

��
3 6

tt ��
8 9

b
��

c
��

g
��

4 5 10

a
��

d e

uu ��
f

b c g

(a) Confusion with OR-causes

•
�� $$
1 •

�� $$
7

a
��

d
�� $$

e
��

f
��tt

�� $$

3 6 66

vv

[[

��

¬c

vv ����

8 9

•
�� $$ ++

2

b
��

c
��

bg

ss $$

g

��
4 5 10

(b) An attempt

•
�� $$
1 •

�� $$
7

a
��

d
�� $$

e
��

f
��tt

�� $$

3 6

vv ��

¬c

vv ����

8 9

•
�� $$ ++

2

b
��

c
��

bg

ss $$

g

��
4 5 10

(c) A solution with persistent places

Figure 3. Running example

(6) Sanity check #2 : The sum of the probabilities assigned to all possible maximal processes
must be 1.

In this paper we provide a positive answer for finite occurrence nets: given any such
net we show how to define loci of decisions, called structural branching cells (s-cells),
and construct another net where independent probability distributions can be assigned to
concurrent events. This means that each s-cell can be assigned to a distributed random
agent and that any concurrent computation is independent from the scheduling of agents.

Overview of the approach. Following the rationale behind AB’s approach, a net is
transformed into another one that postpones the execution of choices that can be affected by
pending decisions. According to this intuition, the net in Fig. 1a is transformed into another
one that delays the execution of b until all its potential alternatives (i.e., c) are enabled or
definitively excluded. In this sense, b should never be executed before the decision between
a and d is taken, because c could still be enabled (if a is chosen). As a practical situation,
imagine that a and d are the choices of your partner to either come to town (a) or go to
the sea (d) and that you can go to the theatre alone (b), which is always an option, or go
together with him/her (c), which is possible only when he/she is in town and accepts the
invitation. Of course you better postpone the decision until you know if your partner is
in town or not. This behaviour is faithfully represented, e.g., by the confusion-free net in
Fig. 1b, where two variants of b are made explicit: b1 (your partner is in town) and b2 (your
partner is not in town). The new place ¬c represents the fact that c will never be enabled.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 5

Now, from the concurrency point of view, there is a single process that comprises both a
and b1 (with a a cause of b1), whose overall probability is the product of the probability of
choosing a over d by the probability of choosing b1 over c. The other two processes comprise,
respectively, d and b2 (with d a cause of b2) and a and c (with a a cause of c). As the net is
confusion-free all criteria in the desiderata are met.

The general situation is more involved because: i) there can be several ways to disable
the same transition; ii) resolving a choice may require to execute several transitions at once.
Consider the net in Fig. 3a: i) c is discarded as soon as d or f fires; and ii) when both a
and e are fired we can choose to execute c alone or both b and g. Likewise the previous
example, we may expect to transform the net as in Fig. 3b. Again, the place ¬c represents
the permanent disabling of c. This way a probability distribution can drive the choice
between c and (the joint execution of) bg, whereas b and g (if enabled) can fire concurrently
when ¬c is marked.

A few things are worth remarking: i) a token in ¬c can be needed several times (e.g., to
fire b and g), hence tokens should be read but not consumed from ¬c (whence the double
headed arcs from ¬c to b and g, called self-loops); ii) several tokens can appear in the
place ¬c (by firing both d and f). These facts have severe repercussions on the concurrent
semantics of the net. Suppose the trace d; f ; b is observed. The firings of d and f produce
two tokens in the place ¬c: Does b causally depend on the token generated from d or from f
(or from both)? Moreover, consider the trace d; e; b; g, in which b takes and releases a token
in ¬c. Does g causally depend on b (due to such self-loop)? This last question can be solved
by replacing self-loops with read arcs [25], so that the firing of b does not alter the content of
¬c and thus no causal dependency arises between b and g. Nevertheless, if process semantics
or event semantics is considered, then we should explode all possible combinations of causal
dependencies, thus introducing a new, undesired kind of nondeterminism. In reality, we
should not expect any causal dependency between b and g, while both have OR dependencies
on d and f .

To account for OR dependencies, we exploit the notion of persistence: tokens in a
persistent place have infinite weight and are collective. Namely, once a token reaches a
persistent place, it cannot be removed and if two tokens reach the same persistent place
they are indistinguishable. Such networks are a variant of ordinary P/T nets and have been
studied in [11]. In the example, we can declare ¬c to be a persistent place and replace
self-loops/read arcs on ¬c with ordinary outgoing arcs (see Fig. 3c). Nicely we are able
to introduce a process semantics for nets with persistent places that satisfies complete
concurrency.

The place ¬c in the examples above is just used to sketch the general idea: our
transformation introduces persistent places like 3 to express that a token will never appear
in the regular place 3.

Contribution. In this paper we show how to systematically derive confusion-free nets
(with persistency) from any (finite, occurrence) Petri net and equip them with probabilistic
distributions and concurrent semantics in the vein of AB’s construction.

Technically, our approach is based on a structurally recursive decomposition of the
original net in s-cells. A simple kind of Asperti-Busi’s dynamic nets is used as an intermediate
model to structure the coding. While not strictly necessary, the intermediate step emphasises
the hierarchical nature of the construction. The second part is a general flattening step
independent of our special case. Our definition is purely local (to s-cells), static and

6 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

compositional, whereas AB’s is dynamic and global (i.e., it requires the entire PES). Using
nets with persistency, we compile the execution strategy of nets with confusion in a statically
defined, confusion-free, operational model. The advantage is that the concurrency within
a process of the obtained p-net is consistent with execution, i.e., all linearizations of a
persistent process are executable.

Structure of the paper. After fixing notation in Section 2, our solution to the confu-
sion problem consists of the following steps: (i) we define s-cells in a compositional way
(Section 3.1); (ii) from s-cells decomposition and the use of dynamic nets, we derive a
confusion-free net with persistency (Section 3.2); (iii) we prove the correspondence with
AB’s approach (Section 4); (iv) we define a new notion of process that accounts for OR
causal dependencies and satisfies complete concurrency (Section 5); and (v) we show how to
assign probability distributions to s-cells (Section 6). For the sake of readability, all proofs
of main results can be found in Appendix.

2. Preliminaries

2.1. Notation. We let N be the set of natural numbers, N∞ = N ∪ {∞} and 2 = {0, 1}.
We write US for the set of functions from S to U : hence a subset of S is an element of
2S , a multiset m over S is an element of NS , and a bag b over S is an element of NS

∞. By
overloading the notation, union, difference and inclusion of sets, multisets and bags are all
denoted by the same symbols: ∪, \ and ⊆, respectively. In the case of bags, the difference
b \m is defined only when the second argument is a multiset, with the convention that
(b \m)(s) = ∞ if b(s) = ∞. Similarly, (b ∪ b′)(s) = ∞ if b(s) = ∞ or b′(s) = ∞. A set
can be seen as a multiset or a bag whose elements have unary multiplicity. Membership
is denoted by ∈: for a multiset m (or a bag b), we write s ∈ m for m(s) 6= 0 (b(s) 6= 0).
Given a relation R ⊆ S × S, we let R+ be its transitive closure and R∗ be its reflexive and
transitive closure. We say that R is acyclic if ∀s ∈ S. (s, s) 6∈ R+.

2.2. Petri Nets, confusion and free-choiceness. A net structure N (also Petri net) [27,
28] is a tuple (P, T, F) where: P is the set of places, T is the set of transitions, and
F ⊆ (P ×T)∪(T ×P) is the flow relation. For x ∈ P ∪T , we denote by •x = {y | (y, x) ∈ F}
and x• = {z | (x, z) ∈ F} its pre-set and post-set, respectively. We assume that P and T
are disjoint and non-empty and that •t and t• are non empty for every t ∈ T . We write
t : X → Y for t ∈ T with X = •t and Y = t•.

A marking is a multiset m ∈ NP . We say that p is marked at m if p ∈ m. We write
(N,m) for the net N marked by m. We write m0 for the initial marking of the net, if any.

Graphically, a Petri net is a directed graph whose nodes are the places and transitions
and whose set of arcs is F . Places are drawn as circles and transitions as rectangles. The
marking m is represented by inserting m(p) tokens in each place p ∈ m (see Fig. 1).

A transition t is enabled at the marking m, written m
t−→, if •t ⊆ m. The execution of

a transition t enabled at m, called firing, is written m
t−→ m′ with m′ = (m \ •t) ∪ t•. A

firing sequence from m to m′ is a finite sequence of firings m = m0
t1−→ · · · tn−→ mn = m′,

abbreviated to m
t1···tn−−−→ m′ or just m →∗ m′. Moreover, it is maximal if no transition is

enabled at m′. We write m
t1···tn−−−→ if there is m′ such that m

t1···tn−−−→ m′. We say that m′

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 7

•
��
1

a
��

•
��

2

3

b
��
4

(a) Concurrent run (a and b)

•
##

1

d
��

•
��

2

6

b
��
4

(b) Concurrent run (b and d)

•
��
1

a
��

•
##

2

��
3

c
��
5

(c) Sequential run (a before c)

Figure 4. Maximal processes for the net in Fig. 1a

is reachable from m if m→∗ m′. The set of markings reachable from m is written [m〉. A
marked net (N,m) is safe if each m′ ∈ [m〉 is a set.

Two transition t, u are in direct conflict if •t ∩ •u 6= ∅. A net is called free-choice if for
all transitions t, u we have either •t = •u or •t ∩ •u = ∅, i.e., if a transition t is enabled then
all its conflicting alternatives are also enabled. Note that free-choiceness is purely structural.
Confusion-freeness considers instead the dynamics of the net. A safe marked net (N,m0)
has confusion iff there exists a reachable marking m and transitions t, u, v such that:

(1) (i) t, u, v are enabled at m, (ii) •t ∩ •u 6= ∅ 6= •u ∩ •v, (iii) •t ∩ •v = ∅ (symmetric case);
or

(2) (i) t and v are enabled at m, (ii) u is not enabled at m but it becomes enabled after the
firing of t, and (iii) •t ∩ •v = ∅ and •v ∩ •u 6= ∅ (asymmetric case).

In case 1, t and v are concurrently enabled but the firing of one disables an alternative
(u) to the other. In case 2, the firing of t enables an alternative to u. An example of
symmetric confusion is given by m = {2, 3, 8}, t = b, u = c and v = g in Fig. 3a, while for the
asymmetric case take m = {1, 2}, t = a, v = b and u = c in Fig. 1a. A net is confusion-free
when it has no confusion.

2.3. Deterministic Nonsequential Processes. A deterministic nonsequential process
(or just process) [14] represents the equivalence class of all firing sequences of a net that
only differ in the order in which concurrent firings are executed. It is given as a mapping
π : D → N from a deterministic occurrence net D to N (preserving pre- and post-sets), where
a deterministic occurrence net is such that: (1) the flow relation is acyclic, (2) there are no
backward conflicts (∀p ∈ P. |•p| ≤ 1), and (3) there are no forward conflicts (∀p ∈ P. |p•| ≤ 1).
We let ◦D = {p | •p = ∅} and D◦ = {p | p• = ∅} be the sets of initial and final places of D,
respectively (with π(◦D) be the initial marking of N). When N is an acyclic safe net, the
mapping π : D → N is just an injective graph homomorphism: without loss of generality,
we name the nodes in D as their images in N and let π be the identity. The firing sequences
of a processes D are its maximal firing sequences starting from the marking ◦D. A process
of N is maximal if its firing sequences are maximal in N .

For example, take the net in Fig. 1a. It has three maximal processes that are reported

in Fig. 4. The equivalence class of the firing sequences m0
a b−→ and m0

b a−→ is the maximal
process D in Fig. 4a with places {1, 2, 3, 4} and transitions {a : 1 → 3, b : 2 → 4}, where
◦D = {1, 2} and D◦ = {3, 4}. Likewise, the equivalence class of the firing sequences m0

b d−→

8 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

and m0
d b−→ is the maximal process in Fig. 4b. As c can only be executed after a, the

corresponding process is in Fig.4c.
Given an acyclic net we let �= F ∗ be the (reflexive) causality relation and say that two

transitions t1 and t2 are in immediate conflict, written t1#0t2 if t1 6= t2 ∧ •t1 ∩ •t2 6= ∅. The
conflict relation # is defined by letting x#y if there are t1, t2 ∈ T such that (t1, x), (t2, y) ∈ F+

and t1#0t2. Then, a nondeterministic occurrence net (or just occurrence net) is a net
O = (P, T, F) such that: (1) the flow relation is acyclic, (2) there are no backward conflicts
(∀p ∈ P. |•p| ≤ 1), and (3) there are no self-conflicts (∀t ∈ T. ¬(t#t)). The unfolding U(N)
of a safe Petri net N is an occurrence net that accounts for all (finite and infinite) runs of
N : its transitions model all the possible instances of transitions in N and its places model
all the tokens that can be created in any run. Our construction takes a finite occurrence net
as input, which can be, e.g., the (truncated) unfolding of any safe net.

2.4. Nets With Persistency. Nets with persistency (p-nets) [11] partition the set of places
into regular places P (ranged by p, q, ...) and persistent places P (ranged by p,q, ...). We
use s to range over S = P ∪P and write a p-net as a tuple (S, T, F). Intuitively, persistent
places guarantee some sort of monotonicity about the knowledge of the system. Technically,
this is realised by letting states be bags of places b ∈ NS

∞ instead of multisets, with the
constraint that b(p) ∈ N for any regular place p ∈ P and b(p) ∈ {0,∞} for any persistent
place p ∈ P. To guarantee that this property is preserved by firing sequences, we assume
that the post-set t• of a transition t is the bag such that: (t•)(p) = 1 if (t, p) ∈ F (as usual);
(t•)(p) =∞ if (t,p) ∈ F ; and (t•)(s) = 0 if (t, s) 6∈ F . We say that a transition t is persistent
if it is attached to persistent places only (i.e. if •t ∪ t• ⊆ P).

The notions of enabling, firing, firing sequence and reachability extend in the obvious
way to p-nets (when markings are replaced by bags). For example, a transition t is enabled

at the bag b, written b
t−→, if •t ⊆ b, and the firing of an enabled transition is written b

t−→ b′

with b′ = (b \ •t) ∪ t•.
A firing sequence is stuttering if it has multiple occurrences of a persistent transition.

Since firing a persistent transition t multiple times is inessential, we consider non-stuttering
firing sequences. (Alternatively, we can add a marked regular place pt to the preset of each
persistent transition t, so t fires at most once.)

A marked p-net (N, b0) is 1-∞-safe if each reachable bag b ∈ [b0〉 is such that b(p) ∈ 2
for all p ∈ P and b(p) ∈ {0,∞} for all p ∈ P. Note that in 1-∞-safe nets the amount of
information conveyed by any reachable bag is finite, as each place is associated with one
bit of information (marked or unmarked). Graphically, persistent places are represented by
circles with double border (and they are either empty or contain a single token).

The notion of confusion extends to p-nets, by checking direct conflicts w.r.t. regular
places only.

As an example, consider the 1-∞-safe, confusion-free p-net in Fig. 5. After firing a and
c, the firing of b is inessential to enable d, because the persistent place 4 is marked by ∞.

2.5. Dynamic Nets. Dynamic nets [4] are Petri nets whose sets of places and transitions
may increase dynamically. We focus on a subclass of persistent dynamic nets that only
allows for changes in the set of transitions, which is defined as follows.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 9

•
��
1 •

��
2

a

""
b

||•
��
3

|| ""
4 •
��
5

c
��

d
��

6 7

Figure 5. A marked p-net

•
��

3 •
xx &&

2

��
3

t3
��

// tb
��

tc
��xx

5 4 5 4

(a) A dynamic p-net N

•
""
•
��

3 •
xx ''

2 •
"" ��
3

t3
��

// //
pb

tb
��

tc
��ww

5 4 5 4

(b) The corresponding p-net LNM

Figure 6. A dynamic p-net encoded as a p-net

Definition 2.1 (Dynamic p-nets). The set dn(S) is the least set satisfying the recursive
equation:

dn(S) = {(T, b) | T ⊆ 2S × dn(S) ∧ T finite ∧ b ∈ NS
∞}

The definition above is a domain equation for the set of dynamic p-nets over the set of
places S: the set dn(S) is the least fixed point of the equation. The simplest elements in
dn(S) are pairs (∅, b) with bag b ∈ NS

∞ (with b(p) ∈ N for any p ∈ P and b(p) ∈ {0,∞} for
any p ∈ P). Nets (T, b) are defined recursively; indeed any element t = (S,N) ∈ T stands for
a transition with preset S and postset N , which is another element of dn(S). An ordinary
transition from b to b′ has thus the form (b, (∅, b′)). We write S → N for the transition
t = (S,N), •t = S for its preset, and t• = N ∈ dn(S) for its postset. For N = (T, b) we say
that T is the set of top transitions of N . All the other transitions are called dynamic.

The firing rule rewrites a dynamic p-net (T, b) to another one. The firing of a transition
t = S → (T ′, b′) ∈ T consumes the preset S and releases both the transitions T ′ and the

tokens in b′. Formally, if t = S → (T ′, b′) ∈ T with S ⊆ b then (T, b)
t−−→ (T ∪T ′, (b \S)∪ b′).

The notion of 1-∞-safe dynamic p-net is defined analogously to p-nets by considering
the bags b of reachable states (T, b).

A sample of a dynamic net is shown in Fig. 6a, whose only dynamic transition, which is
activated by t3, is depicted with dashed border. The arrow between t3 and tb denotes the
fact that tb is activated dynamically by the firing of t3 : 3→ ({b : 2→ 4}, {5}).

We show that any dynamic p-net can be encoded as a (flat) p-net. Our encoding
resembles the one in [4], but it is simpler because we do not need to handle place creation.
Intuitively, we release any transition t immediately but we add a persistent place pt to its
preset, to enable t dynamically (pt is initially empty iff t is not a top transition). Given a
set T of transitions, bT is the bag such that bT (pt) =∞ if t ∈ T and bT (s) = 0 otherwise.

10 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

For N = (T, b) ∈ dn(S), we let T(N) = T ∪
⋃
t∈T T(t•) be the set of all (possibly

nested) transitions appearing in N . From Definition 2.1 it follows that T(N) is finite and
well-defined.

Definition 2.2 (From dynamic to static). Given N = (T, b) ∈ dn(S), the corresponding
p-net LNM is defined as LNM = (S ∪PT(N),T(N), F, b ∪ bT), where

• PT(N) = {pt | t ∈ T(N)}; and
• F is such that for any t = S → (T ′, b′) ∈ T(N) then t : •t ∪ {pt} → b′ ∪ bT ′ .

The transitions of LNM are those from N (set T(N)). Any place of N is also a place
of LNM (set S). In addition, there is one persistent place pt for each t ∈ T(N) (set PT(N)).
The initial marking of LNM is that of N (i.e., b) together with the persistent tokens that
enable the top transitions of N (i.e., bT). Adding bT is convenient for the statement in
Proposition 2.4, but we could safely remove PT ⊆ PT(N) (and bT) from the flat p-net without
any consequence.

Example 2.3. The dynamic p-net N in Fig. 6a is encoded as the p-net LNM in Fig. 6b,
which has as many transitions as N , but the preset of every transition contains an additional
persistent place (depicted in grey) to indicate transition’s availability. All the new places but
pb are marked because the corresponding transitions are initially available. Contrastingly, pb
is unmarked because the corresponding transition becomes available after the firing of t3.

The following result shows that all computations of a dynamic p-net can be mimicked
by the corresponding p-net and vice versa. Hence, the encoding preserves also 1-safety over
regular places.

Proposition 2.4. Let N = (T, b) ∈ dn(S). Then,

(1) N
t−−→ N ′ implies LNM t−−→ LN ′M;

(2) Moreover, LNM t−−→ N ′ implies there exists N ′′ such that N
t−−→ N ′′ and N ′ = LN ′′M.

Corollary 2.5. LNM is 1-∞-safe iff N is 1-safe.

3. From Petri Nets to Dynamic P-Nets

In this section we show that any (finite, acyclic) net N can be associated with a confusion-
free, dynamic p-net JNK by suitably encoding loci of decision. The mapping builds on the
structural cell decomposition introduced below.

3.1. Structural Branching Cells. A structural branching cell represents a statically
determined locus of choice, where the firing of some transitions is considered against all
the possible conflicting alternatives. To each transition t we assign an s-cell [t]. This is
achieved by taking the equivalence class of t w.r.t. the equivalence relation ↔ induced by
the least preorder v that includes immediate conflict #0 and causality �. For convenience,
each s-cell [t] also includes the places in the pre-sets of the transitions in [t], i.e., we let
the relation Pre−1 be also included in v, with Pre = F ∩ (P × T). This way, if (p, t) ∈ F
then p v t because p � t and t v p because (t, p) ∈ Pre−1. Formally, we let v be the
transitive closure of the relation #0 ∪ � ∪ Pre−1. Since #0 is subsumed by the transitive
closure of the relation � ∪ Pre−1, we equivalently set v = (� ∪ Pre−1)∗. Then, we let
↔ = {(x, y) | x v y ∧ y v x}. Intuitively, the choices available in the equivalence class [t]|↔
of a transition t must be resolved atomically.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 11

•
�� %%
1

C1 •
�� %%
7

C2

a

��

d
��

e

��

f
��

6 9

•
�� %%
2

��
3

C3

tt ��
8

b
��

c
��

g

��
4 5 10

(a) Structural branching cells

C1 :
θa ={a}
θd ={d}

C2 :
θe ={e}
θf ={f}

C3 :
θc ={c}
θbg={b, g}

(b) Transactions

3

��
8

g

��
10

(c) NC3
	 2

��
2

��
8

b
��

Cb

g

��

Cg

4 10

(d) NC3
	 3

��
2 3

b
��
4

(e) NC3 	 8

Figure 7. Structural branching cells (running example)

Definition 3.1 (S-cells). Let N = (P, T, F) be a finite, nondeterministic occurrence net.
The set bc(N) of s-cells is the set of equivalence classes of ↔, i.e., bc(N) = {[t]|↔ | t ∈ T}.

Remark 3.2. Exploiting the algebraic structure of monoidal categories, in [9] we have
given an alternative characterization of s-cells as those nets that can be decomposed neither
in parallel nor in sequence. The alternative definition is maybe more intuitive, but its
formalization requires some technical machinery which we prefer to leave out of the scope of
the present paper.

We let C range over s-cells. By definition it follows that for all C,C′ ∈ bc(N), if
C ∩ C′ 6= ∅ then C = C′. For any s-cell C, we denote by NC the subnet of N whose elements
are in C ∪

⋃
t∈C t

•. Abusing the notation, we denote by ◦C the set of all the initial places in
NC and by C◦ the set of all the final places in NC.

Definition 3.3 (Transactions). Let C ∈ bc(N). Then, a transaction θ of C, written θ : C,
is a maximal (deterministic) process of NC.

Since the set of transitions in a transaction θ uniquely determines the corresponding
process in NC, we write a transaction θ simply as the set of its transitions.

Example 3.4. The net N in Fig. 3a has the three s-cells shown in Fig. 7a, whose transactions
are listed in Fig. 7b. For C1 and C2, each transition defines a transaction; C3 has one
transaction associated with c and one with (the concurrent firing of) b and g.

12 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

•
�� %%
1

C1

a
��

d
��

��

3 6

•
�� %%

2 C2C3

b
��

c
��

4 5

Figure 8. S-cells for the net in Fig. 1a

The following operation 	 is instrumental for the definition of our encoding and stands
for the removal of a minimal place of a net and all the elements that causally depend on it.
Formally, N 	 p is the least set that satisfies the rules (where ◦ has higher precedence over
set difference):

q ∈ ◦N \ {p}
q ∈ N 	 p

t ∈ N •t ⊆ N 	 p
t ∈ N 	 p

t ∈ N 	 p q ∈ t•
q ∈ N 	 p

Example 3.5. Consider the net in Fig. 1a. There are two main s-cells: C1 associated with
{a, d}, and C2 with {b, c}. There is also a nested s-cell C3 that arises from the decomposition
of the subnet NC2 	 3. All the above s-cells are shown in Fig. 8.

Example 3.6. Consider the s-cells in Fig. 7a. The net NC1 	 1 is empty because every
node in NC1 causally depends on 1. Similarly, NC2 	 7 is empty. The cases for C3 are in
Figs. 7c–7e.

3.2. Encoding s-cells as confusion-free dynamic nets. Intuitively, the proposed encod-
ing works by explicitly representing the fact that a place will not be marked in a computation.
We denote with p the place that models such “negative” information about the regular
place p and let P = {p | p ∈ P}.1 The encoding uses negative information to recursively
decompose s-cells under the assumption that some of their minimal places will stay empty.

Definition 3.7 (From s-cells to dynamic p-nets). Let N = (P, T, F,m) be a marked
occurrence net. Its dynamic p-net JNK ∈ dn(P ∪P) is defined as JNK = (Tpos ∪ Tneg,m),
where:

Tpos = { ◦C→ (∅, θ◦ ∪ C◦ \ θ◦) | C ∈ bc(N) and θ : C }
Tneg = { p→ (T ′,C◦ \ (NC 	 p)◦) | C ∈ bc(N) and p ∈ ◦C

and (T ′, b) = JNC 	 pK }

For any s-cell C of N and transaction θ : C, the encoding generates a transition
tθ,C = (◦C→ (∅, θ◦ ∪ C◦ \ θ◦)) ∈ Tpos to mimic the atomic execution of θ. Despite ◦θ may
be strictly included in ◦C, we define ◦C as the preset of tθ,C to ensure that the execution of
θ only starts when the whole s-cell C is enabled. Each transition tθ,C ∈ Tpos is a transition

1The notation P denotes just a set of places whose names are decorated with a bar; it should not be
confused with usual set complement.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 13

•
�� ((

1

��

1

ta

�� "" �� ""

td

�� ��
3 6 3 6

(a) S-cell C1

��

2

��

3
•

{{ �� ##

2

{{ ��

3

&&��

// tb

��

t′b

uu {{

tc

��{{
5 4 5 4

(b) S-cell C2 and its sub s-cell C3

•
zz $$

1

td
zz ��

ta

zz $$

��
3 6

6
•

zz �� $$

2

zz ��

3

��

// //
pb

tb
��

t′b
zz zz

tc
��zz

5 4 5 4

(c) Flat net (pruned)

Figure 9. S-cells as dynamic nets and their composed, flattened version
(for the net in Fig. 1a)

of an ordinary Petri net because its postset consists of (i) the final places of θ and (ii) the

negative versions of the places in C◦ \ θ◦. A token in p ∈ C◦ \ θ◦ represents the fact that the
corresponding ordinary place p ∈ C◦ will not be marked because it depends on discarded
transitions (not in θ).

Negative information is propagated by the transitions in Tneg. For each cell C and place

p ∈ ◦C, there exists one dynamic transition tp,C = p → (T ′,C◦ \ (NC 	 p)◦) whose preset
is just p and whose postset is defined in terms of the subnet NC 	 p. The postset of tp,C
accounts for two effects of propagation: (i) the generation of the negative tokens for all
maximal places of C that causally depend on p, i.e., for the negative places associated with
the ones in C◦ that are not in (NC	 p)◦; and (ii) the activation of all transitions T ′ obtained
by encoding NC	p, i.e., the behaviour of the branching cell C after the token in the minimal
place p is excluded. We remark that the bag b in (T ′, b) = JNC	 pK is always empty, because
i) NC is unmarked and, consequently, NC 	 p is unmarked, and ii) the initial marking of
JNK corresponds to the initial marking of N .

Example 3.8. We sketch the main ideas over the net in Fig. 1a. We recall that it has two
main s-cells (C1 associated with {a, d}, and C2 with {b, c}) and a nested one (C3): see Fig. 8.
Their dynamic nets are in Figs. 9a–9b, where auxiliary transitions are in grey and unlabeled.
Places 1 and 2 (and their transitions) are irrelevant, because the places 1 and 2 are already
marked. However, our cells being static, we need to introduce auxiliary places in all cases.
Note that in Fig. 9b there is an arc between two transitions. As explained before, this is
because the target transition is dynamically created when the other is executed (hence the
dashed border). Also note that there are two transitions with the same subscript b: one (t′b)
is associated with the s-cell C2, the other (tb) with the unique s-cell C3 of NC2 	 3 and is
released when the place 3 becomes marked.

After the s-cells are assembled and flattened we get the p-net in Fig. 9c (where irrelevant
nodes are pruned). Initially, ta and td are enabled. Firing ta leads to the marking {2, 3,6}
where t′b : {2, 3} → {4,5} and tc : {2, 3} → {4, 5} are enabled (and in conflict). Firing
td instead leads to the marking {2,3, 6} where only the auxiliary transition can be fired,
enabling tb : {2,pb} → 4. The net is confusion-free, as every conflict involves transitions
with the same preset. For example, as the places 3 and 3 (and thus pb) are never marked in
a same run, the transitions t′b : {2, 3} → {4,5} and tb : {2,pb} → 4 will never compete for
the token in 2.

14 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

ta : 1→ (∅, {3,6}) for θa
td : 1→ (∅, {6,3}) for θd

t1 : 1→ (∅, {3,6})
te : 7→ (∅, {8,9}) for θe
tf : 7→ (∅, {9,8}) for θf

t7 : 7→ (∅, {8,9})
tbg : 2, 3, 8→ (∅, {4, 10,5}) for θbg
tc : 2, 3, 8→ (∅, {5,4,10}) for θc

t2 : 2→ ({tg, t′8}, {4,5})
t3 : 3→ ({tb, t′2, tg, t′8}, {5})
t8 : 8→ ({tb, t′2}{5,10})

where
tb : 2→ (∅, {4})
t′2 : 2→ (∅, {4})
tg : 8→ (∅, {10})
t′8 : 8→ (∅, {10})

Figure 10. Encoding of branching cells (running example)

Example 3.9. Consider the net N and its s-cells in Fig. 7a. Then, JNK = (T, b) is defined
such that b is the initial marking of N , i.e., b = {1, 2, 7}, and T has the transitions shown in
Fig. 10.

First consider the s-cell C1. Tpos contains one transition for each transaction in C1,
namely ta (for θa : C1) and td (for θd : C1). Both ta and td have ◦C1 = {1} as preset.
By definition of Tpos, both transitions have empty sets of transitions in their postsets.

Additionally, t•a produces tokens in θ◦a = {3} (positive) and C◦1 \ θ◦a = {3, 6} \ {3} = {6}
(negative), while t•d produces tokens in θ◦d = {6} and C◦1 \ θ◦d = {3}. Finally, t1 ∈ Tneg
propagates negative tokens for the unique place in ◦C1 = {1}. Since NC1 	 1 is the empty
net, JNC1 	 1K = (∅, ∅). Hence, t1 produces negative tokens for all maximal places of C1, i.e.,
{3,6}. For the s-cell C2 we analogously obtain the transitions te, tf and t7.

The s-cell C3 has two transactions θbg and θc. Hence, JNK has two transitions tbg, tc ∈ Tpos.
Despite θbg mimics the firing of b and g, which are disconnected from the place 3, it is
included in the preset of tbg to postpone the firing of tbg until C1 is executed. Transitions
t2, t3, t8 ∈ Tneg propagate the negative information for the places in ◦C3 = {2, 3, 8}. The
transition t3 has •t3 = {3} as its preset and its postset is obtained from NC3 	 3, which has
two (sub) s-cells Cb and Cg (see Fig. 7d). The transitions tb and t′2 arise from Cb, and tg
and t′8 from Cg. Hence, t•3 = ({tb, t′2, tg, t′8}, {5}) because JNC3 	 3K = ({tb, t′2, tg, t′8}, ∅) and

C◦3 \ (NC3 	 3)◦ = {5}. Similarly, we derive t2 from NC3 	 2 and t8 from NC3 	 8.
We now highlight some features of the encoded net. First, the set of top transitions is

free-choice: positive and negative transitions have disjoint presets and the presets of any
two positive transitions either coincide (if they arise from the same s-cell) or are disjoint.
Recursively, this property holds at any level of nesting. Hence, the only source of potential
confusion is due to the combination of top transitions and those activated dynamically, e.g.,
tb and either tbg or tc. However, tb is activated only when either 3 or 8 are marked, while
•tbg = •tc = {2, 3, 8}. Then, confusion is avoided if p and p can never be marked in the
same execution (Lemma 3.10).

The net JNK is shown in Fig. 11, where the places {1,2,7} and the transitions
{t1, t7, t2, t′2} are omitted because superseded by the initial marking {1, 2, 7}.

We remark that the same dynamic transition can be released by the firing of different
transitions (e.g., tb by t3 and t8) and possibly several times in the same computation.
Similarly, the same negative information can be generated multiple times. However this
duplication has no effect, since we handle persistent tokens. For instance, the firing sequence

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 15

•
{{ ##

1 •
{{ ##

7

td

�� ##

ta

��

��

te

{{

rr

tf

{{ ��6

��

3 6 9

��

��

8
9

t3

��

��

((

t8

��

����

"" **||

8

�� ��

3 •
|| ""tt

2 t′8

��

tg

##

tbg

,,zz {{

tc

�� ,,ww

tb

��
5 10 4 5 4 10

Figure 11. Dynamic net JNK (running example)

td; tf ; t3; t8 releases two copies of tb and marks 5 twice. This is inessential for reachability,
but has interesting consequences w.r.t. causal dependencies (see Section 5).

We now show that the encoding generates confusion-free nets. We start by stating a
useful property of the encoding that ensures that an execution cannot generate tokens in
both p and p.

Lemma 3.10 (Negative and positive tokens are in exclusion). If JNK→∗ (T, b) and p ∈ b
then (T, b)→∗ (T ′, b′) implies that p 6∈ b′.

We now observe from Def. 3.7 that for any transition t ∈ JNK ∈ dn(P ∪P) it holds that
either •t ⊆ P or •t ⊆ P. The next result says that whenever there exist two transitions t
and t′ that have different but overlapping presets, at least one of them is disabled by the
presence of a negative token in the marking b.

Lemma 3.11 (Nested rules do not collide). Let JNK ∈ dn(P ∪P). If JNK→∗ (T, b) then
for all t, t′ ∈ T s.t. •t 6= •t′ and •t ∩ •t′ ∩ P 6= ∅ it holds that there is p ∈ P ∩ (•t ∪ •t′) such
that p ∈ b.

The main result states that J·K generates confusion-free nets.

Theorem 3.12. Let JNK ∈ dn(P ∪ P). If JNK →∗ (T, b)
t−−→ and (T, b)

t′−−→ then either
•t = •t′ or •t ∩ •t′ = ∅.

Corollary 3.13. Any net JNK ∈ dn(P ∪P) is confusion-free.

Finally, we can combine the encoding J·K with L·M (from Section 2.5) to obtain a (flat) 1-
∞-safe, confusion-free, p-net LJNKM, that we call the uniformed net of N . By Proposition 2.4
we get that the uniformed net LJNKM is also confusion-free by construction.

Corollary 3.14. Any p-net LJNKM is confusion-free.

16 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

4. Static vs Dynamic cell decomposition

As mentioned in the Introduction, Abbes and Benveniste proposed a way to remove confusion
by dynamically decomposing prime event structures. In Sections 4.1 and 4.2 we recall the
basics of the AB’s approach as introduced in [1, 2, 3]. Then, we show that there is an
operational correspondence between AB decomposition and s-cells introduced in Section 3.1.

4.1. Prime Event Structures. A prime event structure (also PES) [26, 34] is a triple
E = (E,�,#) where: E is the set of events; the causality relation � is a partial order
on events; the conflict relation # is a symmetric, irreflexive relation on events such that
conflicts are inherited by causality, i.e., ∀e1, e2, e3 ∈ E. e1#e2 � e3 ⇒ e1#e3.

The PES EN associated with a net N can be formalised using category theory as a chain
of universal constructions, called coreflections. Hence, for each PES E , there is a standard,
unique (up to isomorphism) nondeterministic occurrence net NE that yields E and thus we
can freely move from one setting to the other.

Consider the nets in Figs. 1a and 3a. The corresponding PESs are shown below each
net. Events are in bijective correspondence with the transitions of the nets. Strict causality
is depicted by arrows and immediate conflict by curly lines.

Given an event e, its downward closure bec = {e′ ∈ E | e′ � e} is the set of causes of e. As
usual, we assume that bec is finite for any e. Given B ⊆ E, we say that B is downward closed
if ∀e ∈ B. bec ⊆ B and that B is conflict-free if ∀e, e′ ∈ B. ¬(e#e′). We let the immediate
conflict relation #0 be defined on events by letting e#0e

′ iff (bec × be′c) ∩# = {(e, e′)}, i.e.,
two events are in immediate conflict if they are in conflict but their causes are compatible.

4.2. Abbes and Benveniste’s Branching Cells. In the following we assume that a
(finite) PES E = (E,�,#) is given. A prefix B ⊆ E is any downward-closed set of events
(possibly with conflicts). Any prefix B induces an event structure EB = (B,�B,#B) where
�B and #B are the restrictions of � and # to the events in B. A stopping prefix is a prefix
B that is closed under immediate conflicts, i.e., ∀e ∈ B, e′ ∈ E. e#0e

′ ⇒ e′ ∈ B. Intuitively,
a stopping prefix is a prefix whose (immediate) choices are all available. It is initial if the
only stopping prefix strictly included in B is ∅. We assume that any e ∈ E is contained in a
finite stopping prefix.

A configuration v ⊆ E is any set of events that is downward closed and conflict-free.
Intuitively, a configuration represents (the state reached after executing) a concurrent but
deterministic computation of E . Configurations are ordered by inclusion and we denote by
VE the poset of finite configurations of E and by ΩE the poset of maximal configurations of
E .

The future of a configuration v, written Ev, is the set of events that can be executed
after v, i.e., Ev = {e ∈ E \ v | ∀e′ ∈ v.¬(e#e′)}. We write Ev for the event structure
induced by Ev. We assume that any finite configuration enables only finitely many events,
i.e., the set of minimal elements in Ev w.r.t. � is finite for any v ∈ VE .

A configuration v is stopped if there is a stopping prefix B with v ∈ ΩB. and v is
recursively stopped if there is a finite sequence of configurations ∅ = v0 ⊂ . . . ⊂ vn = v such
that for any i ∈ [0, n) the set vi+1 \ vi is a finite stopped configuration of Evi for vi in E .

A branching cell is any initial stopping prefix of the future Ev of a finite recursively
stopped configuration v. Intuitively, a branching cell is a minimal subset of events closed
under immediate conflict. We remark that branching cells are determined by considering the

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 17

d a

��

e

�� ��

f

b c g

(a) EN

e

�� ��

f

b c g

(b) E{a}N

b c g

(c) E{a,e}N

e

��

f

b g

(d) E{d}N

Figure 12. AB’s branching cell decomposition (running example)

whole (future of the) event structure E and they are recursively computed as E is executed.
Remarkably, every maximal configuration has a branching cell decomposition.

Example 4.1. Consider the PES EN in Fig. 3a and its maximal configuration v = {a, e, b, g}.
We show that v is recursively stopped by exhibiting a branching cell decomposition. The
initial stopping prefixes of EN = E∅N are shown in Fig. 12a. There are two possibilities for
choosing v1 ⊆ v and v1 recursively stopped: either v1 = {a} or v1 = {e}. When v1 = {a},
the choices for v2 are determined by the stopping prefixes of E{a}N (see Fig. 12b) and the only

possibility is v2 = {a, e}. From E{a,e}N in Fig. 12c, we take v3 = v. Note that {a, e, b} is not

recursively stopped because {b} is not maximal in the stopping prefix of E{a,e}N (see Fig. 12c).

Finally, note that the branching cells E{a}N (Fig. 12b) and E{d}N (Fig. 12d) correspond to

different choices in E∅N and thus have different stopping prefixes.

4.3. Relating s-cells and AB’s decomposition. The recursively stopped configurations
of a net N characterise all the allowed executions of N . Hence, we formally link the
recursively stopped configurations of EN with the computations of the uniformed net LJNKM.
For technical convenience, we first show that the recursively stopped configurations of EN
are in one-to-one correspondence with the computations of the dynamic net JNK. Then, the
desired correspondence is obtained by using Proposition 2.4 to relate the computations of a
dynamic net and its associated p-net.

We rely on the auxiliary map ‖−‖ that links transitions in JNK with events in EN .
Specifically, ‖−‖ associates each transition t of JNK with the set ‖t‖ of transitions of N (also
events in EN) that are encoded by t. Formally,

‖t‖ =

{
ev(θ) if t = tθ,C ∈ Tpos
∅ if t ∈ Tneg

where ev(θ) is the set of transitions in θ.

Example 4.2. Consider the net N in Fig. 7a which is encoded as the dynamic p-net in
Fig. 10. The auxiliary mapping ‖ ‖ is as follows

‖ta‖ = {a} ‖td‖ = {d} ‖te‖ = {e} ‖tf‖ = {f}
‖tbg‖ = {b, g} ‖tc‖ = {c} ‖tb‖ = {b} ‖tg‖ = {g}
‖t‖ = ∅ if t ∈ {t1, t7, t2, t3, t8, t′2, t′8}

A transition tθ,C of LNM associated with a transaction θ : C of N is mapped to the transitions
of θ. For instance, ta is mapped to {a}, which is the only transition in θa. Differently,
transitions that propagate negative information, i.e., t ∈ {t1, t7, t2, t3, t8, t′2, t′8}, are mapped
to ∅ because they do not encode any transition of N .

18 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

In what follows we write M ==⇒M ′ for a possibly empty firing sequence M
t1···tn−−−−→M ′

such that ‖ti‖ = ∅ for all i ∈ [1, n]. If ‖t‖ 6= ∅, we write M
t

==⇒ M ′ if M ==⇒ M0
t

==⇒
M1 ==⇒M ′ for some M0,M1. Moreover, we write M

t1···tn====⇒ if there exist M1, ...,Mn such

that M
t1==⇒M1

t2==⇒ · · · tn==⇒Mn.
The following result states that the computations of any dynamic p-net produced by J K

are in one-to-one correspondence with the recursively stopped configurations of Abbes and
Benveniste.

Lemma 4.3. Let N be an occurrence net.

(1) If JNK t1···tn====⇒, then v =
⋃

1≤i≤n‖ti‖ is recursively stopped in EN and (‖ti‖)1≤i≤n is a
valid decomposition of v.

(2) If v is recursively stopped in EN , then for any valid decomposition (vi)1≤i≤n there exists

JNK t1···tn====⇒ such that ‖ti‖ = vi.

Example 4.4. Consider the branching cell decomposition for v = {a, e, b, g} ∈ Ev discussed
in Ex. 4.1. Then, the net JNK in Ex. 3.9 can mimic that decomposition with the following
computation

(T, {1, 2, 7}) ta−−→ (T, {2, 3, 7,6}) te−−→ (T, {2, 3, 8,6,9})
tbg−−→ (T, {4, 10,5,6,9})

with v1 = ‖ta‖ = {a}, v2 = ‖te‖ = {e}, and v3 = ‖tbg‖ = {b, g}.

From Lemma 4.3 and Proposition 2.4 we obtain the next result.

Theorem 4.5 (Correspondence). Let N be an occurrence net.

(1) If LJNKM t1···tn====⇒, then v =
⋃

1≤i≤n‖ti‖ is recursively stopped in EN and (‖ti‖)1≤i≤n is a
valid decomposition of v.

(2) If v is recursively stopped in EN , then for any valid decomposition (vi)1≤i≤n there exists

LJNKM t1···tn====⇒ such that ‖ti‖ = vi.

By (1) above, any computation of LJNKM corresponds to a (recursively stopped) configu-
ration of EN , i.e., a process of N . By (2), every execution of N that can be decomposed
in terms of AB’s branching cells is preserved by LJNKM, because any recursively stopped
configuration of EN is mimicked by LJNKM.

5. Concurrency of the Uniformed Net

In this section we study the amount of concurrency still present in the uniformed net LJNKM.
Here, we extend the notion of a process to the case of 1-∞-safe p-nets and we show that all
the legal firing sequences of a process of the uniformed net LJNKM are executable.

The notion of deterministic occurrence net is extended to p-nets by slightly changing
the definitions of conflict and causal dependency: (i) two transitions are not in conflict when
all shared places are persistent, (ii) a persistent place can have more than one immediate
cause in its preset, which introduces OR-dependencies.

Definition 5.1 (Persistent process). An occurrence p-net O = (P ∪P, T, F) is an acyclic
p-net such that |p•| ≤ 1 and |•p| ≤ 1 for any p ∈ P (but not necessarily for those in P).

A persistent process for N is an occurrence p-net O together with a net morphism
π : O → N that preserves presets and postsets and the distinction between regular and

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 19

persistent places. Without loss of generality, when N is acyclic, we assume that O is a
subnet of N (with the same initial marking) and π is the identity.

In an ordinary occurrence net, the causes of an item x are all its predecessors. In
p-nets, the alternative sets of causes of an item x are given by a formula Φ(x) of the
propositional calculus without negation, where the basic propositions are the transitions
of the occurrence net. If we represent such a formula as a sum of products, it corresponds
to a set of collections, i.e. a set of sets of transitions. Different collections correspond to
alternative causal dependencies, while transitions within a collection are all the causes of
that alternative and true represents the empty collection. Such a formula Φ(x) represents
a monotone boolean function, which expresses, as a function of the occurrences of past
transitions, if x has enough causes. It is known that such formulas, based on positive literals
only, have a unique DNF (sum of products) form, given by the set of prime implicants. In
fact, every prime implicant is also essential [33]. We define Φ(x) by well-founded recursion:

Φ(x) =

 true if x ∈ P ∪P ∧ •x = ∅∨
t∈•x(t ∧ Φ(t)) if x ∈ P ∪P ∧ •x 6= ∅∧
s∈•x Φ(s) if x ∈ T

The boolean formulas above remind the notion of causal automata [15], where a set of
(labelled) events E is accompanied by an enabling function that assigns a formula in the
free Boolean algebra generated by E to each event in E. Here note that all formulas are
determined by the structure of the p-net and that they are expressed using only true, AND
and OR, i.e. they would define a {∧,∨}-automata according to the terminology in [15].

Ordinary deterministic processes satisfy complete concurrency: each process determines
a partial ordering of its transitions, such that the executable sequences of transitions are
exactly the linearizations of the partial order. More formally, after executing any firing
sequence σ of the process, a transition t is enabled if and only if all its predecessors in
the partial order (namely its causes) already appear in σ. In the present setting a similar
property holds.

Definition 5.2 (Legal firing sequence). A sequence of transitions t1; · · · ; tn of a persistent

process is legal if for all k ∈ [1, n] we have that
∧k−1
i=1 ti implies Φ(tk).

It is immediate to notice that if the set of persistent places is empty (P = ∅) then the
notion of persistent process is the ordinary one, Φ(x) is just the conjunction of the causes of
x and a sequence is legal iff it is a linearization of the process.

Theorem 5.3 (Complete Concurrency). Let σ = t1; · · · ; tn with n ≥ 0 be a, possibly empty,
firing sequence of a persistent process, and t a transition not in σ. The following conditions
are all equivalent: (i) t is enabled after σ; (ii) there is a collection of causes of t which
appears in σ; (iii)

∧n
i=1 ti implies Φ(t).

Corollary 5.4. Given a persistent process, a sequence is legal iff it is a firing sequence.

Example 5.5. Figs. 13a–13c show the maximal processes of the net in Fig. 9c. It is evident
that all executions are serialized.

Example 5.6. Fig. 14 shows a process for the net LJNKM of our running example (see N in
Fig. 3a and JNK in Fig. 11). The process accounts for the firing of the transitions d, f , b in
N . Despite they look as concurrent events in N , the persistent place ptb introduces some
causal dependencies. In fact, we have: Φ(td) = Φ(tf) = true, Φ(t3) = td, Φ(t8) = tf and

20 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

•
��

1 •
��
ta

�� ��6
•
��

2

��

3

•
xx

t′b
�� ��
5 4

(a) a � b

•

1 •
��
ta

~~ ""6
•

""

2

��

3

•
��

tc
��||

5 4

(b) a � c

•
��

•
{{

1

td
{{ ��

��
3 6 •

��

2

��

// //
pb

tb
��

5 4

(c) d � b

Figure 13. Processes for the net in Fig. 9c

•
��

ptd •
{{

1 •
##

7 •
��

ptf

td

�� ##

tf

{{ ��6

��

3

��

��

8 9

t3

��

**��

t8

��

����

ptg •
%%

2

��

ptb

 pt′8
tb

��

t′8

��
5 4 10

Figure 14. A process for LJNKM (running example)

Φ(tb) = (t3 ∧ td) ∨ (t8 ∧ tf), thus tb can be fired only after either td or tf (or both). The
other maximal processes are reported in Appendix E.

Still referring to the net LJNKM of our running example, a more interesting case to
consider is the process in Fig. 15a whose transition tbg stands for the transaction where
b and g are executed simultaneously. One may argue that having tbg as an atomic action
can reduce the overall concurrency of the system. However, tbg can be expanded with (a
fresh copy of) its underlying process as shown in Fig. 15b. We use tbg as a subscript for the
new nodes of the process to guarantee they are fresh. The preset of the transition tbg is left
unchanged. Its postset takes care of the propagation of negative information and of enabling
the initial places of the underlying process. The final places of the underlying process are
the (positive) places in the postset of the original transition tbg. This transformation has the
side effect to separate the choice of the transaction from its execution, but it increases the
amount of concurrency, as btbg and gtbg can now be executed in any order. While it might be
possible in some cases to avoid the additional choice event, the general construction would
look cumbersome.

The improvement of the amount of concurrency that can be observed is even more
evident if we consider the net N in Fig. 16a. There are two s-cells C1 and C2: the former
has two transactions θa = {a} and θbc = {b, c}, the latter is trivial as it has only one

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 21

•
""

1

•
��

•
��
•

||

7

ta
""

��

te
||

ss

6 9

""
8 •

�� ||
3 •

tt

2

tbg

**uu ||
5 10 4

(a)

•
%%

1

•
��

•
��
•

||

7

ta
""

��

te
||

rr

6 9

%%
8 •

�� ||
3 •

tt

2

tbg

��

yy **

��
8tbg

��
2tbg

gtbg
��

btbg
��

5 10 4

(b)

Figure 15. Expanding transactions I

•
��

��

1C1 •
��yy
2 •

��
3 C2

a

��

b
��

d
��

��
4 5

c
��

6 7

(a)

•
##

1 •
��
2 •
{{

•
��
3 •
{{

tbc
��{{

td
��

6 7 5

(b)

•
##

1 •
��
2 •
yy

•
��
3 •
{{

tbc
�� %%

��

td
��

��

1tbc
��
2tbc 5

btbc
��

��
4tbc

ctbc
��

6 7

(c)

Figure 16. Expanding transactions II

transaction θd = {d}. One process of LJNKM is in Fig. 16b, where tbc and td are executed
concurrently. However it does not take into account the fact that the execution of b and c
can be interleaved with that of d. If we expand tbc as discussed in the previous example, we
get the process in Fig. 16c, where d can be executed after b and before c.

Formally, given a process θ and a transition name t, let θt be the process where any
non final place/transition n is renamed to nt and any final place is left unchanged. We say
a positive transition tθ,C of LJNKM is non-atomic if the process θ involves more than one
transition. Given a net N and its uniformed net LJNKM we let LJNKMconc denote the persistent
net obtained from LJNKM by removing each non-atomic transition tθ,C and by adding, for
each such transition, the places and transitions in θtθ,C together with a transition t′θ,C such

22 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

•
1
3 ��

2
3

%%

1

•
2
3��

1
3

yy

2

a

��

b

��
3 4

Figure 17. A free-choice net

that •t′θ,C = •tθ,C but whose postset consists of ◦θtθ,C together with the negative places in
the postset of tθ,C.

6. Probabilistic Nets

We can now outline our methodology to assign probabilities to the concurrent runs of a Petri
net, also in the presence of confusion. Given a net N , we apply s-cell decomposition from
Section 3.1, and then we assign probability distributions to the transactions available in
each cell C (and recursively to the s-cell decomposition of NC). Let PC : {θ | θ : C} → [0, 1]
denote the probability distribution function of the s-cell C (such that

∑
θ:C PC(θ) = 1). Such

probability distributions are defined locally and transferred automatically to the transitions
in Tpos of the dynamic p-net JNK defined in Section 3, in such a way that P(tθ,C) = PC(θ).
Each negative transition in Tneg has probability 1 because no choice is associated with it.
Since the uniformed net LJNKM has the same transitions of JNK, the probability distribution
can be carried over LJNKM (thanks to Proposition 2.4).

AB’s probability distribution. Building on the bijective correspondence in Theorem 4.3, the
distribution PC can be chosen in such a way that it is consistent with the one attached to
the transitions of Abbes and Benveniste’s branching cells (if any).

Purely local distribution. Another simple way to define PC is by assigning probability
distributions to the arcs leaving the same place of the original net, as if each place were
able to decide autonomously which transition to fire. Then, given a transaction θ : C, we
can set QC(θ) be the product of the probability associated with the arcs of N entering
the transitions in θ. Of course, in general it can happen that

∑
θ:CQC(θ) < 1, as not all

combinations are feasible. However, it is always possible to normalise the quantities of

feasible assignments by setting PC(θ) = QC(θ)∑
θ′:CQC(θ′)

for any transaction θ : C.

Example 6.1. Take the free-choice net in Fig. 17 and assume that decisions are local to
each place. Thus, place 1 lends its token to a with probability p1 = 1

3 and to b with q1 = 2
3 .

Similarly, place 2 lends its token to a with probability p2 = 1
3 and to b with q2 = 2

3 . Then

one can set pa = p1 · p2 = 1
9 and pb = q1 · q2 = 4

9 . However their sum is 5
9 6= 1. This anomaly

is due to the existence of deadlocked choices with nonzero probabilities which disappear
in the process semantics of nets. To some extent, the probabilities assigned to a and b
should be conditional w.r.t. the fact that the local choices performed at places 1 and 2
are compatible, i.e., all non compatible choices are disregarded. This means that we need
to normalize the values of pa and pb over their sum. Of course, normalisation is possible

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 23

only if there is at least one admissible alternative. In this simple example we get Q(a) = 1
9 ,

Q(b) = 4
9 , P(a) = 1

9/
5
9 = 1

5 and P(b) = 4
9/

5
9 = 4

5 .

Example 6.2. Suppose that in our running example we assign uniform distributions to all
arcs leaving a place. From simple calculation we have PC1(θa) = PC1(θd) = 1

2 for the first

cell, PC2(θe) = PC2(θf) = 1
2 for the second cell, PC3(θc) = PC3(θbg) = 1

2 for the third cell.
The transactions of nested cells are uniquely defined and thus have all probability 1.

Given a firing sequence t1; · · · ; tn we can set P(t1; · · · ; tn) =
∏n
i=1 P(ti). Hence firing

sequences that differ in the order in which transitions are fired are assigned the same
probability. Thanks to Theorem 5.3, we can consider maximal persistent processes instead of
firing sequences and set P(O) =

∏
t∈O P(t). In fact any maximal firing sequence in O includes

all transitions of O and its probability is independent from the order of firing. It follows
from Theorem 4.3 that any maximal configuration has a corresponding maximal process
(and viceversa) and since Abbes and Benveniste proved that the sum of the probabilities
assigned to maximal configurations is 1, the same holds for maximal persistent processes.

Example 6.3. Suppose the distributions are assigned as in Example 6.2. Then, the persistent
process in Fig. 14 has probability: P(O) = P(td) · P(tf) · P(t3) · P(t8) · P(tb) · P(t′8) =
1
2 ·

1
2 · 1 · 1 · 1 · 1 = 1

4 . There are other four maximal processes shown in Appendix E together
with their probabilities. We note that the sum of all probabilities assigned to maximal
processes is indeed 1.

7. Conclusion and Future Work

AB’s branching cells are a sort of interpreter (or scheduler) for executing PESs in the
presence of confusion. Our main results develop along two orthogonal axis. Firstly, our
approach is an innovative construction with the following advantages:

(1) Compositionality: s-cells are defined statically and locally, while AB’s branching cells
are defined dynamically and globally (by executing the whole event structure).

(2) Compilation vs interpretation: AB’s construction gives an interpreter that rules out
some executions of an event structure. We instead compile a net into another one (with
persistency) whose execution is driven by ordinary firing rules.

(3) Complete concurrency: AB’s recursively stopped configurations may include traces that
cannot be executed by the interpreter. Differently, our notion of process captures all
and only those executable traces of a concurrent computation.

(4) Simplicity: s-cells definition in terms of a closure relation takes a couple of lines (see
Definition 3.1), while AB’s branching cell definition is more involved.

(5) Full matching: we define a behavioural correspondence that relates AB’s maximal
configurations with our maximal deterministic processes, preserving their probability
assignment.

Secondly, we provide the following fully original perspectives:

(1) Confusion removal: our target model is confusion-free.
(2) Locally executable model: probabilistic choices are confined to transitions with the same

pre-set, and hence can be resolved locally and concurrently. Besides, our target model
relies on ordinary firing rules (with persistent places).

(3) Processes: we define a novel notion of process for nets with persistency that conservatively
extends the ordinary notion of process and captures the right amount of concurrency.

24 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

(4) Goal satisfaction: our construction meets all requirements in the list of desiderata.

This paper has extended the conference version [8] by including more examples and
all detailed proofs of main results. The idea of expanding transactions into the underlying
processes is also original to this contribution.

Moreover, the construction presented here has opened the way to other interesting
research directions. First, it has led to the implementation of a tool, called RemConf [22]
after “removal of confusion”, that takes in input an acyclic net N in the standard format
.pnml and returns the net LJNKM. As persistent places cannot be modeled in .pnml, they
are implemented using self-loops instead of input arcs when they are part of the preset of
a transition. This makes it possible to simulate the execution of LJNKM using any .pnml

compatible tool. The tool is available at http://remconf.di.unipi.it.
Regarding OR causality, it can be accounted for by general event structures, where

events can be enabled by distinct minimal sets of events. Several classes of event structures
have been studied to disambiguate causality, in the sense that all alternative causes for an
event must be somehow in conflict. This is the case, e.g., of stable event structures [35] and
bundle event structures [20]. Five different classes of event structures that allow for causal
ambiguity have been proposed in [21]. In [5] we have extended the connection between
p-nets and event structures in order to deal with OR causes. Generalising the work on
ordinary nets, Petri nets with persistent places are related to a new subclass of general
event structures, called locally connected, by means of a chain of coreflections relying on
an unfolding construction, as for the original construction by Winskel. The fact that a
whole body of theory can be extended from Petri nets to p-nets witnesses that p-nets can
be chosen as a general computational model and not just a convenient variant of an existing
model. The causal AND/OR-dependencies share some similarities also with the work on
connectors and Petri nets with boundaries [10] that we would like to formalize.

We also want to investigate the connection between our s-cell structure and Bayesian
networks, so to make forward and backward reasoning techniques available in our setting.
Some results in this direction can be found in [9].

Our construction is potentially complex: given a s-cell C we recursively consider the
nested s-cells in NC 	 p, for any initial place p ∈ NC. In the worst case, the number of
nested s-cells can be exponential in the number of their initial places. However s-cells are
typically much smaller than the whole net and it can be the case that the size of all s-cells
is bound by some fixed k. In this case, the number of s-cells in our construction can still
become exponential on the constant k, but linear w.r.t. the number of places of the net.

A limitation of our approach is that it applies to finite occurrence nets only (or,
equivalently, to finite PESs). As a future work, we plan to deal with cycles and unfolding
semantics. This requires some efforts and we conjecture it is feasible only if the net is safe
and its behaviour has some regularity: the same s-cell can be executed several times in a
computation but every instance is restarted without tokens left from previous rounds.

Acknowledgments. The idea of structural cells emerged, with a different goal, in collaboration
with Lorenzo Galeotti after his MSc thesis. The tool RemConf has been developed as part
of the MSc thesis of Gianluca Maraschio. We thank Glynn Winskel, Holger Hermanns,
Joost-Pieter Katoen for giving us insightful references. The research has been partially
supported by EU H2020 RISE programme under the Marie Marie Skodowska-Curie grant
agreement 778233, by the UBACyT projects 20020170100544BA and 20020170100086BA, by
the PIP project 11220130100148CO and by Università di Pisa projects PRA 2016 64 Through

http://remconf.di.unipi.it

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 25

the fog and PRA 2018 66 DECLWARE: Metodologie dichiarative per la progettazione e il
deployment di applicazioni. The third author carried on part of the work while attending a
Program on Logical Structures in Computation at Simons Institute, Berkeley, 2016.

References

[1] Samy Abbes and Albert Benveniste. Branching cells as local states for event structures and nets:
Probabilistic applications. In FOSSACS’05, volume 3441 of Lect. Notes in Comp. Sci., pages 95–109.
Springer, 2005.

[2] Samy Abbes and Albert Benveniste. True-concurrency probabilistic models: Branching cells and
distributed probabilities for event structures. Inf. Comput., 204(2):231–274, 2006.

[3] Samy Abbes and Albert Benveniste. True-concurrency probabilistic models: Markov nets and a law of
large numbers. Theor. Comput. Sci., 390(2-3):129–170, 2008.

[4] Andrea Asperti and Nadia Busi. Mobile Petri nets. Mathematical Structures in Computer Science,
19(6):1265–1278, 2009.

[5] Paolo Baldan, Roberto Bruni, Andrea Corradini, Fabio Gadducci, Hernán C. Melgratti, and Ugo
Montanari. Event structures for Petri nets with persistence. Logical Methods in Computer Science, 14(3),
2018.

[6] Anne Bouillard, Stefan Haar, and Sidney Rosario. Critical paths in the partial order unfolding of a
stochastic Petri net. In International Conference on Formal Modeling and Analysis of Timed Systems,
pages 43–57. Springer, 2009.

[7] Ed Brinksma, Joost-Pieter Katoen, Rom Langerak, and Diego Latella. A stochastic causality-based
process algebra. Comput. J., 38(7):552–565, 1995.

[8] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Concurrency and probability: Removing
confusion, compositionally. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
195–204. ACM, 2018.

[9] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Unifying inference for Bayesian and Petri
nets. CoRR, abs/1807.06305, 2018.

[10] Roberto Bruni, Hernán C. Melgratti, Ugo Montanari, and Pawel Sobocinski. Connector algebras for
C/E and P/T nets’ interactions. Logical Methods in Computer Science, 9(3), 2013.

[11] Federico Crazzolara and Glynn Winskel. Petri nets with persistence. Electr. Notes Theor. Comput. Sci.,
121:143–155, 2005.

[12] Joanne Bechta Dugan, Kishor S. Trivedi, Robert Geist, and Victor F. Nicola. Extended stochastic Petri
nets: Applications and analysis. In Performance’84, pages 507–519. North-Holland, 1984.

[13] Christian Eisentraut, Holger Hermanns, Joost-Pieter Katoen, and Lijun Zhang. A semantics for every
GSPN. In Petri Nets 2013, volume 7927 of Lect. Notes in Comp. Sci., pages 90–109. Springer, 2013.

[14] Ursula Goltz and Wolfgang Reisig. The non-sequential behavior of Petri nets. Information and Control,
57(2/3):125–147, 1983.

[15] Jeremy Gunawardena. Causal automata. Theor. Comput. Sci., 101(2):265–288, 1992.
[16] Stefan Haar. Probabilistic cluster unfoldings. Fundamenta Informaticae, 53(3-4):281–314, 2002.
[17] Joost-Pieter Katoen, Rom Langerak, and Diego Latella. Modeling systems by probabilistic process

algebra: An event structures approach. In FORTE’93, IFIP Transactions, pages 253–268. North-Holland,
1994.

[18] Joost-Pieter Katoen and Doron A. Peled. Taming confusion for modeling and implementing probabilistic
concurrent systems. In ESOP’13, volume 7792 of Lect. Notes in Comp. Sci., pages 411–430. Springer,
2013.

[19] Manfred Kudlek. Probability in Petri nets. Fundamenta Informaticae, 67(1-3):121–130, 2005.
[20] Rom Langerak. Bundle event structures: a non-interleaving semantics for LOTOS. In Michel Diaz and

Roland Groz, editors, FORTE ’92, volume C-10 of IFIP Transactions, pages 331–346. North-Holland,
1993.

[21] Rom Langerak, Ed Brinksma, and Joost-Pieter Katoen. Causal ambiguity and partial orders in event
structures. In Antoni W. Mazurkiewicz and Józef Winkowski, editors, CONCUR’97, volume 1243 of
Lecture Notes in Computer Science, pages 317–331. Springer, 1997.

26 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

[22] Gianluca Maraschio. A tool for confusion removal in probabilistic concurrent models, 2018. MSc thesis,
Università degli Studi di Pisa.

[23] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst., 2(2):93–122,
1984.

[24] Michael K. Molloy. Discrete time stochastic Petri nets. IEEE Trans. Softw. Eng., 11(4):417–423, April
1985.

[25] Ugo Montanari and Francesca Rossi. Contextual nets. Acta Inf., 32(6):545–596, 1995.
[26] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and domains, part

I. Theor. Comput. Sci., 13:85–108, 1981.
[27] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik, Bonn,

1962.
[28] Wolfgang Reisig. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies.

Springer, 2013.
[29] Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Advances in Petri Nets 1996,

Part I, volume 1491 of Lect. Notes in Comp. Sci., pages 12–121. Springer, 1998.
[30] Einar Smith. On the border of causality: Contact and confusion. Theor. Comput. Sci., 153(1&2):245–270,

1996.
[31] Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke-Uffmann. On characterising distributabil-

ity. Logical Methods in Computer Science, 9(3), 2013.
[32] Daniele Varacca, Hagen Völzer, and Glynn Winskel. Probabilistic event structures and domains. Theor.

Comput. Sci., 358(2-3):173–199, 2006.
[33] Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner series in computer science. John

Wiley & Sons, Inc., New York, NY, USA, 1987.
[34] Glynn Winskel. Event structures. In Advances in Petri Nets 1986, Part II, volume 255 of Lect. Notes in

Comp. Sci., pages 325–392. Springer, 1987.
[35] Glynn Winskel. An introduction to event structures. In J. W. de Bakker, Willem P. de Roever, and

Grzegorz Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency, School/Workshop, volume 354 of Lecture Notes in Computer Science, pages 364–397.
Springer, 1989.

Appendix A. Detailed proofs of results in Section 2.4

Proposition 2.4. Let N = (T, b) ∈ dn(S). Then,

(1) N
t−−→ N ′ implies LNM t−−→ LN ′M;

(2) Moreover, LNM t−−→ N ′ implies there exists N ′′ such that N
t−−→ N ′′ and N ′ = LN ′′M.

Proof. We start by showing that N
t−−→ N ′ implies LNM t−−→ LN ′M. If N

t−−→ N ′ then
t = S → (T ′, b′) ∈ T , S ⊆ b and N ′ = (T ∪ T ′, (b \ S)∪ b′). By definition of L M, it holds that
LNM = (S ∪PT(N),T(N), F, b ∪ bT) where PT(N) = {pt′ | t′ ∈ T(N)}. Note that

T(N) = T ∪
⋃
t′∈T T(t′•) by def. of T()

= T ∪
⋃
t′∈T T(t′•) ∪ T(t•) t ∈ T

= T ∪
⋃
t′∈T T(t′•) ∪ T ′ ∪

⋃
t′∈T ′ T(t′•) by def. of T()

= (T ∪ T ′) ∪
⋃
t′∈T∪T ′ T(t′•) by assoc. and

comm. of ∪
= T(N ′) by def. of T()

Hence, LN ′M = (S∪PT(N),T(N), F, (b\S)∪b′∪bT∪T ′). By the definition of L M, t ∈ T(N)
and F is such that t : S ∪ {pt} → b′ ∪ bT ′ . Hence, t is enabled in b ∪ bT because S ⊆ b and

pt ∈ bT . Consequently, b∪ bT
t−−→ ((b∪ bT) \ (S ∪ {pt}))∪ b′ ∪ bT ′ = (b \ S)∪ bT ∪ b′ ∪ bT ′ =

(b \ S) ∪ b′ ∪ bT∪T ′ .

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 27

The proof for LNM t−−→ N ′ implies there exists N ′′ such that N
t−−→ N ′′ and N ′ = LN ′′M

follows by analogous arguments.

Appendix B. Proofs of results in Section 3

This section presents the proofs of the results in Section 3. Note that we need some auxiliary
lemmas that are not present in the main text of the paper. They are marked by the keyword
“Aux” to avoid ambiguities. For reviewer’s convenience, the high-level proof sketches are
separated from the proofs in full detail, that are included in a separate section.

We start by showing that the encoding of a net into a dynamic net does not add
computations. We show that each reachable marking b of the dynamic net can be associated
with a reachable marking m of the original net, when disregarding negative information.
We remark that in general the relation between such b and m is that b ∩ P ⊆ m and not
necessarily b ∩ P = m (see, e.g., Lemma B.1). This is because the transitions tθ,C generated
by the encoding (Tpos) always consume the tokens in all minimal places of the branching
cell C. This choice is immaterial for the behaviour of the encoded net, as made explicit by
the main results in the paper.

Lemma B.1 (Aux.). Let N = (P, T, F,m). If JNK→∗ (T, b) then m→∗ m′ and b∩P ⊆ m′.

Proof. The proof follows by induction on the length of the reduction JNK→n (T, b).

• Base case (n=0). It follows immediately because b = m.

• Inductive case (n = k+1). Then, JNK→k (T ′, b′)
t−−→ (T, b). By inductive hypothesis,

m→∗ m′′ and b′ ∩ P ⊆ m′′. We now proceed by case analysis on the shape of t.
– t = ◦C → (∅, θ◦ ∪ C◦ \ θ◦). Then, ◦C ⊆ b′, T = T ′ and b = (b′ \ ◦C) ∪ θ◦ ∪ C◦ \ θ◦.

Since ◦C ⊆ P , we have ◦C ⊆ m′′. Moreover, θ : C implies ◦θ ⊆ ◦C ⊆ m′′. Since θ is a
deterministic process, m′′ →∗ (m′′ \ ◦θ) ∪ θ◦. Then, take m′ = (m′′ \ ◦θ) ∪ θ◦.
Note that b ∩ P = ((b′ ∩ P) \ ◦C) ∪ θ◦. We use (b′ ∩ P) ⊆ m′′ and ◦θ ⊆ ◦C to conclude
that b ∩ P ⊆ m′.

– t = p→ (T ′,C◦ \ (NC 	 p)◦). It follows immediately because b′ ∩ P = b ∩ P .

Corollary B.2 (Aux.). If N is 1-safe then JNK is 1-∞-safe.

Lemma 3.11. Let JNK ∈ dn(P ∪ P). If JNK →∗ (T, b) then for all t, t′ ∈ T such that
•t 6= •t′ and •t ∩ •t′ ∩ P 6= ∅ it holds that there is p ∈ P ∩ (•t ∪ •t′) such that p ∈ b.

Proof. The proof follows by induction on the length of the firing sequence JNK t1···tn−−−→ (T, b).

• Base Case n = 0. It holds trivially because any pair of different transitions in T have
either the same preset (i.e., if they are taken from Tpos and originate from the same s-cell)
or disjoint presets (i.e., if they are taken both from Tpos but originate from different s-cells,
or both from Tneg, or one from Tneg and the other from Tpos).

• Inductive step n = k + 1. Hence, JNK t1···tk−−−→ (T ′, b′)
tk+1−−−→ (T, b). By inductive

hypothesis, for all t, t′ ∈ T ′ such that and •t ∩ •t′ ∩ P 6= ∅, it holds that there is
p ∈ P ∩ (•t ∪ •t′) such that p ∈ b′. Then, we proceed by case analysis on tk+1.

– tk+1 = ◦C→ (∅, θ◦ ∪ C◦ \ θ◦). It holds trivially because T = T ′ and b′ ∩ P ⊆ b.

28 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

– tk+1 = p → (T ′′,C◦ \ (NC 	 p)◦) for some C, p ∈ ◦C, and (T ′′, ∅) = JNC 	 pK. Then
T = T ′ ∪ T ′′. By the definition of J K, we have that for all t, t′ ∈ T ′′ either (i) •t = •t′ or
(ii) •t∩•t′ = ∅ (reasoning analogously to the Base Case). It remains to consider the cases
in which t and t′ are taken one from T ′ and the other from T ′′. W.l.o.g., we consider
t ∈ T ′′ and t′ ∈ T ′ and proceed as follows. By the definition of J K, t ∈ T ′′ implies
either (i) •t ⊆ P or (ii) •t = ◦C1 for C1 ∈ bc(NC 	 p). Case (i), follows immediately
because there does not exist t′ s.t. •t ∩ •t′ ∩ P 6= ∅. For (ii), we note that •t′ = ◦C2

with C1 6= C2, ◦C1 ∩ ◦C2 6= ∅ and •t∪ •t′ ⊆ P . We proceed by contradiction and assume
(•t ∪ •t′)∩ b = ∅. There must exist an s-cell C3 such that C1 ∪C2 ⊆ C3 (because C1 and
C2 are closed under immediate conflict and their union introduces immediate conflict
between the transitions consuming from the shared places in ◦C1 ∩ ◦C2). If C2 = C3,

then C1 ⊂ C2. Hence p ∈ ◦C2 and p ∈ •t′, which contradicts (•t ∪ •t′) ∩ b = ∅ because
tk+1 enabled at b implies p ∈ b. Otherwise, C2 ⊂ C3. Consequently, there exists (at
least) a transition t′′ ∈ T ′ such that •t′′ = ◦C3 and •t′ 6= •t′′. Since t′ ∈ T ′ and t′′ ∈ T ′,
we can use inductive hypothesis to conclude that (•t′ ∪ •t′′) ∩ b 6= ∅. The proof is

completed by noting that this is in contradiction with the assumption (•t ∪ •t′) ∩ b = ∅
because •t′′ ⊇ •t ∪ •t′.

In what follows we write p ≺ q if p � q and p 6= q. The following auxiliary result provides
some invariants about the configurations that can be reached by an encoded dynamic net.

Lemma B.3 (Aux.). If JNK→∗ (T, b) then

(1) p ∈ b implies p 6∈ b;
(2) if p ∈ b and p � q then q 6∈ b;
(3) if p � q, p ∈ b and q ∈ b then there exists r ≺ q and r ∈ b; and

(4) if (T, b)
t−−→ and •t = ◦C for some C then (C◦ ∪ C◦) ∩ b = ∅.

Proof. The proof follows by induction on the length of the firing sequence JNK t1···tn−−−→ (T, b).

• Base Case n = 0. Hence (T, b) = JNK.
(1) It follows from b ⊆ P .
(2) Since b ⊆ P there is no p ∈ b.
(3) Since b ⊆ P there is no q ∈ b.
(4) It follows from the fact that N is an occurrence net, b ⊆ ◦N , and hence there does

not exist any C ∈ bc(N) such that (C◦ ∪ C◦) ∩ b 6= ∅.
• Inductive step n = k + 1. Hence, JNK t1···tk−−−→ (T ′, b′)

tk+1−−−→ (T, b). By inductive
hypothesis, (1) p ∈ b′ implies p 6∈ b′; (2) if p ∈ b′ and p � q then q 6∈ b′; (3) if p � q, p ∈ b′

and q ∈ b′ then there exists r ≺ q and r ∈ b′; and (4) if (T ′, b′)
t−−→ and •t = ◦C for some

C then (C◦ ∪ C◦) ∩ b′ = ∅. We now proceed by case analysis on tk+1.

– tk+1 = ◦Ck+1 → (∅, θ◦∪C◦k+1 \ θ◦) for some s-cell Ck+1 and transaction θ : Ck+1. Hence,

b = (b′ \ ◦Ck+1) ∪ (θ◦ ∪ C◦k+1 \ θ◦).
(1) We proceed by contradiction. Assume that there exists p such that p ∈ b and

p ∈ b. Since p ∈ b we have that either p ∈ b′ \ ◦Ck+1 or p ∈ θ◦. First, assume
p ∈ b′ \ ◦Ck+1. By inductive hypothesis (1), p 6∈ b′ and, hence, p 6∈ b′ \ ◦Ck+1.

Therefore, it should be the case that p ∈ (θ◦ ∪ C◦k+1 \ θ◦). Hence, p ∈ C◦k+1 and

p ∈ C◦k+1. Since tk+1 is enabled at (T ′, b′), we can use inductive hypothesis (4) on

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 29

tk+1 to conclude (C◦k+1 ∪C◦k+1)∩ b′ = ∅. Consequently, p ∈ C◦k+1 implies p 6∈ b′. But

this is in contradiction with the assumption that p ∈ b′ \ ◦Ck+1. Assume instead

p ∈ θ◦. Then p 6∈ C◦k+1 \ θ◦. Hence, it should be the case that p ∈ b′ \ ◦Ck+1. But

this is also in contradiction with the hypothesis (4) (C◦k+1 ∪ C◦k+1) ∩ b
′ = ∅.

(2) We proceed by contradiction. Assume there exist p and q such that p ∈ b, p � q
and q ∈ b.
∗ Firstly, consider p ∈ b′ \ ◦Ck+1, which implies p ∈ b′. By inductive hypothesis

(2), for all q s.t. p � q it holds that q 6∈ b′.Hence, it should be the case that

q ∈ (θ◦ ∪ C◦k+1 \ θ◦). Hence either (i) p = q, (ii) p ∈ ◦Ck+1 or (iii) p ≺ p′ and

p′ ≺ q for some p′ ∈ ◦Ck+1. For (i), note that q = p ∈ (θ◦ ∪ C◦k+1 \ θ◦). Hence,

q ∈ C◦k+1, which is in contradiction with the assumption p ∈ b′ and the inductive
hypothesis (4). For (ii), note that it implies p ∈ b′, which is in contradiction with
the assumption p ∈ b′ and inductive hypothesis (1). For (iii), note that p ∈ b′
and p ≺ p′ imply p′ 6∈ b′ by inductive hypothesis (2), which is in contradiction
with the fact that p′ ∈ ◦Ck+1 and tk+1 is enabled.

∗ Assume instead p ∈ θ◦ ∪ C◦k+1 \ θ◦. Hence, p ∈ C◦k+1 \ θ◦ and therefore p ∈ C◦k+1.

Suppose there is q ∈ b′ and p � q. Note that p′ � p for all p′ ∈ ◦Ck+1 by definition
of branching cells. By transitivity of �, p′ � q for all p′ ∈ ◦Ck+1. Since tk+1 is
enabled at b′, ◦Ck+1 ⊆ b′. By using Lemma B.1, we can conclude that q 6∈ b′
for all q s.t. p � q, which contradicts the hypothesis q ∈ b′ and p � q. Assume
instead q ∈ θ◦ ∪ C◦k+1 \ θ◦. Hence, q ∈ θ◦. Hence, p 6= q. Moreover, p ∈ C◦k+1 and
q ∈ C◦k+1 contradict the assumption p � q.

(3) We proceed by case analysis. If p ∈ b′ and q ∈ b′ then the proof follows by inductive

hypothesis. If p ∈ b′ and q 6∈ b′, then q ∈ θ◦ ∪ C◦k+1 \ θ◦. Therefore, p � q implies

p ∈ ◦C, which contradicts the assumption p ∈ b. If p 6∈ b′ and q ∈ b′, then p ∈ θ◦,
which contradicts p � q.

(4) Let t ∈ T such that •t = ◦C ⊆ b for some C. Since t is enabled at b and JNK is
1-∞-safe by Corollary B.2, then Ck+1 ∩ C = ∅. If t is enabled at (b′ \ ◦Ck+1) then
t is enabled at b′. By inductive hypothesis (4), we conclude that (C◦ ∪ C◦) ∩ (b′ \
◦Ck+1) = ∅. If t is not enabled at (T ′, b′), then it holds that for x ∈ ◦C exists
y ∈ (C◦k+1 ∪C◦k+1) such that y � x. By inductive hypothesis (C◦k+1 ∪C◦k+1)∩ b′ = ∅,
hence (C◦ ∪ C◦) ∩ b′ = ∅. Therefore, (C◦ ∪ C◦) ∩ b = ∅.

– tk+1 = r→ (T ′′,C◦k+1 \ (NCk+1
	 r)◦) for some s-cell Ck+1 and place r ∈ ◦Ck+1. Then,

T = T ′ ∪ T ′′ with JNCk+1
	 rK = (T ′′,) and b = b′ ∪ C◦k+1 \ (NCk+1

	 r)◦.
(1) We proceed by contradiction. Assume that there exists p such that p ∈ b and p ∈ b.

Note that p ∈ b implies p ∈ b′. By inductive hypothesis (1), p 6∈ b′. Therefore,

it should be the case that p ∈ C◦k+1 \ (NCk+1
	 r)◦. Consequently p ∈ C◦k+1 and

p 6∈ (NCk+1
	 r)◦. Hence, r � p. Since t is enabled at b′, r ∈ b′. By inductive

hypothesis (2), p 6∈ b′ which contradicts the hypothesis p 6∈ b.
(2) We proceed by contradiction. Assume there exist p and q such that p ∈ b, p � q

and q ∈ b. Note that q ∈ b implies q ∈ b′. Assume p ∈ b′. By inductive hypothesis,
for all q s.t. p � q then q 6∈ b′ and, hence it is in contradiction with assumption
q ∈ b. Assume instead p ∈ C◦k+1 \ (NCk+1

	 r)◦. As before, we conclude that r � p.
By transitivity of �, we have r � q. By inductive hypothesis (2), q 6∈ b′, which is in
contradiction with assumption q ∈ b.

30 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

(3) For q ∈ b′, it follows immediately by inductive hypothesis. For q ∈ C◦k+1 \ (NCk+1
	 r)◦,

it follows straightforwardly because r � q and r ∈ b.
(4) Assume •t = ◦C ⊆ b for some C. Hence, •t = ◦C ⊆ b′. There are two cases:
∗ Suppose t ∈ T ′. By inductive hypothesis (4), (C◦ ∪ C◦) ∩ b′ = ∅. We show that

the following holds

(C◦ ∪ C◦) ∩ C◦k+1 \ (NCk+1
	 r)◦ = ∅

It is enough to show that

C◦ ∩ C◦k+1 \ (NCk+1
	 r)◦ = ∅

We proceed by contradiction and assume there exists q such that q ∈ C◦ and
q ∈ (C◦k+1 \ (NCk+1

	 r)◦). Because q ∈ (C◦k+1 \ (NCk+1
	 r)◦), r � q. Since q ∈ C◦,

r ∈ ◦C (because C is closed under causality). Hence r ∈ b′ because t is enabled
at b′. By the contrapositive of inductive hypothesis (1), r 6∈ b′, but this is in
contradiction with the hypothesis that tk+1 is enabled at b′.
∗ Suppose t ∈ T ′′. Then, •t ∩ ◦(NCk+1

	 r) = ∅. Hence, for all q ∈ C◦ there exists
s ∈ ◦C s.t. s � q. Since t is enabled at b, ◦C ⊆ b holds. By Lemma B.1, C◦∩b = ∅.
We show by contradiction that C◦ ∩ b = ∅ does not hold either. Assume that
there exists q ∈ C◦ and q ∈ b. Since there exists s ∈ ◦C ⊆ b and s � q, we can
use inductive hypothesis (3) to conclude that there exist o � q s.t. o ∈ b. By the
inductive hypothesis (2) q 6∈ b, and this is in contradiction with the assumption
of t enabled at b.

Lemma 3.10. If JNK→∗ (T, b) and p ∈ b then (T, b)→∗ (T ′, b′) implies that p 6∈ b′.

Proof. If p ∈ b then p ∈ b′ because p is persistent. Moreover, JNK →∗ (T ′, b′). By the
contrapositive of Lemma B.3(1), p 6∈ b′.

Theorem 3.12. Let JNK ∈ dn(P ∪ P). If JNK →∗ (T, b)
t−−→ and (T, b)

t′−−→ then either
•t = •t′ or •t ∩ •t′ = ∅.

Proof. By contradiction. Assume t, t′ such that (T, b)
t−−→, (T, b)

t′−−→, •t 6= •t′, and •t∩•t′ 6= ∅.
By construction of the encoding, it must be the case that •t ⊆ P and •t′ ⊆ P . Hence,
•t∩•t′∩P 6= ∅. By Lemma 3.11 there exists p ∈ P ∩(•t∪•t′) such that p ∈ b. By Lemma 3.10,

p 6∈ b, which is in contradiction with the assumptions (T, b)
t−−→ and (T, b)

t′−−→.

B.1. Detailed proofs of results in Section 3.

Lemma B.1. Let N = (P, T, F,m). If JNK→∗ (T, b) then m→∗ m′ and b ∩ P ⊆ m′.

Proof. The proof follows by induction on the length of the reduction JNK→n (T, b).

• Base case (n=0). It follows immediately because b = m.

• Inductive case (n = k+1). Then, JNK→k (T ′, b′)
t−−→ (T, b). By inductive hypothesis,

m→∗ m′′ and b′ ∩ P ⊆ m′′. We now proceed by case analysis on the shape of t.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 31

– t = ◦C → (∅, θ◦ ∪ C◦ \ θ◦). Then, ◦C ⊆ b′, T = T ′ and b = (b′ \ ◦C) ∪ θ◦ ∪ C◦ \ θ◦.
Since ◦C ⊆ P , we have ◦C ⊆ m′′. Moreover, θ : C implies ◦θ ⊆ ◦C ⊆ m′′. Since θ is a
deterministic process, m′′ →∗ (m′′ \ ◦θ) ∪ θ◦. Then, take m′ = (m′′ \ ◦θ) ∪ θ◦.
Note that b ∩ P = ((b′ ∩ P) \ ◦C) ∪ θ◦. We use (b′ ∩ P) ⊆ m′′ and ◦θ ⊆ ◦C to conclude
that b ∩ P ⊆ m′.

– t = p→ (T ′,C◦ \ (NC 	 p)◦). It follows immediately because b′ ∩ P = b ∩ P .

Lemma 3.11. Let JNK ∈ dn(P ∪ P). If JNK →∗ (T, b) then for all t, t′ ∈ T such that
•t 6= •t′ and •t ∩ •t′ ∩ P 6= ∅ it holds that there is p ∈ P ∩ (•t ∪ •t′) such that p ∈ b.

Proof. The proof follows by induction on the length of the firing sequence JNK t1···tn−−−→ (T, b).

• Base Case n = 0. It holds trivially because any pair of different transitions in T have
either the same preset (i.e., if they are taken from Tpos and originate from the same s-cell)
or disjoint presets (i.e., if they are taken both from Tpos but originate from different s-cells,
or both from Tneg, or one from Tneg and the other from Tpos).

• Inductive step n = k + 1. Hence, JNK t1···tk−−−→ (T ′, b′)
tk+1−−−→ (T, b). By inductive

hypothesis, for all t, t′ ∈ T ′ such that and •t ∩ •t′ ∩ P 6= ∅, it holds that there is
p ∈ P ∩ (•t ∪ •t′) such that p ∈ b′. Then, we proceed by case analysis on tk+1.

– tk+1 = ◦C→ (∅, θ◦ ∪ C◦ \ θ◦). It holds trivially because T = T ′ and b′ ∩ P ⊆ b.
– tk+1 = p → (T ′′,C◦ \ (NC 	 p)◦) for some C, p ∈ ◦C, and (T ′′, ∅) = JNC 	 pK. Then
T = T ′ ∪ T ′′. By the definition of J K, we have that for all t, t′ ∈ T ′′ either (i) •t = •t′

or (ii) •t ∩ •t′ = ∅ (reasoning analogously to the Base Case). It remains to consider
the cases in which t and t′ are taken one from T ′ and the other from T ′′. W.l.o.g.,
we consider t ∈ T ′′ and t′ ∈ T ′ and proceed as follows. Note that, by construction of
JNK, •t ⊆ P implies |•t| = 1 for any t. Hence, the only possibility is •t = ◦C1 with
C1 ∈ bc(NC	 p) and •t′ = ◦C2 with C1 6= C2 and ◦C1 ∩ ◦C2 6= ∅. Note that •t∪ •t′ ⊆ P .

We proceed by contradiction and assume (•t ∪ •t′) ∩ b = ∅. There must exist a s-cell C3

such that C1 ∪ C2 ⊆ C3 (because C1 and C2 are closed under immediate conflict and
their union introduces immediate conflict between the transitions consuming from the
shared places in ◦C1 ∩ ◦C2). If C2 = C3, then C1 ⊂ C2 and hence p ∈ ◦C2 and p ∈ •t′,
which contradicts (•t ∪ •t′) ∩ b = ∅ because tk+1 enabled at b implies p ∈ b. Otherwise,
C2 ⊂ C3. Consequently, there exists (at least) a transition t′′ ∈ T ′ such that •t′′ = ◦C3

and •t′ 6= •t′′′. Since t′ ∈ T ′ and t′′ ∈ T ′, we can use inductive hypothesis to conclude
that (•t′ ∪ •t′′) ∩ b 6= ∅. The proof is completed by noting that this is in contradiction

with the assumption (•t ∪ •t′) ∩ b 6= ∅ because •t′′ = •t ∪ •t′.

Lemma B.3. If JNK→∗ (T, b) then

(1) p ∈ b implies p 6∈ b;
(2) if p ∈ b and p � q then q 6∈ b;
(3) if p � q, p ∈ b and q ∈ b then there exists r ≺ q and r ∈ b; and

(4) if (T, b)
t−−→ and •t = ◦C for some C then (C◦ ∪ C◦) ∩ b = ∅.

Proof. The proof follows by induction on the length of the firing sequence JNK t1···tn−−−→ (T, b).

• Base Case n = 0. Hence (T, b) = JNK.
(1) It follows from b ⊆ P .

32 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

(2) Since b ⊆ P there is no p ∈ b.
(3) Since b ⊆ P there is no q ∈ b.
(4) It follows from the fact that N is an occurrence net, b ⊆ ◦N , and hence there does

not exist any C ∈ bc(N) such that C◦ ∩ b 6= ∅.
• Inductive step n = k + 1. Hence, JNK t1···tk−−−→ (T ′, b′)

tk+1−−−→ (T, b). By inductive
hypothesis, (1) p ∈ b′ implies p 6∈ b′; (2) if p ∈ b′ and p � q then q 6∈ b′; (3) if p � q, p ∈ b′

and q ∈ b′ then there exists r ≺ q and r ∈ b′; and (4) if (T ′, b′)
t−−→ and •t = ◦C for some

C then (C◦ ∪ C◦) ∩ b′ = ∅. We now proceed by case analysis on tk+1.

– tk+1 = ◦Ck+1 → (∅, θ◦∪C◦k+1 \ θ◦) for some s-cell Ck+1 and transaction θ : Ck+1. Hence,

b = (b′ \ ◦Ck+1) ∪ (θ◦ ∪ C◦k+1 \ θ◦).
(1) We proceed by contradiction. Assume that there exists p such that p ∈ b and

p ∈ b. Since p ∈ b we have that either p ∈ b′ \ ◦Ck+1 or p ∈ θ◦. First, assume
p ∈ b′ \ ◦Ck+1. By inductive hypothesis (1), p 6∈ b′ and, hence, p 6∈ b′ \ ◦Ck+1.

Therefore, it should be the case that p ∈ (θ◦ ∪ C◦k+1 \ θ◦). Hence, p ∈ C◦k+1 and

p ∈ C◦k+1. Since tk+1 is enabled at (T ′, b′), we can use inductive hypothesis (4) on

tk+1 to conclude (C◦k+1 ∪C◦k+1)∩ b′ = ∅. Consequently, p ∈ C◦k+1 implies p 6∈ b′. But

this is in contradiction with the assumption that p ∈ b′ \ ◦Ck+1. Assume instead

p ∈ θ◦. Then p 6∈ C◦k+1 \ θ◦. Hence, it should be the case that p ∈ b′ \ ◦Ck+1. But

this is also in contradiction with the the hypothesis (4) (C◦k+1 ∪ C◦k+1) ∩ b
′ = ∅.

(2) We proceed by contradiction. Assume there exist p and q such that p ∈ b, p � q
and q ∈ b. Assume p ∈ b′. By inductive hypothesis (2), for all q s.t. p � q it

holds that q 6∈ b′ \ ◦Ck+1. Moreover, if q ∈ (θ◦ ∪ C◦k+1 \ θ◦) implies p′ � q for all

p′ ∈ ◦Ck+1 by definition of branching cells. Since t is enabled at b′, ◦Ck+1 ⊆ b′

and hence p ∈ b′, but this is in contradiction with inductive hypothesis (1), i.e.,

p ∈ b′ implies p 6∈ b′. Assume instead p ∈ θ◦ ∪ C◦k+1 \ θ◦. Hence, p ∈ C◦k+1 \ θ◦ and

p ∈ C◦k+1. Suppose there is q ∈ b′ and p � q. Note that p′ � p for all p′ ∈ ◦Ck+1 by
definition of branching cells. By transitivity of �, p′ � q for all p′ ∈ ◦Ck+1. Since t
is enabled at b′, ◦Ck+1 ⊆ b′. By using Lemma B.1, we can conclude that q 6∈ b′ for
all q s.t. p � q, which contradicts the hypothesis q ∈ b′ and p � q. Assume instead
q ∈ θ◦ ∪ C◦k+1 \ θ◦. Hence, q ∈ θ◦. Hence, p 6= q. Moreover, p ∈ C◦k+1 and q ∈ C◦k+1
contradict the hypothesis p � q.

(3) If q ∈ b′ the proof follows by inductive hypothesis and by noting that p ∈ θ◦ and

p � q imply there exists r ∈ ◦C and r � q (by transitivity of �). If q ∈ θ◦∪C◦k+1 \ θ◦,
follows by contradiction because p � q and p ∈ b′ implies p ∈ ◦C by Lemma B.1.
Therefore, there does not exist p such that p � q and p ∈ b.

(4) Let t ∈ T such that •t = ◦C ⊆ b for some C. Since t is enabled at b and JNK
is 1-∞-safe by Corollary B.2, then Ck+1 ∩ C = ∅. If t is enabled at (b′ \ ◦Ck+1)
then t is enabled at b′. By inductive hypothesis (2), we conclude that (C◦ ∪ C◦) ∩
(b′ \ ◦Ck+1) = ∅. If t is not enabled at (T ′, b′), then it holds that for x ∈ C exists
y ∈ (C◦k+1 ∪C◦k+1) such that y � x. By inductive hypothesis (C◦k+1 ∪C◦k+1)∩ b′ = ∅,
hence (C◦ ∪ C◦) ∩ b′ = ∅. Therefore, (C◦ ∪ C◦) ∩ b = ∅.

– tk+1 = r→ (T ′′,C◦k+1 \ (NCk+1
	 r)◦) for some s-cell Ck+1 and place r ∈ ◦Ck+1. Then,

T = T ′ ∪ T ′′ with JNCk+1
	 rK = (T ′′,) and b = b′ ∪ C◦k+1 \ (NCk+1

	 r)◦.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 33

(1) We proceed by contradiction. Assume that there exists p such that p ∈ b and p ∈ b.
Note that p ∈ b implies p ∈ b′. By inductive hypothesis (1), p 6∈ b′. Therefore,

it should be the case that p ∈ C◦k+1 \ (NCk+1
	 r)◦. Consequently p ∈ C◦k+1 and

p 6∈ (NCk+1
	 r)◦. Hence, r � p. Since t is enabled at b′, r ∈ b′. By inductive

hypothesis (2), p 6∈ b′ which contradicts the hypothesis p 6∈ b.
(2) We proceed by contradiction. Assume there exist p and q such that p ∈ b, p � q

and q ∈ b. Note that q ∈ b implies q ∈ b′. Assume p ∈ b′. By inductive hypothesis,
for all q s.t. p � q then q 6∈ b′ and, hence it is in contradiction with assumption
q ∈ b. Assume instead p ∈ C◦k+1 \ (NCk+1

	 r)◦. As before, we conclude that r � p.
By transitivity of �, we have r � q. By inductive hypothesis (2), q 6∈ b′, which is in
contradiction with assumption q ∈ b.

(3) For q ∈ b, it follows immediately by inductive hypothesis. For q ∈ C◦k+1 \ (NCk+1
	 r)◦,

it follows straightforwardly because r � q and r ∈ b.
(4) Assume •t = ◦C ⊆ b for some C. Hence, •t = ◦C ⊆ b′. There are two cases:
∗ Suppose t ∈ T ′. By inductive hypothesis (4), (C◦ ∪ C◦) ∩ b′ = ∅. We show that

the following holds

(C◦ ∪ C◦) ∩ C◦k+1 \ (NCk+1
	 r)◦ = ∅

It is enough to show that

C◦ ∩ C◦k+1 \ (NCk+1
	 r)◦ = ∅

We proceed by contradiction and assume there exists q such that q ∈ C◦ and
q ∈ (C◦k+1 \ (NCk+1

	 r)◦). Because q ∈ (C◦k+1 \ (NCk+1
	 r)◦), r � q. Since q ∈ C◦,

r ∈ ◦C (because C is closed under causality). Hence r ∈ b′ because t is enabled
at b′. By the contrapositive of inductive hypothesis (1), r 6∈ b′, but this is in
contradiction with the hypothesis that tk+1 is enabled at b′.
∗ Suppose t ∈ T ′′. Then, •t ∩ ◦(NCk+1

	 r) = ∅. for some C. Hence, for all q ∈ C◦

there exists s ∈ ◦C s.t. s � q. Since t is enabled at b, ◦C ⊆ b holds. By
Lemma B.1, C◦ ∩ b = ∅. We show by contradiction that C◦ ∩ b = ∅ does not hold
either. Assume that there exists q ∈ C◦ and q ∈ b. Since there exists s ∈ C ⊆ b
and s � q, we can use inductive hypothesis (3) to conclude that there exist s′ ⊆ b
and s′ � q and s′ ∈ ◦C. By the inductive hypothesis (1) s′ 6∈ b, and this is in
contradiction with the assumption of t enabled at b.

Appendix C. Proofs of results in Section 4

This section presents the proof sketches of the results in Section 4. As in Appendix A, we
exploit some auxiliary lemmas marked by the keyword “Aux” and full proofs are provided
separately. We start by showing that reductions of a encoded net correspond to recursively
stopped configurations of the event structure.

Lemma C.1 (Aux.). Let N = (P, T, F,m) and E the event structure of N . If JNK t1···tn−−−→
(T, b) and v =

⋃
1≤i≤n‖ti‖, then

(1) b ∩ P = ◦{e | e ∈ Ev and bec = {e}}; and

(2) If (T, b)
t−−→ then ‖t‖ 6= ∅ implies ‖t‖ is a stopped configuration of Ev.

34 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

Proof. If follows by induction on the length of JNK t1···tn−−−→ (T, b).

• Base case (n=0). Then, v = ∅ and Ev = E . Moreover, b = m.
(1) It is immediate to notice that m corresponds to the preset of all minimal events of E .
(2) Since t is enabled, •t ⊆ m. Hence, •t = ◦C with C ∈ bc(N). Therefore, C corresponds

to a branching cell of E . By the definition of J K, t is associated with some θ : C, which
is a maximal, conflict-free set of transitions in C. Hence, ‖t‖ is a stopped configuration
of E .

• Inductive case (n = k+1). Then, JNK t1···tk−−−→ (Tk, bk)
tk+1−−−→ (T, b). By inductive

hypothesis, letting vk =
⋃

1≤i≤k‖ti‖, we assume (1) bk ∩P = ◦{e | e ∈ Evk and bec = {e}},
and (2) If (Tk, bk)

t−−→ then ‖t‖ 6= ∅ implies ‖t‖ is a stopped configuration of Evk .
We now proceed by case analysis on the shape of the applied rule:

– tk+1 = ◦C→ (∅, θ◦ ∪ C◦ \ θ◦). Hence, v = vk ∪ ‖θ‖ and b ∩ P = (bk ∩ P \ ◦C) ∪ θ◦.
(1) Then:

{e | e ∈ Ev and bec = {e}}
= {e | e ∈ Evk and e 6∈ C and bec = {e}}

∪{e | e ∈ Evk and bec ⊆ {e} ∪ ‖θ‖}
The proof is completed by noting that

◦{e | e ∈ Evk and e 6∈ C and bec = {e}} =
(bk ∩ P \ ◦C)

and
◦{e | e ∈ Evk and bec ⊆ {e} ∪ ‖θ‖} = ◦θ

(2) Take t such that •t = Ct. Then, Ct ⊆ b ∩ P . By Theorem 3.12, there cannot be t′

enabled at b and •t′ 6= ◦Ct and ◦Ct ∩ •t′ 6= ∅. By using inductive hypothesis (1), we
conclude that all events in direct conflict with Ct in Ev are in C. Hence, ‖θ‖ is a
stopped configuration of Ev.

– tk+1 = p → (T ′′,C◦ \ (NC 	 p)◦) for some C, p ∈ ◦C, and (T ′′, ∅) = JNC 	 pK. Then
T = T ′ ∪ T ′′.
(1) Immediate because bk ∩ P = b ∩ P .
(2) It follows analogously to the previous case.

Lemma C.2 (Aux.). Let JNK ∈ dn(P ∪P). If JNK→∗ (T, b) then there exists (T ′, b′) such
that (T, b) ==⇒ (T ′, b′) and

(1) b′ ∩ P = b ∩ P ;
(2) for all p, q, if p ∈ b and p � q, then q ∈ b′;
(3) for all C ∈ bc(N) and Q ⊆ P, if Q ⊆ b′ then for all C′ ∈ bc(NC 	Q) and θ : C′ there

exists t ∈ T ′ such that t = ◦C′ −−→ (∅, θ◦ ∪ C′◦ \ θ◦).

Proof. (1) It follows straightforwardly by analysis of the applied rules. They are of the form

p→ (T ′,C◦ \ (NC 	 p)◦), which does not consume nor produce tokens in regular places.
(2) By induction on the length of the chain p = p0 ≺ . . . ≺ pn = q (this is a finite chain

because N is a finite occurrence net). The inductive step follows by straightforward
inspection of the shape of the transitions with negative premises.

(3) By straightforward induction on the number n of elements in Q, i.e., n = |Q|.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 35

Lemma C.3 (Aux). Let N = (P, T, F,m) and E the event structure of N . If v is recursively
stopped configuration and v =

⋃
1≤i≤n vi is a valid decomposition, then

(1) JNK t1···tn====⇒ (T, b) and v =
⋃

1≤i≤n‖ti‖;
(2) b ∩ P = ◦{e | e ∈ Ev and bec = {e}};
(3) If v′ is a stopped configuration of Ev, then there exists t ∈ T s.t. (T, b)

t−−→ and ‖t‖ = v′;
(4) For all e ∈ E, if e 6∈ (Ev ∪ v) implies •e ∩ b = 0.

Proof. If follows by induction on the length n of the decomposition v =
⋃

1≤i≤n vi.

• Base case (n=0). Then, v = ∅ and Ev = E . Moreover, b = m. Then
(1) It is immediate because (T, b) = JNK and m = b.

(2) Since b = m, b corresponds to the preset of all minimal events of E∅ = E .
(3) If v′ is a stopped configuration of E , then there exists C ∈ bc(N) such that v′ ⊆ C.

Since v′ is a maximal configuration, there exists θ : C such that ev(θ) = v′. Hence,
there exists t ∈ T such that ‖t‖ = v′. Since, v′ is part of an initial prefix, •t = ◦C ⊆ m.
Hence, t is enabled.

(4) It trivially holds because there does not exist e ∈ E and e 6∈ (Ev ∪ v).
• Inductive case (n = k+1). Take v′ =

⋃
1≤i≤k+1 vi and v = vk+1 ∪ v′. Then, (1)

JNK t1···tk====⇒ (Tk, bk) and v′ =
⋃

1≤i≤k‖ti‖; and (2) bk ∩ P = ◦{e | e ∈ Ev′ and bec = {e}};
and (3) If v′′ is a stopped configuration of Evk , then there exists t ∈ T s.t. (Tk, bk)

t−−→
and ‖t‖ = v′′; and (4) For all e ∈ E , if e 6∈ (Ev′ ∪ v′) implies •e ∩ b = 0.

By inductive hypothesis (3), there exists tk+1 such that ‖tk+1‖ = vtk+1
and (Tk, bk)

tk+1−−−→.

Then, take (Tk, bk)
t−−→ (T ′, b′). By using Lemma C.2, we conclude that there exists

(Tk+1, bk+1) such that (Tk, bk)
tk+1

===⇒ (Tk+1, bk+1) where:
(a): bk+1 ∩ P = bk ∩ P ;
(b): for all p, q, if p ∈ bk and p � q, then q ∈ bk+1;
(c): for all C ∈ bc(N) and Q ⊆ P, if Q ⊆ bk+1 then for all C′ ∈ bc(NC 	Q) and θ : C′

there exists t ∈ Tk+1 such that t = ◦C′ −−→ (∅, θ◦ ∪ C′◦ \ θ◦).
Then,

(1) It follows immediately because ‖tk+1‖ = vtk+1
;

(2) Then, tk+1 = ◦C→ (∅, θ◦ ∪ C◦ \ θ◦). Moreover, b′ ∩ P = (bk ∩ P \ ◦C) ∪ θ◦. Hence,

{e | e ∈ Ev and bec = {e}}
= {e | e ∈ Ev′ and e 6∈ C and bec = {e}}

∪ {e | e ∈ Ev′ and bec ⊆ {e} ∪ ‖θ‖}
The proof is completed by noting that

◦{e | e ∈ Evk and e 6∈ C and bec = {e}} = (bk ∩ P \ ◦C)

and ◦{e | e ∈ Evk and bec ⊆ {e} ∪ ‖θ‖} = ◦θ and by using (a) above.
(3) It follows from (c).
(4) It follows from (b).

Lemma 4.3. Let N be an occurrence net.

(1) If JNK t0···tn====⇒, then v =
⋃

1≤i≤n‖ti‖ is recursively-stopped in EN and (‖ti‖)1≤i≤n is a
valid decomposition of v.

36 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

(2) If v is recursively-stopped in EN , then for any valid decomposition (vi)1≤i≤n there exists

JNK t0···tn====⇒ such that ‖ti‖ = vi.

Proof. 1). It follows from Lemma C.1. 2). It follows from Lemma C.3(1).

Theorem 4.5. Let N be an occurrence net.

(1) If LJNKM t1···tn====⇒, then v =
⋃

1≤i≤n‖ti‖ is recursively-stopped in EN and (‖ti‖)1≤i≤n is a
valid decomposition of v.

(2) If v is recursively-stopped in EN , then for any valid decomposition (vi)1≤i≤n there exists

LJNKM t1···tn====⇒ such that ‖ti‖ = vi.

Proof. It follows from Lemma 4.3 and Proposition 2.4.

C.1. Detailed proofs of results in Section 4. This section is devoted to prove the main
results in Section 4. We start by providing some auxiliary results.

Lemma C.1. Let N = (P, T, F,m) and E the event structure of N . If JNK t1···tn−−−→ (T, b)
and v =

⋃
1≤i≤n‖ti‖, then

(1) b ∩ P = ◦{e | e ∈ Ev and bec = {e}}; and

(2) If (T, b)
t−−→ then ‖t‖ 6= ∅ implies ‖t‖ is a stopped configuration of Ev.

Proof. If follows by induction on the length of the reduction JNK t1···tn−−−→ (T, b).

• Base case (n=0). Then, v = ∅ and Ev = E . Moreover, b = m.
(1) It is immediate to notice that m corresponds to the preset of all minimal events of E .
(2) Since t is enabled, •t ⊆ m. Hence, •t = ◦C with C ∈ bc(N). Therefore, C corresponds

to a branching cell of E . By the definition of J K, t is associated with some θ : C, which
is a maximal, conflict-free set of transitions in C. Hence, ‖t‖ is a stopped configuration
of E .

• Inductive case (n = k+1). Then, JNK t1···tk−−−→ (Tk, bk)
tk+1−−−→ (T, b). By inductive

hypothesis, letting vk =
⋃

1≤i≤k‖ti‖, we assume (1) bk ∩P = ◦{e | e ∈ Evk and bec = {e}},
and (2) If (Tk, bk)

t−−→ then ‖t‖ 6= ∅ implies ‖t‖ is a stopped configuration of Evk .
We now proceed by case analysis on the shape of the applied rule:

– tk+1 = ◦C→ (∅, θ◦ ∪ C◦ \ θ◦). Hence, v = vk ∪ ‖θ‖ and b ∩ P = (bk ∩ P \ ◦C) ∪ θ◦.
(1) Then:

{e | e ∈ Ev and bec = {e}}
= {e | e ∈ Evk and e 6∈ C and bec = {e}}

∪{e | e ∈ Evk and bec ⊆ {e} ∪ ‖θ‖}
The proof is completed by noting that

◦{e | e ∈ Evk and e 6∈ C and bec = {e}} =
(bk ∩ P \ ◦C)

and
◦{e | e ∈ Evk and bec ⊆ {e} ∪ ‖θ‖} = ◦θ

(2) Take t such that •t = Ct. Then, Ct ⊆ b ∩ P . By Theorem 3.12, there cannot be t′

enabled at b and •t′ 6= ◦Ct and ◦Ct ∩ •t′ 6= ∅. By using inductive hypothesis (1), we
conclude that all events in direct conflict with Ct in Ev are in C. Hence, ‖θ‖ is a
stopped configuration of Ev.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 37

– tk+1 = p → (T ′′,C◦ \ (NC 	 p)◦) for some C, p ∈ ◦C, and (T ′′, ∅) = JNC 	 pK. Then
T = T ′ ∪ T ′′.
(1) Immediate because bk ∩ P = b ∩ P .
(2) It follows analogously to the previous case.

Lemma C.3. Let N = (P, T, F,m) and E the event structure of N . If v is recursively
stopped configuration and v =

⋃
1≤i≤n vi is a valid decomposition, then

(1) JNK t1···tn====⇒ (T, b) and v =
⋃

1≤i≤n‖ti‖;
(2) b ∩ P = ◦{e | e ∈ Ev and bec = {e}};
(3) If v′ is a stopped configuration of Ev, then there exists t ∈ T s.t. (T, b)

t−−→ and ‖t‖ = v′;
(4) For all e ∈ E , if e 6∈ (Ev ∪ v) implies •e ∩ b = 0.

Proof. If follows by induction on the length n of the decomposition v =
⋃

1≤i≤n vi.

• Base case (n=0). Then, v = ∅ and Ev = E . Moreover, b = m. Then
(1) It is immediate because (T, b) = JNK and m = b.

(2) Since b = m, b corresponds to the preset of all minimal events of E∅ = E .
(3) If v′ is a stopped configuration of E , then there exists C ∈ bc(N) such that v′ ⊆ C.

Since v′ is a maximal configuration, there exists θ : C such that ev(θ) = v′. Hence,
there exists t ∈ T such that ‖t‖ = v′. Since, v′ is part of an initial prefix, •t = ◦C ⊆ m.
Hence, t is enabled.

(4) It trivially holds because there does not exist e ∈ E and e 6∈ (Ev ∪ v).
• Inductive case (n = k+1). Take v′ =

⋃
1≤i≤k+1 vi and v = vk+1 ∪ v′. Then, (1)

JNK t1···tk====⇒ (Tk, bk) and v′ =
⋃

1≤i≤k‖ti‖; and (2) bk ∩ P = ◦{e | e ∈ Ev′ and bec = {e}};
and (3) If v′′ is a stopped configuration of Evk , then there exists t ∈ T s.t. (Tk, bk)

t−−→
and ‖t‖ = v′′; and (4) For all e ∈ E , if e 6∈ (Ev′ ∪ v′) implies •e ∩ b = 0.

By inductive hypothesis (3), there exists tk+1 such that ‖tk+1‖ = vtk+1
and (Tk, bk)

tk+1−−−→.

Then, take (Tk, bk)
t−−→ (T ′, b′). By using Lemma C.2, we conclude that there exists

(Tk+1, bk+1) such that (Tk, bk)
tk+1

===⇒ (Tk+1, bk+1) where:
(a): bk+1 ∩ P = bk ∩ P ;
(b): for all p, q, if p ∈ bk and p � q, then q ∈ bk+1;
(c): for all C ∈ bc(N) and Q ⊆ P, if Q ⊆ bk+1 then for all C′ ∈ bc(NC 	Q) and θ : C′

there exists t ∈ Tk+1 such that t = ◦C′ −−→ (∅, θ◦ ∪ C′◦ \ θ◦).
Then,

(1) It follows immediately because ‖tk+1‖ = vtk+1
;

(2) Then, tk+1 = ◦C→ (∅, θ◦ ∪ C◦ \ θ◦). Moreover, b′ ∩ P = (bk ∩ P \ ◦C) ∪ θ◦. Hence,

{e | e ∈ Ev and bec = {e}}
= {e | e ∈ Ev′ and e 6∈ C and bec = {e}}

∪ {e | e ∈ Ev′ and bec ⊆ {e} ∪ ‖θ‖}
The proof is completed by noting that

◦{e | e ∈ Evk and e 6∈ C and bec = {e}} = (bk ∩ P \ ◦C)

and ◦{e | e ∈ Evk and bec ⊆ {e} ∪ ‖θ‖} = ◦θ and by using (a) above.
(3) It follows from (c).

38 R. BRUNI, H. MELGRATTI, AND U. MONTANARI

(4) It follows from (b).

Appendix D. Proofs of results in Section 5

Theorem 5.3. Let σ = t1; · · · ; tn with n ≥ 0 be a, possibly empty, firing sequence of a
persistent process, and t a transition not in σ. The following conditions are all equivalent:
(i) t is enabled after σ; (ii) there is a collection of causes of t which appears in σ; (iii)

∧n
i=1 ti

implies Φ(t).

Proof. ii) ⇔ (iii):: We have that
∧n
i=1 ti implies Φ(t) iff there is a prime implicant

∧m
j=1 tij

of Φ(t) that is implied by
∧n
i=1 ti. This is the case iff the collection of causes {ti1 , ..., tim}

appears in σ.
(i) ⇒ (iii):: The proof is by induction on the length n of the sequence.

For the base case, if n = 0 it means that t is enabled in the initial marking, i.e., that
its pre-set only contains initial places of the process and thus Φ(t) = true.

For the inductive case, assume the property holds for any shorter sequence t1; · · · ; tk
with 0 ≤ k < n + 1 and let us prove that it holds for σ = t1; · · · ; tn+1. Let b0 the

initial bag of the process. As t is enabled after σ we have b0
σ−→ b

t−→ for some bag b.
Since t is enabled in b, we have •t ⊆ b, i.e., for any s ∈ •t we have b(s) ∈ {1,∞} (by
definition of p-net, •t is not empty). We need to prove that Φ(t) = ∧s∈•tΦ(s) is implied

by
∧n+1
i=1 ti, i.e., that for any s ∈ •t the formula Φ(s) is implied by

∧n+1
i=1 ti. Take a

generic s ∈ •t. Either •s = ∅, in which case s is initial and Φ(s) = true, or •s 6= ∅ and
Φ(s) =

∨
t′∈•s(t

′ ∧ Φ(t′)). Since b(s) ∈ {1,∞}, there must exist an index j ∈ [1, n+ 1]
such that tj ∈ •s. Take t′ = tj . Since σ is a firing sequence, the transition tj is enabled
after σ′ = t1; · · · ; tj−1. As k = j − 1 < n+ 1, by inductive hypothesis Φ(tj) is implied by∧j−1
i=1 ti and thus also by

∧n+1
i=1 ti. Since

∧n+1
i=1 ti clearly implies tj we have that

∧n+1
i=1 ti

implies Φ(s) = tj ∧ Φ(tj).
(iii) ⇒ (i):: Suppose

∧n
i=1 ti implies Φ(t) =

∧
s∈•t Φ(s). If for all s ∈ •t we have •s = ∅,

then t is enabled in the initial marking and as the process is deterministic no transition
can steal tokens from •t and t remains enabled after the firing of any σ = t1; · · · ; tn.
Otherwise, Φ(t) =

∧
s∈•t

∨
t′∈•s 6=∅(t

′ ∧ Φ(t′)). Thus, for any s ∈ •t with •s 6= ∅ there

exists some t′ ∈ •s such that
∧n
i=1 ti implies t′ ∧Φ(t′). Since

∧n
i=1 ti implies t′ then there

exists some index k ∈ [1, n] such that t′ = tk and s becomes marked during the firing of
σ. As the process is deterministic, no transition can steal tokens from s. Since all the
places in the pre-set of t becomes marked during the firing of σ, then t is enabled after σ.

CONCURRENCY AND PROBABILITY: REMOVING CONFUSION, COMPOSITIONALLY 39

Appendix E. Additional processes of the running example

We show in Fig. 18 the additional processes of the net LJNKM of the running example and
their probabilities.

•
��
•

||

1

•
��
•

||

7

td
�� ""

te
��

zz

•
6

��

3 9

t3

��

$$

��

ptg

ww
8 •

""
2

��

ptb

ptg

tg
""

tb
��

5 10 4

(a) P(td) · P(te) · P(tg) · P(tb) = 1
4

•
""

1

•
��

•
��
•

||

7

ta
""

��

te
||

ss

6 9

""
8 •

�� ||
3 •

tt

2

tbg

**uu ||
5 10 4

(b) P(ta) · P(te) · P(tbg) = 1
8

•
""

1

•
��

•
��
•

||

7

ta
""

��

te
yy

rr

6 9

++

8

""
3 •
��

•
yy

2

tc
��))uu

4 5 10

(c) P(ta) · P(te) · P(tc) = 1
8

•
""

1

•
��

•
%%

7

•
��

ta
""

��

tf
yy ""6

��

8
9

t8

��

��		

3 •
""

2

��

ptb

tb
��

5 4 10

(d) P(ta) · P(tf) · P(tb) = 1
4

Figure 18. Processes of the net LJNKM (running example)

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Problem statement
	Overview of the approach
	Contribution.
	Structure of the paper

	2. Preliminaries
	2.1. Notation
	2.2. Petri Nets, confusion and free-choiceness
	2.3. Deterministic Nonsequential Processes
	2.4. Nets With Persistency
	2.5. Dynamic Nets

	3. From Petri Nets to Dynamic P-Nets
	3.1. Structural Branching Cells
	3.2. Encoding s-cells as confusion-free dynamic nets

	4. Static vs Dynamic cell decomposition
	4.1. Prime Event Structures
	4.2. Abbes and Benveniste's Branching Cells
	4.3. Relating s-cells and AB's decomposition

	5. Concurrency of the Uniformed Net
	6. Probabilistic Nets
	7. Conclusion and Future Work
	References
	Appendix A. Detailed proofs of results in Section 2.4
	Appendix B. Proofs of results in Section 3
	B.1. Detailed proofs of results in Section 3

	Appendix C. Proofs of results in Section 4
	C.1. Detailed proofs of results in Section 4

	Appendix D. Proofs of results in Section 5
	Appendix E. Additional processes of the running example

