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Abstract
Aim: The introduction of aquatic non-indigenous species (ANS) has become a major 
driver for global changes in species biogeography. We examined spatial patterns and 
temporal trends of ANS detections since 1965 to inform conservation policy and 
management.
Location: Global.
Methods: We assembled an extensive dataset of first records of detection of ANS 
(1965–2015) across 49 aquatic ecosystems, including the (a) year of first collection, 
(b) population status and (c) potential pathway(s) of introduction. Data were analysed 
at global and regional levels to assess patterns of detection rate, richness and trans-
port pathways.
Results: An annual mean of 43 (±16 SD) primary detections of ANS occurred—one 
new detection every 8.4 days for 50 years. The global rate of detections was rel-
atively stable during 1965–1995, but increased rapidly after this time, peaking at 
roughly 66 primary detections per year during 2005–2010 and then declining 
marginally. Detection rates were variable within and across regions through time. 
Arthropods, molluscs and fishes were the most frequently reported ANS. Most ANS 
were likely introduced as stowaways in ships’ ballast water or biofouling, although 
direct evidence is typically absent.
Main conclusions: This synthesis highlights the magnitude of recent ANS detections, 
yet almost certainly represents an underestimate as many ANS go unreported due to 
limited search effort and diminishing taxonomic expertise. Temporal rates of detec-
tion are also confounded by reporting lags, likely contributing to the lower detection 
rate observed in recent years. There is a critical need to implement standardized, 
repeated methods across regions and taxa to improve the quality of global-scale 
comparisons and sustain core measures over longer time-scales. It will be fundamen-
tal to fill in knowledge gaps given that invasion data representing broad regions of 
the world's oceans are not yet readily available and to maintain knowledge pipelines 
for adaptive management.

K E Y W O R D S

aquatic non-indigenous species, biological invasions, detection rate, inventory, long-term 
dataset, population status, richness, spatial patterns, temporal trends, transport pathways

1  | INTRODUC TION

Analyses of long-term datasets on species introductions can provide 
insights into past and future trends to inform conservation man-
agement (Seebens et al., 2017; van Kleunen et al., 2015), yet such 
studies are relatively rare, particularly for aquatic ecosystems where 
species introductions are often more difficult to detect and study 
(Ojaveer et al., 2015). A recent study examining more than 45,800 
records of mainly terrestrial non-indigenous taxa showed a continu-
ous rise in the rate of detection during the time period 1800–2000 
and a strong correlation between detection rates and trade values 
for taxa associated with transport pathways (Seebens et al., 2017). 
Moreover, the growth of trade and worldwide transport of goods 

by shipping is predicted to lead to a surge in the translocation of 
both terrestrial taxa (as stowaways in cargo and packing materials) 
and marine taxa (within ships’ ballast water and biofouling) (Sardain 
et al., 2019). Despite the expected surge in species delivery to novel 
aquatic ecosystems, prior studies examining detection rates and/
or pathways of aquatic non-indigenous species (ANS) have been 
conducted at local or regional scales (e.g. Galil, 2009; Katsanevakis 
et al., 2013; Ojaveer et al., 2017) and/or have focused on a single 
taxonomic group (e.g. Carlton, 2011; Darrigran et al., 2020). As intro-
ductions of many different ANS have occurred and continue to occur 
worldwide, studies are needed at a global scale to provide a robust 
understanding of invasion dynamics, identify needed management 
strategies and evaluate policy effectiveness in aquatic ecosystems.

mailto:sarah.bailey@dfo-mpo.gc.ca
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The introduction of species across biogeographic barriers by 
human activities is a key component of global biodiversity loss and 
subsequent environmental change (Lewis & Maslin, 2015; Pyšek 
et al., 2020; Simberloff et al., 2013). The importance of coastal 
marine diversity was highlighted as part of the Convention on 
Biological Diversity (CBD) Ministerial Statement at the Conference 
of the Parties meeting in Jakarta in 1995 (the Jakarta Mandate) 
(UNEP, 2000). It is widely accepted that management of non-indig-
enous species introductions should be based on the precautionary 
approach and focus primarily on management of invasion path-
ways (e.g. Finnoff et al., 2007; Hewitt, Willing, et al., 2004; Lodge 
et al., 2016). In recognition of the urgent need to address the im-
pacts of non-indigenous species, the CBD states that each con-
tracting party shall, as far as possible and as appropriate, “prevent 
the introduction of, control or eradicate those alien species which 
threaten ecosystems, habitats or species” (UNEP, 1994). The CBD 
revised Strategic Plan for 2011–2020 proposes that “By 2020, inva-
sive alien species and pathways are identified and prioritized, prior-
ity species are controlled or eradicated, and measures are in place to 
manage pathways to prevent their introduction and establishment” 
(UNEP, 2011). New goals for 2021–2030 are currently being drafted, 
with prevention and pathway management likely to remain import-
ant components of the strategy.

Despite efforts to establish reporting mechanisms (e.g. Pagad 
et al., 2018), reliable inventories worldwide of non-indigenous spe-
cies and their pathways are still relatively few in the published lit-
erature, especially for aquatic environments. Here, we assembled 
an extensive dataset of first records of detection of ANS to assess 
patterns of detection rate, richness, population status and transport 
pathways during a 50-year time period across 49 global ecosystems, 
including marine and estuarine habitats as well as the freshwater 
Laurentian Great Lakes. This synthesis is intended to provide a base-
line of current knowledge, a baseline largely built on a multi-decade 
and perhaps in some cases a century or more, backlog of undetected 
invasions, to identify and support prioritization of pathways and to 
guide recommendations for policy and management in support of 
biological conservation objectives.

2  | METHODS

We assembled an extensive dataset of primary detection events of 
ANS (i.e. the first recorded collection of each species in each region) 
across global (primarily coastal marine, but also estuarine and fresh-
water) aquatic ecosystems for the period 1965–2015 using online 
ANS databases as primary data sources, including AquaNIS (http://
www.corpi.ku.lt/datab ases/index.php/aquan is/), GLANSIS (https://
www.glerl.noaa.gov/glans is/), Marine Biosecurity Porthole (https://
www.marin ebios ecuri ty.org.nz/) and NEMESIS (http://invas ions.
si.edu/nemes is/). In addition, we conducted a literature search using 
the Web of Science to locate published datasets not available on-
line, using the search terms “nonindigenous” or “non-indigenous” 
or “nonnative” or “non-native” or “alien” AND “aquatic” or “marine” 

AND “database” or “dataset” or “list” or “inventory”. Datasets were 
included only if dedicated, expert research on ANS had been con-
ducted such that an up-to-date comprehensive and reliable inven-
tory exists; datasets comprised of only a single taxonomic group, or 
not listing dates of first collection, or covering a shorter time pe-
riod than this analysis were not included. As the geographic scale 
of different studies varied, we compiled data at the scale of Large 
Marine Ecosystem (Sherman, 1991; http://lme.edc.uri.edu), but also 
included available data for smaller marine ecosystems (i.e. Galápagos 
Islands and Madeira Archipelago). We excluded records from inland 
or freshwater habitats but included the Laurentian Great Lakes as a 
large freshwater ecosystem accessible to global shipping (Pagnucco 
et al., 2015).

At least one co-author with extensive regional knowledge of 
ANS carefully reviewed and edited each regional dataset for accu-
racy, checking scientific peer-reviewed publications, reports, books 
and personal collections to confirm: (a) year of first collection; (b) 
current population status and; (c) potential pathway(s) of introduc-
tion (as known up to July 15, 2020; Table 1). Records were compiled 
only for ANS collected from the natural environment while those 
reported exclusively on or within pathways were excluded (e.g. taxa 
sampled during surveys of ships’ ballast water and biofouling, tsu-
nami debris and other marine litter). Only species considered fully 
aquatic were counted, including marine stenohaline, marine euryha-
line, diadromous and freshwater euryhaline species, but excluding, 
for example, shoreline plants and aquatic birds. Freshwater stenoha-
line species were included for the Laurentian Great Lakes and Baltic 
Sea but excluded from all other estuarine and marine ecosystems as 
being “inland” introductions. We also excluded records for crypto-
genic species (whose status as indigenous or non-indigenous is unre-
solved) and taxa poorly studied or otherwise presenting challenges 
for taxonomic identification and assessment of historical biogeo-
graphic origin (e.g. fungi, protists, parasitic and free-living flatworms, 
viruses and microbes). Scientific names of ANS were standardized 
according to the Integrated Taxonomic Information System (www.
itis.gov), the World Register of Marine Species (www.marin espec ies.
org) or AlgaeBase (www.algae base.org), or more recent literature 
when available.

We acknowledge that the date of first collection is likely to lag 
behind the actual date of introduction and that we do not know for 
most of these species when the introduction occurred nor when a 
reproducing population became established. The majority of the re-
cords analysed here resulted from the onset of ANS inventories that 
by and large did not commence worldwide until the last decades of 
the 20th century, thus resulting in first reports of species that may 
have been present much earlier. For example, of the 141 ANS spe-
cies reported from Hawaii between 1965 and 2015, at least 101 may 
have been present prior to World War II, and many could have ar-
rived in the 19th century; more than half of the remaining 40 species 
likely arrived after WWII but prior to 1965 (J. T. Carlton, Williams 
College—Mystic Seaport, personal communication). We thus take a 
conservative approach and define the date of first record as the date 
of detection, thus yielding a detection rate, rather than an introduction 

http://www.corpi.ku.lt/databases/index.php/aquanis/
http://www.corpi.ku.lt/databases/index.php/aquanis/
https://www.glerl.noaa.gov/glansis/
https://www.glerl.noaa.gov/glansis/
https://www.marinebiosecurity.org.nz/
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http://invasions.si.edu/nemesis/
http://invasions.si.edu/nemesis/
http://lme.edc.uri.edu
http://www.itis.gov
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http://www.marinespecies.org
http://www.marinespecies.org
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TA B L E  1   Categories and definitions of population status and pathways utilized in the analyses

Population Statusa  Definition

Established Species has been repeatedly collected and/or there is evidence of successful reproduction (found in two 
separate locations or in two collections in separate years in the same location)

Extinct Reproducing populations appear to have existed in a location for a length of time but appear to have 
subsequently died out

Failed Species was introduced to a location, but there was no evidence of any prolonged survival or reproduction

Unknown Insufficient data to assign to one of the above three categories

Pathwaysb  Sub-pathwaysb  Description

Corridor Interconnected Waterways/
Basins/Seas

Species spreading to new regions along infrastructure such as canals or other artificial 
waterways interconnecting previously unconnected water bodies, basins and seas

Escape from 
confinement

Aquaculture/Mariculture Species that have escaped from confinement or controlled situations in either 
freshwater or marine environments to produce food or other agricultural type 
products including bioenergy products

Botanical garden/zoo/aquaria Species that have escaped from confinement and that were kept for public display, 
public education or conservation breeding programmes

Horticulture Species that have escaped from confined or controlled environments where they 
were commercially cultivated for purposes other than aquaculture/mariculture

Live food and live bait Species that have escaped from confinement or controlled environments where they 
were kept and/or transported as live food or live bait

Ornamental Species that have escaped from confined or controlled environments where they 
were introduced for decorative or ornamental reasons excluding commercial 
horticulture

Pet/Aquarium Species Species that have escaped confinement or controlled environments where they were 
kept by private collectors or hobbyists for recreation

Research Species that have escaped confinement or controlled environments where they were 
kept and/or bred for use in research

Release in nature Biological Control Species released into the (semi)natural environment with the purpose of controlling 
the population(s) of one or more organisms

Erosion Control Species released into the (semi)natural environment to control the environment or to 
act as physical barriers

Fishery in the Wild Fish and other aquatic animals (e.g. invertebrates) released into the (semi)natural 
environment to provide additional or alternative subsistence and/or commercial or 
recreational fishing opportunities

Other Intentional Release Species released into the natural environment for reasons other than those covered in 
any other release in nature pathways

Transport 
(Contaminant)

Contaminant on Animals Species introduced unintentionally as contaminants on animals transported through 
human related activities (e.g. aquaculture)

Contaminant on Plants Species introduced unintentionally as contaminants on plants or plant products 
transported through human related activities

Contaminated Bait Species introduced unintentionally as contaminants in/of bait

Parasites on Animals Unintentional introduction of parasitic species transported by a host animal or an 
animal that acts as a vector

Transport (Stowaway) Angling/Fishing Gear Species introduced unintentionally as stowaways on equipment used by recreational 
anglers or commercial/professional fishermen, including aquaculture gear

Ballast Water Species that have been introduced unintentionally via the ballast tanks of ships and 
boats, within ballast water, ballast sediments or solid ballast materials

Container/Bulk Species introduced as accidental stowaways in or on shipping containers and bulk 
cargo

Hitchhikers on Plane Species that have been introduced unintentionally by being a hitchhiker in or on 
airplanes and other aircraft

(Continues)
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rate. This date encompasses the relatively few cases where a species 
is known to have been intentionally planted or released; such cases 
are rare after the 1960s, as there was rapid growth in environmental 
awareness about the potential negative outcomes of deliberate in-
troductions. Distinguishing between a date of detection and a date 
of introduction is critical. We emphasize that there should be no con-
fusion between our use of detection and the concept of the rate of 
species discovery resulting from a given effort or type of sampling 
(which in classical community diversity studies is used to establish a 
probable species discovery asymptote).

We chose the timeframe 1965–2015 with the assumption that 
there has been increasing awareness and more comprehensive 
reporting since 1965, with time-lags presumably being smaller 
compared to reports prior to 1965. In cases of multiple records 
of the same ANS, the first record within each region was used. 
The year of first collection was typically recorded as a single year, 
but when only time ranges were provided (e.g. “2012–2015”), the 
first year of the range was taken as the earliest possible date. For 
a small number of records (<0.01%), the year of first report (the 
year of publication) was recorded when the date of collection was 
not provided. Population status was recorded for each introduced 
species as “established,” “extinct,” “failed” or “unknown” follow-
ing definitions used by the NEMESIS database (see Table 1) which 
account for uncertainty associated with limited search effort. We 
acknowledge that established populations are more likely to be 
observed and documented and that, without regular surveillance 
programmes, many detections are recorded only as single records 
and the population status may be highly uncertain. Seven ANS 
populations were successfully eradicated after detection—these 
were labelled with the population status observed prior to eradi-
cation efforts.

We assigned pathways of introduction using categories and 
sub-categories proposed as part of the Convention on Biological 
Diversity following guidance in Harrower et al. (2018), with small 
modifications (Table 1). Ship fouling (rather than the more limited 
“hull” fouling) included organisms attached or associated with any un-
derwater surfaces of ships (defined as a vessel of any type operating 

in the aquatic environment, including fixed or floating platforms) in-
cluding the hull and niche areas (e.g. sea chests, seawater inlets and 
inlet grates, anchors and anchor chain) (as per IMO, 2011). Ships’ 
ballast water also included stowaways within ballast sediments as 
well as solid ballast materials used historically. We considered aqua-
culture equipment as angling/fishing equipment.

Pathway information was initially taken from source online da-
tabases and published literature, if stated, and was then critically 
evaluated for completeness and standardization across regions/data 
sources based on our own expertise and knowledge. Many references 
implicate commercial shipping as a possible mechanism of introduc-
tion without assessing specific pathways. Therefore, we designated 
shipping pathways primarily based on our own prior biological sur-
veys of ballast water and ship fouling combined with knowledge of life 
history characteristics of the species. Ballast water can be a possible 
transport pathway for a wide variety of aquatic species, not only those 
with pelagic life stages, as virtually any sessile organism may be drawn 
into ballast tanks (or floodable cargo holds) on floating pieces of debris, 
wood chips, algae or seagrass bearing a biofouling community of at-
tached species. While this aspect of ballast-able biota is rarely studied, 
the potential for species associated with floating material to be taken 
into ballast tanks was suggested as early as the 1920s (Carlton, 1985). 
Conversely, ship fouling can be a possible transport pathway not only 
for encrusting or fouling species on a ships’ main hull, but also for sed-
entary and mobile species associated with more protected underwater 
niche areas such as sea chests (Coutts & Dodgshun, 2007). As a result, 
both ballast water and ship fouling were assigned as potential path-
ways for the majority of taxa, excepting purely pelagic free-swimming 
taxa (such as shrimps, planktonic copepods and ctenophores) associ-
ated only with ballast water. We standardized the assignment of ship-
ping pathways for related taxa across regions, typically at the level of 
Family or Order, except where there was no geographic correlation be-
tween shipping activity and the site of first collection (e.g. where path-
ways such as aquaculture were more likely). As there is uncertainty 
associated with all pathway assignments, we tallied records where 
documented or direct evidence existed (e.g. species was observed 
within a pathway at the time of introduction to a particular location).

Pathwaysb  Sub-pathwaysb  Description

Hitchhikers on Ship Species that have been introduced unintentionally by being a hitchhiker in or on ships, 
boats or other watercraft but excluding species transported in ballast tanks or via 
ship fouling

Organic packaging material Species that have been introduced unintentionally by being a stowaway in or on 
packing materials such as wooden pallets

Ship Fouling Species that have been introduced unintentionally as biofouling organisms on 
underwater surfaces of ships including the hull and niche areas

Unaided Rafting on Anthropogenic 
Debris

Species that spread to new regions attached to marine litter and other anthropogenic 
materials drifting in natural water currents

aAdapted fromFofonoff et al. (2018). 
bAdapted from Harrower et al. (2018). 

TA B L E  1   (Continued)
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When a single detection was linked to multiple possible path-
ways of introduction, we tallied each pathway using an unweighted 
approach to identify the maximum number of detection events per 
pathway (as in Williams et al., 2013). In this analysis, canals, such as 
the Suez Canal, were evaluated both as a pathway through which 
ANS may move naturally (i.e. as species with pelagic life stages) 
and as a route used by ships. In cases where species have pelagic 
behaviour and are possibly associated with shipping, they were as-
signed multiple pathways. Although unassisted pathways, such as 
water currents, can be an important pathway for the movement of 
ANS (see Discussion), if the first report of an ANS within an eco-
system was considered solely due to natural spread from a neigh-
bouring ecosystem (e.g. range expansion or range shift), it was 
excluded from this analysis because unassisted movement was not 
documented consistently across regional datasets. Transport associ-
ated with anthropogenic debris, however, was included (considering 
Carlton et al., 2017).

Data were analysed at global and regional levels to explore 
trends in the rate of detection, ANS richness, population status and 
pathways of introduction. A ten-year moving average was used in 
temporal plots to decrease variability across years due to inconsis-
tent search effort (see Discussion).

3  | RESULTS

3.1 | Global patterns

The assembled comprehensive dataset comprises 2209 records 
of primary detections of ANS (1442 unique species belonging to 
17 phyla) across 49 aquatic ecosystems, including ten ecosystems 
found to have zero confirmed records during the period of study 
(Figure 1; Table S1). Considering all regions combined, an annual 
mean of 43 (±16 SD) primary ANS detections occurred. This trans-
lates to roughly one new detection every 8.4 days for this 50-year 
era. The rate of detections was relatively stable during 1965–1995, 
with a ten-year mean detection rate of about 32 ANS per year 
(Figure 2a). After this time, the rate increased, reaching 51 primary 
detections of ANS annually by the year 2000 and peaking at roughly 
66 primary detections of ANS per year during 2005–2010. In the last 
five years, the rate of detection declined marginally, with about 59 
primary detections per year.

A variety of ANS taxa were reported, with Arthropoda (n = 522, 
23.6% of total), Mollusca (n = 373, 16.9%) and Chordata (Pisces) 
(n = 279, 12.6%) being most frequent, followed by Rhodophyta 
(n = 209, 9.5%), Annelida (n = 200, 9.1%), Chordata (Tunicata) 

F I G U R E  1   Records of primary 
detections of aquatic non-indigenous 
species (ANS) between 1965 and 2015 
in each of 49 coastal marine, estuarine 
and freshwater ecosystems. Panels (a) 
and (b) show total number of detections 
and proportion of populations with 
established status, respectively. 
Comparable data were not available for 
regions in white, though ANS may be 
present, and are documented from a 
number of these regions
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66.5S

66.5N

172.5W

169W

# of ANS
0

1 - 5

6 - 24

25 - 110

111 - 507

Data not available

(a)

0 4,000 8,0002,000 Km

23.5N

66.5S

66.5N

172.5W

169W
(b)

Population status

Other ANS

Established ANS



     |  7BAILEY Et AL.

(n = 160, 7.2%), Bryozoa (n = 148, 6.7%) and Cnidaria (n = 131, 5.9%) 
(Table S2). Ochrophyta (n = 57, 2.6%), Chlorophyta (n = 51, 2.3%) 
and Porifera (n = 26, 1.2%) were reported relatively infrequently, 
while Tracheophyta, Echinodermata, Ctenophora, Kamptozoa, other 
Chordates (e.g. Amphibia and Reptilia), Phoronida, Brachiopoda and 
Charophyta were seldom reported (each having fewer than 20 de-
tection events, cumulatively representing 2.4% of all records).

Most ANS were reported as having established (74.2%) or un-
known population status (19.9%)—few records exist for ANS with 
failed (5.4%) or extinct (0.5%) populations (Table S1). Most ANS were 
likely introduced as stowaways in ships’ ballast water or biofouling, 
although direct evidence is typically absent, particularly for ballast 
water (direct evidence cited for 42/1468 ship fouling vs. 4/1595 bal-
last water records, respectively). The temporal trends for these two 
pathways were similar to or are largely responsible for the overall 
pattern of detections through time (Figure 2b). Escape of aquacul-
ture/mariculture species follows a similar pattern, although much 

lower in magnitude, while the corridor pathway and escape of pet/
aquarium species seem to have increased in importance/rate since 
the late 1990s. Nearly one-third of ANS primary detections were 
associated with a single pathway (32.7%), while most were associ-
ated with at least two (52.6%) or three (14.1%) pathways. Movement 
through connected waterways/seas/basins (193 records), stow-
aways in ballast water (162 records) and escape of aquaculture/mari-
culture species (144 records) were the most important pathways for 
single-pathway primary detection events. When two pathways were 
possible, stowaway as ship fouling and/or in ballast water were over-
whelmingly implicated (91.5% of two-pathway events).

3.2 | Regional patterns

Patterns of primary detection were variable across regions, as would 
be expected due to differences in pathway strength (i.e. introduction 

F I G U R E  2   Chronology of primary 
detection events of aquatic non-
indigenous species (ANS) across 49 
coastal marine, estuarine and freshwater 
ecosystems during 1965–2015. Panel (a) 
shows trends by population status, where 
the dashed and dotted lines denote the 
ten-year moving averages for the annual 
number of detection events for total and 
established populations, respectively. 
Panel (b) shows trends in the number 
of primary detection events of ANS by 
pathway, for the top six pathways (96% of 
records)
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effort), environmental conditions, ecosystem size, survey effort and 
taxonomic expertise. The cumulative number of primary detection 
events during the 50-year period ranged from zero to more than 
500 per ecosystem, with variable levels of population establishment 
success across regions (Figure 1, Table S1). Inter-regional temporal 
trends varied with three patterns being typical: a distinct peak of 
ANS primary detections in the 1995–2015 timeframe, an overall 
trend (positive slope) of increased detections through time or a rela-
tively stable rate of detections (Figure 3).

A majority (76.6%) of the 1442 unique ANS records were re-
ported from a single ecosystem, while the 25 most reported ANS 
were reported from at least seven different ecosystems (Table 2). 
Regions having at least 10 primary detection records during the 
study period exhibited a diverse assemblage of ANS from at least 
five phyla, with any one phylum typically comprising no more than 
30% of species within a location (exceptions being Arthropods 
and Pisces, which comprised 40%–50% of ANS in some regions) 
(Figure 4, Table S2).

F I G U R E  3   Temporal trends in primary detections of aquatic non-indigenous species across the top 12 ecosystems  studied. Trend lines 
show ten-year moving average of the annual number (dots) of detections. Plots are arranged in columns to show (a) ecosystems having a 
strong peak in detections between 1995 and 2015; (b) ecosystems having an overall trend of increased rate of detections through time; and 
(c) ecosystems having relatively stable detection rate through time. Note differences in scale of y-axes across plots
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Transport stowaway in ship fouling and ballast water tended to 
be the dominant pathways in most regions, typically responsible for 
at least 40% of primary detection events (Figure 5). Exceptions are 
the corridor pathway (Suez Canal) in the Mediterranean Sea and 
escape of aquaculture/mariculture species in the East China, South 
China and Yellow Seas (Table S3).

4  | DISCUSSION

Our analyses identified 2209 primary detection events of 1442 
unique ANS over the past 50 years which, although confounded 
by time-lags between actual introduction and detection, likely is 
an underestimate of the actual number of introductions during this 
time period. It is widely recognized that ANS are frequently under-
reported due to limited search effort, uncertainty about historical 
biogeography and an insufficiency of taxonomic expertise (Carlton 
& Fowler, 2018; Ojaveer et al., 2017), especially for smaller-bodied 
organisms (Carlton, 2009; Lohan et al., 2020). Our study also does 
not consider secondary introductions (spread) of ANS neither within 
an ecosystem nor between ecosystems, which will further contrib-
ute to this underestimation. Although our dataset represents an ex-
tensive collection of global detection records, it includes only ~73% 
of the world's large marine ecosystems, with very limited coverage 
of Africa, Central and South America and Asia. Introductions of ANS 
have undoubtedly occurred in these areas; the cost of ANS surveys 
can be prohibitive in regions with limited resources and a dearth of 
expertise across many taxa, which could explain why data were not 
accessible for this study.

The results of this study highlight a possible under-representa-
tion of taxa in global datasets of non-indigenous species: the 1442 
unique species recorded here is more than ten-fold lower than the 
number of non-indigenous species (vascular plants, mammals, in-
sects, birds, molluscs and fishes) observed in terrestrial ecosystems 
(Seebens et al., 2017). While land biodiversity is vastly higher than 
both marine and aquatic diversity combined (Grosberg et al., 2012; 
Vermeij & Grosberg, 2010), and thus more NIS would be propor-
tionally expected in terrestrial systems, the documentation of the 
diversity of invasions in marine, estuarine and freshwater habitats 
has significantly lagged behind similar research on land. For exam-
ple, extensive documentation of terrestrial invasions in the Hawaiian 
Islands and the Galápagos Islands commenced decades before 
the first investigations of marine invasions in those archipelagos 
(Carlton, & Eldridge, 2009, 2015; Carlton et al., 2019). We thus sus-
pect that we may be at the tip of an invasion iceberg in understand-
ing the scale of introductions in coastal environments (see also Byers 
et al., 2015).

Cumulatively, over the past 50 years, one ANS was reported 
as a primary detection within the evaluated ecosystems every 
8.4 days (on average), and the rate of detection exhibits changes 
across years both within and across regions. While changes in the 
rate of ANS primary detections through time may reflect the actual 
introduction rate, this relationship is uncertain and confounded by 
variable survey effort and species detectability (Hewitt, Campbell, 
et al., 2004; Hewitt, Willing, et al., 2004; Ruiz et al., 2000). The 
rate of ANS primary detections appeared to increase in the 1990s 
and 2000s, possibly related to increased global trade (e.g. Sardain 
et al., 2019), but it is also likely influenced by increasing scientific, 
government and public awareness, and increased funding for sur-
veys, monitoring and other assessments. For example, peaks in de-
tection rate for Insular Pacific-Hawaii, New Zealand and Southeast 

TA B L E  2   List of the 25 most common aquatic non-indigenous 
species reported as new primary detections across the studied 
ecosystems during 1965–2015

Species Name Ecosystems
Potential Pathways of 
Introduction

Caprella mutica 13 BW, SF, AFG

Botrylloides violaceus 10 BW, SF, AFG, EAM, TCA

Palaemon macrodactylus 10 BW, EAM, CIW

Styela clava 10 BW, SF, EAM, AFG, TCA

Agarophyton 
vermiculophyllum

9 BW, SF, EAM, TCA

Grateloupia turuturu 9 BW, SF, EAM, TCA, OPM

Mytilus galloprovincialis 9 BW, SF, EAM

Amphibalanus amphitrite 8 BW, SF

Antithamnionella 
spirographidis

8 BW, SF, TCA, UAD

Carcinus maenas 8 BW, SF, AFG, TCB, ELF

Crassostrea gigas 8 EAM, SF

Dasysiphonia japonica 8 BW, SF, AFG, TCA

Didemnum vexillum 8 BW, SF, EAM, AFG, TCA, 
CIW

Molgula manhattensis 8 BW, SF, EAM

Paracerceis sculpta 8 BW, SF

Pseudopolydora 
paucibranchiata

8 BW, SF, EAM, TCA

Boccardia proboscidea 7 BW, SF, TCA

Grandidierella japonica 7 BW, SF, EAM

Diadumene lineata 7 SF, EAM

Polyandrocarpa zorritensis 7 BW, SF

Polycera hedgpethi 7 BW, SF, TCA

Ruditapes philippinarum 7 EAM, RFW

Ulva australis 7 BW, SF, TCA

Undaria pinnatifida 7 BW, SF, TCA, EAM OPM

Watersipora subtorquata 
complex

7 BW, SF

Note: The number of studied ecosystems reporting the species is 
given, as well as a cumulative list of possible pathways of introduction 
(pathways may differ for the same species introduced to different 
regions).
Abbreviations: AFG, Transport stowaway in angling/fishing gear; 
BW, Transport stowaway in ballast water, sediments or solid ballast; 
CIW, Corridor through interconnected waterways; EAM, Escape from 
aquaculture/mariculture; ELF, Escape of live food/live bait; OPM, 
Transport stowaway in organic packing materials; RFW, Release for 
fishery in the wild; SF, Transport stowaway in ship biofouling; TCA, 
Transport contaminant on animals; TCB, Transport contaminant in bait; 
UAD, Unaided rafting on anthropogenic debris.
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F I G U R E  4   Relative importance of 
taxonomic groups (as a proportion of total 
primary detections) for aquatic non-
indigenous species detected across 49 
coastal marine, estuarine and freshwater 
ecosystems, from 1965 to 2015. In the 
box plots, the boundary of the box closest 
to zero indicates the 25th percentile, 
the black line within the box marks the 
median, and the boundary of the box 
farthest from zero indicates the 75th 
percentile. Whiskers above and below 
the box indicate the 10th and 90th 
percentiles. Points left and right of the 
whiskers indicate outliers outside the 
10th and 90th percentiles

F I G U R E  5   Relative importance of introduction pathways (as a proportion of total pathway records) associated with aquatic non-
indigenous species detected across 49 coastal marine, estuarine and freshwater ecosystems, from 1965 to 2015. In the box plots, the 
boundary of the box closest to zero indicates the 25th percentile, the black line within the box marks the median, and the boundary of the 
box farthest from zero indicates the 75th percentile. Whiskers above and below the box indicate the 10th and 90th percentiles. Points left 
and right of the whiskers indicate outliers outside the 10th and 90th percentiles
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Australian Shelf correspond with dedicated scientific surveys aiming 
to document ANS beginning in the 1990s (Carlton & Eldridge, 2009; 
Hewitt, 2002; Hewitt, Campbell, et al., 2004) and in the 2000s (Inglis 
& Seaward, 2016). Comparatively, these areas receive just a small 
proportion of global shipping but account for much greater numbers 
of recorded ANS than regions that are global centres for shipping 
(e.g. China, SE Asia, Japan, NW Atlantic), appearing to challenge pre-
dictions that invasion hot spots should be strongly correlated with 
modern shipping activity (Kaluza et al., 2010; Sardain et al., 2019; 
Seebens et al., 2016). In fact, for Hawaii (and for many of the re-
gions reviewed here), the majority of introductions may have oc-
curred long before the first reports. Similarly, regions with apparent 
increasing rate of primary detections since the 1990s (Patagonian 
Shelf, East Brazil Shelf and Madeira Archipelago) are likely reflective 
of recent, dedicated research (Canning-Clode et al., 2013; Schwindt 
et al., 2020; Teixeira & Creed, 2020).

The apparent decline in primary detections of ANS since 2005 
in many regions may correspond with preventative measures imple-
mented to reduce biological introductions, such as requirements to 
manage ships’ ballast water (e.g. Hayes et al., 2019), and to dimin-
ish the risks associated with the intentional introduction and trans-
fer of aquatic organisms via aquaculture and fisheries (e.g. Cook 
et al., 2008; Hewitt et al., 2006). However, given uncertainty due 
to inconsistent and often insufficient search effort leading to time-
lags between introduction and first collection, any inferences about 
ANS introduction rate based on collection dates must be made cau-
tiously and, ideally, consider multiple lines of evidence (see Costello 
& Solow, 2003). For example, Bailey et al. (2011) inferred that a de-
clining rate of ANS detections in the Great Lakes could be due to 
management efforts (i.e. new ballast-tank flushing regulations) only 
after reviewing direct cause-and-effect studies of the management 
technique and evaluating compliance rates by the shipping indus-
try. Even after such detailed analysis, the relative contribution of 
management versus search effort is not clear. Seebens et al. (2017) 
found similar declines in records of recent detections of terrestrial 
taxa and fishes consistent with a decline in deliberate introductions 
due to increasing awareness of impacts of biological introductions, 
but also cautioned that data collected after the year 2000 may be 
incomplete due to time-lags. We therefore suggest that future as-
sessments should consider long-term averages and associated levels 
of search effort to evaluate invasion dynamics of ANS.

Most regions do not have regular surveillance programmes with 
consistent long-term funding or are pursuing generalized surveys 
to generate baseline inventories rather than targeted early detec-
tion of ANS. In the absence of standardized, targeted and repeated 
methods for surveillance, the true date of introduction could be 
years or even decades earlier than the date of first detection (e.g. 
Galil, 2008; Hewitt, Campbell, et al., 2004; Zenetos et al., 2019). One 
example of time-lags within these data is the collection and report-
ing of four beach-dwelling isopods from Hawaii between the 1970s 
and 1990s (Halophiloscia couchii (Kinahan, 1858), Littorophiloscia cul-
ebrae (H. F. Moore, 1901), Porcellio lamellatus (Budde-Lund, 1885) 
and Armadilloniscus ellipticus (Harger, 1878)), thought to have been 

introduced in solid ballast materials such as rock and sand (Carlton & 
Eldridge, 2009); as solid ballast was phased out of use in the 1800s 
(National Research Council, 1996), these isopods may have been in-
troduced one hundred years (or more) prior to their published col-
lection date.

Where surveillance is designed specifically to detect targeted 
taxa and is implemented regularly, ANS can be detected at relatively 
small population sizes, reducing time-lags between introduction and 
detection (Hayes et al., 2019). More often, ANS are collected as “by-
catch” during non-surveillance research activities (Ruiz et al., 2000). 
Additional lags then occur because time is required to detect, pos-
itively identify and report new species once collected in a sample 
(Azzurro et al., 2016; Stanislawczyk et al., 2018). A lack of taxo-
nomic expertise can cause significant delays in reporting, particu-
larly if individuals are first misidentified as native species (Campbell 
et al., 2007; Carlton, 2009; Mienis, 1992). Furthermore, without 
standardized and targeted surveillance programmes in place, many 
years may pass before a new ANS is collected because introduced 
populations are likely to be rare (both in spatial coverage and abun-
dance) until several generations contribute to population growth 
and spread (Azzurro et al., 2016; Harvey et al., 2009). Similarly, it is 
difficult to ascertain the population status (established, failed or ex-
tinct) without repeated surveys in the location of introduction, and 
many introductions are likely to occur unnoticed if populations fail or 
go extinct within a short time-scale. The high proportion of records 
with unknown population status (19.9%) and low number of “failed” 
populations (5.4%) in this study indicate a need to better design or 
implement surveillance programmes with repeated measures.

Most detection events in this dataset are comprised of 
Arthropoda, Mollusca and Pisces. The reporting of certain taxa 
(such as Annelida, Rhodophyta, Bryozoa, Cnidaria and Tunicata) in 
only a subset of the studied ecosystems may reflect different ac-
tive pathways (anthropogenic transport mechanisms and source 
regions of ANS) and species adaptations to different recipient con-
ditions (Cardeccia et al., 2018). However, it is likely that the pattern 
is also heavily influenced by the availability of taxonomic special-
ists focusing on these groups and the different sampling methods 
used across studies. Interestingly, Echinodermata comprise only 
12 ANS reported in six of the 49 estuarine and marine ecosystems 
studied. Given that this phylum is globally well studied, abundant 
and widely distributed (e.g. Lebrato et al., 2010), it is unlikely that 
the low number of echinoderm invasions can be attributed solely 
to the group's prevalence or to lack of taxonomic expertise, sug-
gesting other factors also influence the frequency of ANS reports. 
Further, many experts argue that the biogeography and taxonomy 
of microscopic species in the Chlorophyta and Ochrophyta are 
so poorly understood that new reports of these taxa should be 
considered cryptogenic (sensu Carlton, 1996; see also De Clerck 
et al., 2013; Gómez, 2008, 2019) with few exceptions where forensic 
assessment clearly demonstrates introduction of ANS (e.g. Bolch & 
Hallegraeff, 1990; Hallegraeff et al., 1988).

The true rate of recent introductions (since 1965) is undoubtedly 
much greater than documented here for many small-bodied taxa. 
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More specifically, the magnitude of organism transfer (both in abun-
dance and species richness) is inversely proportional to body size, 
yet relatively few ANS are recognized for fungi, protists, parasitic 
and free-living flatworms, viruses and microbes, likely reflecting high 
uncertainty in taxonomic identification and geographic origin (Lohan 
et al., 2020). The investigation of lesser-studied and cryptogenic 
taxa will be a fruitful avenue of future research, particularly as mo-
lecular tools, reference databases and museum collections advance 
(e.g. Darling et al., 2017), noting that both conventional and molec-
ular biological surveys are dependent on taxonomic expertise—a 
skill set rapidly diminishing without dedicated funding and training 
programmes (Bik, 2017; Coleman, 2015; Costello et al., 2010; Kim & 
Byrne, 2006).

Assessment of the pathways of introduction of ANS is fundamen-
tal for biological invasion risk assessments and for prioritizing man-
agement, monitoring and surveillance activities (Barry et al., 2008; 
Essl et al., 2015). For many non-indigenous species, more than one 
introduction pathway is possible based on human activities occurring 
in or near the locality of first collection; hence, the assignment of the 
responsible pathway is uncertain (Ojaveer et al., 2018). As a result, 
many studies report only “commercial shipping” as the mechanism 
of introduction, without differentiating between the various path-
ways associated with this activity (e.g. ballast water and biofouling 
of underwater surfaces), making it difficult to quantify introduction 
likelihood and evaluate the efficacy of pathway-based management 
actions. Our study also indicates that commercial shipping activi-
ties are often inferred as the responsible pathway(s) of introduction 
without direct evidence (nor critical examination of alternate possi-
bilities). Research examining commonly neglected or understudied 
pathways, such as the aquarium and bait trades, Internet commerce 
and anthropogenic marine litter (e.g. Campbell et al., 2017; Carlton 
et al., 2017; Chan et al., 2020; Fowler et al., 2015; Lenda et al., 2014), 
could lead to new insights and priorities for management of ANS. 
It is vital that future work transparently consider uncertainties in 
pathway assignments, describe the level of confidence and critically 
evaluate all possible pathways (Essl et al., 2015; Ojaveer et al., 2018).

National regulations requiring ballast water to be exchanged 
mid-ocean, thereby purging coastal species for presumably less 
harmful oceanic species and reducing viability of remaining coastal 
species via osmotic shock, have been implemented in multiple loca-
tions around the world since the early 1990s (Bailey, 2015). While 
there is evidence that ballast water exchange has effectively re-
duced ballast-mediated introductions to the Laurentian Great Lakes 
where there is a high level of enforcement (Bailey et al., 2011), 
there is greater uncertainty about the degree of protection offered 
to coastal marine ports (e.g. Casas-Monroy et al., 2015; Scriven 
et al., 2015) and locations lacking performance measures. For some 
marine ports, there have been trade-driven compensatory changes 
in the total ballast water and organism delivery (Carney et al., 2017), 
and biofouling remains a largely unmanaged source of ANS (Williams 
et al., 2013). It is notable that the declining trend in detections as-
sociated with ship fouling occurs after the entry-into-force of the 
International Convention on the Control of Harmful Anti-Fouling 

Systems on Ships (IMO, 2001) in 2008 which banned the use of the 
anti-fouling compound tributyltin (TBT). This ban raised concerns 
that in the absence of effective replacements for TBT, introduc-
tions via ship fouling would escalate (Drake & Lodge, 2007; Faasse 
& Ligthart, 2007; Lewis et al., 2004); however, there is no evidence 
of this in our study. Further research is needed to disentangle the 
risk associated with ballast water versus biofouling and to evaluate if 
international measures (IMO, 2004, 2011) intended to curtail intro-
ductions by these pathways are effective or if additional measures 
are needed (ICES, 2019).

When species are introduced and become established in a new 
geographic region, they often spread beyond the initial site of in-
vasion, expanding the area occupied and increasing the potential 
magnitude of impacts (Parker et al., 1999). Such secondary spread 
beyond the initial site of introduction results from a combination 
of natural processes (e.g. active swimming, passive larval transport 
or drifting) and human-mediated dispersal mechanisms (e.g. recre-
ational vessels, aquaculture, fishing and restoration). Although ex-
cluded from this study due to a lack of consistent data across studied 
regions, secondary spread is known to be a very important compo-
nent of invasion dynamics, at multiple scales within and among ad-
jacent ecosystems. For example, the Japanese wireweed, Sargassum 
muticum (Yendo) Fensholt, is believed to have been introduced ini-
tially to the coasts of northern France through oyster aquaculture 
activities and to have subsequently spread via drifting plants to the 
English south coast and the Netherlands. It has now spread to most 
coastal countries in Europe, likely through a combination of natural 
dispersal, ships’ ballast water or biofouling and oyster aquaculture 
activities (Gollasch et al., 2009).

A recently published study on the Baltic Sea indicates that sec-
ondary spread of ANS from the adjacent North Sea is responsible 
for around 50% of introductions when both natural dispersal and 
human-mediated pathways are considered (Ojaveer et al., 2017). 
In a previous analysis of 257 ANS established in California, 57% of 
these species were known from multiple bays along the coast with 
some occurring all the way to Alaska, suggesting secondary spread 
attributed primarily to shipping (ballast water and/or ship fouling) 
and aquaculture (Ruiz et al., 2011). There is mounting evidence that 
global warming has enabled ANS to expand into regions where pre-
viously they were not able to survive and reproduce (Canning-Clode 
& Carlton, 2017; Occhipinti-Ambrogi, 2007; Walther et al., 2009). 
Given the impressive rates of dispersal of ANS, it is likely that the un-
aided pathway is significantly underestimated (Hulme et al., 2008). 
This stresses the need for regional cooperation, as unaided spread is 
an important pathway to grasp both from a management perspective 
and in terms of fundamental invasion ecology (Faulkner et al., 2020; 
Schwindt & Bortolus, 2017).

This study indicates that introductions of ANS have oc-
curred at an alarming rate on a global scale for the past 50 years. 
Coordinated actions are urgently needed to prevent new introduc-
tions and further spread of ANS, one of the top drivers of biodi-
versity change (IPBES, 2019; IUCN, 2017). While there have been 
significant advances over the past 30 years in policies to reduce 
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ballast water-mediated invasions, including those by the International 
Maritime Organization and regulations in several nations (e.g. 
Government of Canada, 2006; U.S. Coast Guard, 1998), these are 
still being implemented, and ship fouling is largely unregulated but 
gaining increased attention (e.g. Department of Agriculture and 
Water Resources, 2019; Georgiades et al., 2020; Ulman et al., 2019). 
Further regional actions, such as those to address introductions via 
the Suez Canal, will have substantial benefits for the Mediterranean 
Sea and across associated global trade networks (Galil et al., 2017).

Despite the good intentions of the CBD to evaluate non-indig-
enous species as a key indicator and recent efforts to establish a 
mechanism for reporting (Pagad et al., 2018), this is still at an early 
stage for aquatic and marine species, and synthetic inventories of 
ANS and associated invasion pathways are still very limited, inhib-
iting prioritization and control activities in aquatic environments. 
While numerous policies and strategies have been put in place that 
aim to reduce the introduction and spread of non-indigenous species 
as conservation measures, the coverage is piecemeal, taxonomically 
biased and focused only on a subset of pathways—implementation 
and enforcement is often lacking (see Ojaveer et al., 2018) and in-
ternational treaties may be in conflict (Campbell et al., 2009). For 
example, the CBD and the World Trade Organization's General 
Agreement on Tariffs and Trade 1994 (GATT) apply the precaution-
ary approach from different contexts, with the GATT able to uti-
lize “gateway” provisions (Campbell et al., 2009). The end result is 
that Sanitary and Phytosanitary Measures may be cancelled out by 
the World Trade Organization if trade is blocked as a result of ANS. 
The Intergovernmental Science-Policy Platform on Biodiversity 
and Ecosystem Services recently reported that, based on past and 
ongoing rapid declines in biodiversity, goals for conserving nature 
and achieving sustainability cannot be met without urgent and con-
certed efforts fostering transformative change to reduce drivers 
of biodiversity loss (IPBES, 2019). In our view, this requires robust 
and reliable inventories of ANS introductions and their introduc-
tion pathways, needed to both evaluate performance of manage-
ment measures and accelerate the rate of adaptive management to 
achieve desired outcomes.

Studies such as this one, based on national and/or regional in-
ventories of non-indigenous species, are only reliable if local experts 
can maintain and continually update lists considering new records, 
range expansions and evolving knowledge of nomenclature, popu-
lation status and responsible pathways (Marchini et al., 2015). It is 
vital to continue and to expand research and survey efforts across 
marine, estuarine and large freshwater ecosystems to better inform 
both regional and global policy development and management activ-
ities, such as the European Water Framework Directive (Cardoso & 
Free, 2008). Inventories of ANS frequently suffer from a number of 
uncertainties in species identification (taxonomic uncertainty) and 
inferred pathways of introduction, inconsistent or uneven search ef-
fort (leading to low spatial, temporal and taxonomic resolution), poor 
documentation of data and knowledge and inadequate baseline in-
formation (Marchini & Cardeccia, 2017; McGeoch et al., 2012). These 
are all critical gaps that impair our ability to fully understand invasion 

dynamics, their drivers and performance of policies and management 
actions. Addressing these gaps requires standardized and repeated 
measures for detection, in order to improve the core data quality and 
inferences that can be drawn (e.g. Ruiz & Hewitt, 2002). While this 
need is well recognized and several research groups have sought to 
advance this within their region, it is also the case that: (a) somewhat 
different methods and approaches are used among regions and (b) 
such efforts are usually short-term and limited by funding available 
to an individual researcher or group.

We call for standardized, targeted and repeated methods across 
regions in order to improve the quality of global-scale comparisons 
and sustain core measures over longer time-scales. Future studies 
should include key human activities/pressure trends over time in 
helping to interpret the temporal dynamics of new introductions. It 
will be fundamental to fill in existing knowledge gaps given that in-
vasion data representing broad regions of the world's oceans are not 
yet readily available and to maintain knowledge pipelines for adap-
tive management. We hope that the baseline provided here will be 
updated in the future as pathway management is implemented and, 
ideally, becomes evidence of associated positive changes (fewer in-
troductions of ANS).
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