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1 Introduction

Dynamic panel models with a fixed and usually small time dimension (‘short panels’)

occupy a substantial body of the applied and theoretical literature. The applied

literature has largely favored instrumental variables (IV) and moment conditions

estimation strategies to eliminate the so-called Nickel bias (Nickel, 1981), which date

back to the pioneering work by Anderson and Hsiao (1981, 1982). A successful line

of research has relied on the Generalized Method of Moments (GMM) framework to

exploit efficiently all the available moment conditions that arise from the dynamic

structure of the model. Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bond

(1991), Ahn and Schmidt (1995, 1997), Arellano and Bover (1995), and Blundell and

Bond (1998) are examples of research along this line whose results are widely applied

in empirical work. See also Hausman and Pinkovskiy (2017) for a recent development

in the literature. Moment based strategies are shown to perform relatively well in

practice, are easy to handle and communicate within the relevant IV paradigm in

econometrics, and are also computationally convenient, as stressed by Harris, Matyas,

and Sevestre (2009) in their survey. Admittedly, IV-GMM methods are not free from

limitations, including the problem of weak instruments (Bun and Windmeijer, 2010,

and Stock, Wright, and Togo, 2002) and the related issue of moment multiplicity

(Roodman, 2009).

In this paper we propose a novel IV-GMM estimator that exploits new moment

conditions implied by the commonly used dynamic panel models with unobserved

time invariant effects. In the spirit of Chamberlain’s (1982, 1984) classic work (see,

e.g., Crepon and Mairesse, 2004) and following Robertson and Sarafidis (2015), we

introduce new parameters to capture the covariances between regressors and time

invariant effects, and treat the relationship among such parameters as moment con-

ditions, which are later exploited jointly with those arising from initial conditions

and the dynamic structure of the model in a GMM fashion that leads to an optimal

estimator. The asymptotic framework corresponds to the large N , finite and small T

case. Among other results, our paper shows that estimators like Arellano and Bond

(1991) or Ahn and Schmidt (1995, 1997) are particular cases of our framework and,
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consequently, weakly dominated in efficiency by our strategy. We compare the asymp-

totic variances and establish under which conditions our estimator is asymptotically

more efficient. A Monte Carlo experiment suggests that our proposed GMM estima-

tor performs better (in terms of bias and RMSE) than Arellano and Bond (1991) and

Ahn and Schmidt (1995) for the case of non-stationary covariates, and that it leads

to a simple variance estimator that can be used to test for the presence of unobserved

effects, improving upon the performance of alternatives like Wu and Zhu (2012).

The approaches in the line of Chamberlain (1984) are theoretically relevant and

simple to communicate and implement in alternative contexts that include incidental

parameters. In the case of dynamic panel models, our strategy leads to a model in

levels (as opposed to differences) that is simple to implement in practice. This is the

key difference with the existing IV-GMM methods because they are based on differ-

ences, while the proposed method is IV-GMM based on levels. The methods based on

differences eliminate the individual effect before forming the moment conditions, and

thus the moment conditions only involve the original model parameters. Our method

is based on levels and thus it does not eliminate the individual effects, but it requires

the covariance of the individual effects and the IV’s in the moment conditions. Those

covariances do not increase in number as the sample size (number of individuals)

increases, and thus can be treated as parameters. Based on such insights, we prove

that the moment conditions in levels can identify all the structural parameters, as

well as the implied covariances.

Our analytical framework allows for the construction of an estimator with a closed-

form expression of the Jacobian matrix and that avoids the problem of multiple local

minima. Note that this alternative implementation does not require restrictions on

the initial conditions of the dependent variable process (e.g., as in Blundell and Bond,

1998), but we only need to model the covariance of the initial values of the dependent

variable and the unobserved individual effects as an additional parameter.

A convenient by-product of our strategy is that it produces a very simple procedure

to estimate the variance of the unobserved error term, which is crucial for empirical

work where such parameter measures the relative importance of individual-specific

time-invariant factors in explaining persistence, as in the classic article by Lillard and
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Willis (1978). Simple tests are immediate to derive within the proposed framework.

For example, our estimation process leads to a very simple alternative to the test by

Wu and Zhu (2012) for the presence of unobserved heterogeneity.

The paper is structured as follows. Section 2 presents the model. Section 3

introduces the parametrization together with the corresponding moment conditions

in levels and establishes the key identification condition that leads to the proposed

estimator, which is derived in Section 4. Section 5 compares the proposed estimator

with existing GMM strategies. Section 6 explores the performance of the proposed

strategy and other alternatives in finite samples through a Monte Carlo exercise.

Section 7 concludes.

2 Model

Consider a dynamic panel data model of the form

yit = α◦ + γ◦yi,t−1 + x′itβ◦ + µi + εit, (1)

where i = 1, . . . , N and t = 2, . . . , T . In this model, yit is the dependent variable, xit

is a k × 1 vector of regressors, µi is the individual effect, and εit is an error term, α◦

is an intercept, γ◦ is a scalar less than 1 in absolute value, and β◦ is a k× 1 vector of

coefficients. The variance of µi is denoted by σ2
µ◦. We will assume that T ≥ 3.

The coefficient γ◦ measures the degree of the state dependence or pure dynamic

persistence. The factor µi induces an alternative source of persistence, usually referred

to as the individual effect or unobserved heterogeneity. The presence of both types

of persistence is a key factor in the dynamic panel data literature and, as is well

known, standard estimators (OLS, LS dummy variables) are not consistent for γ◦

when N →∞ and T is fixed (Nickel, 1981).

Assume that the researcher observes a random sample {[(yi1, y′i)′, (xi1, xi)′] : i =

1, . . . , N}, where yi = (yi2, . . . , yiT )′ is a (T − 1) × 1 random vector and xi =

(xi2, . . . , xiT ) is a k × (T − 1) random matrix containing the regressors. The ob-

served initial value of the dependent variable is yi1. The asymptotic properties of our

estimator will be derived assuming that N grows to infinity and T is fixed, i.e., short

panels, which is standard in microeconometrics.
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The following assumptions are imposed. Let εi = (εi2, . . . , εiT )′ be a (T − 1) × 1

random vector containing the error terms.

Assumption 1. {(yi1, x′i1, . . . , x′iT , µi, ε′i) : i = 1, . . . , N} are independent and identi-

cally distributed (i.i.d.) random vectors with finite fourth moments.

This assumption imposes independence across individuals, but different intra-

individual structures are allowed. Combined with eq. (1), Assumption 1 implies

that {(yi1, y′i, x′i1, . . . , x′iT ) : i = 1, . . . , N} are i.i.d. random vectors with finite fourth

moments.

Assumption 2. The following conditions hold.

1. {µi : i = 1, . . . , N} have zero mean and variance σ2
µ◦ ≥ 0.

2. For each i, {εit : t = 2, . . . , T} have zero mean and are uncorrelated, with,

var(εit) > 0 for all t.

3. (a) E(yi1εit) = 0 for all t = 2, . . . , T .

(b) E(xisεit) = 0 for all t = 2, . . . , T and 1 ≤ s ≤ t.

(c) E(µiεit) = 0 for all t = 2, . . . , T .

The first condition imposes the usual normalizing restriction E(µi) = 0, since

the model contains a common intercept. The second requires that the errors εit are

uncorrelated across t = 1, . . . , T . This condition can be relaxed to incorporate serial

correlation, at the price of modifying the moment conditions in the next section. The

zero-mean condition on εit can also be relaxed as long as E(εit) is constant across

periods; in such case, E(εit) will be ‘captured’ by α◦. The variance of εit is allowed

to vary across t. The third part of Assumption 2 implies a set of sequential moment

conditions that will be exploited to obtain valid instruments. Assumption 2 together

with eq. (1) implies

E(yisεit) = 0
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for all t = 2, . . . , T and 1 ≤ s < t. Observe that the individual effects µi are allowed to

be correlated with (xi1, xi)
′. No restrictions are imposed on the relationship between

yi1 and µi.

Assumptions 1 is equivalent to Ahn and Schmidt (1995)’s (SA.1 - SA.3) in a model

without the covariate xit. In such case Ahn and Schmidt (1995) assume Assumptions

M.1-M.5, which are stronger then our Assumption 2.3(b). We remark that zero-mean

condition on εit and Assumption 2.3(c) are not needed in Arellano and Bond (1991)’s

setting. Specifically, E(εit) is allowed to vary across t in such a setting.

3 Moment conditions in levels

This section presents the moments conditions derived from Assumptions 1-2 and then

establishes an identification result. We start by introducing some notation, similar to

Yamagata (2008). Let IT−1 denote the identity matrix of dimension (T −1)× (T −1).

Define Zi = [IT−1,ZY i,ZXi](T−1)×h with h = (T − 1) + hy + hx, hy = T (T − 1)/2,

hx = k(T + 2)(T − 1)/2, where

ZY i
(T−1)×hy

=


yi1 0 0 0 . . . . . . . . . 0
0 yi1 yi2 0 . . . . . . . . . 0
0 0 0 yi1 . . . . . . . . . 0
...

...
...

...
. . . · · · · · · ...

0 0 0 0 . . . yi1 . . . yi,T−1

 ,

and

ZXi
(T−1)×hx

=


x′i1 x′i2 01×k 01×k 01×k 01×k . . . . . . . . . 01×k
01×k 01×k x′i1 x′i2 x′i3 01×k . . . . . . . . . 01×k
01×k 01×k 01×k 01×k 01×k x′i1 . . . . . . . . . 01×k
...

...
...

...
...

. . . · · · · · · · · · ...
01×k 01×k 01×k 01×k 01×k 01×k . . . x′i1 . . . x′iT

 .

The nonzero elements of ZY i and ZXi will play the role of instruments as in

Arellano and Bond (1991). This framework could also incorporate strictly exogenous

covariates, thus increasing the number of moment conditions that can be used. For

simplicity, we focus only on pre-determined covariates only.
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By Assumption 2, Zi and εi satisfy the moment conditions

E (Z′iεi) = E

 IT−1εi
Z′Y iεi
Z′Xiεi

 = 0h×1.

Write uit = µi + εit and ui = (ui2, . . . , uiT )′. Then

E (Z′iεi) = E (Z′iui)− E (Z′iµi) ιT−1 = 0h×1, (2)

where ιT−1 stands for a (T − 1)× 1 vector of ones.

The matrix E (Z′iµi) contains the covariances between µi and the elements of

Zi, namely, E(yi1µi), E(yi2µi), . . . , E(yiTµi), E(xi1µi), . . . , E(xiTµi). The fact that

these covariances involve the levels of the variables is an important feature of the

paper. First, Assumption 1 allows for the covariance between xit and µi to vary

across t, but not across i. This parametrization can be changed to accommodate the

same covariance parameter across t or for some covariates to be uncorrelated with

µi, thus generating a mixed model, i.e., random- and fixed-effects structure together.

In both cases, this would imply reducing the number of parameters involved in the

estimation procedure. Second, the standard dynamic panel data literature applies

first-differences to eliminate µi, which is correlated with (yi,t−1, x
′
it) invalidating the

previously proposed instruments. In our case, we consider these correlations as free

parameters following the method of Robertson and Sarafidis (2015). In turn this is

related to the correlated random-effects model of Chamberlain (1982, 1984) where

unobservable individual specific components are modeled as linear projections onto

the observables plus a disturbance. The intuition behind such strategy is that co-

variates themselves are able to explain unobserved heterogeneity and what is left is

idiosyncratic noise. Third, note that this alternative implementation does not re-

quire restrictions on the initial conditions of the dependent variable process (e.g.,

as in Blundell and Bond, 1998), but we only need to model the covariance of the

initial values of the dependent variable and the unobserved individual effects as an

additional parameter, i.e., E(yi1µi).

Let τ y1◦ = E(yi1µi) and τxt◦ = E(xitµi) for t = 1, . . . , T . We consider these covari-

ances as parameters of our model. Let τ◦ = (τ y1◦, τ
x′
1◦, . . . , τ

x′
T◦)
′ be a (kT + 1) × 1
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vector containing these covariances and θ◦ = (α◦, γ◦, β
′
◦, σ

2
µ◦, τ

′
◦) be the true pa-

rameters vector, with dimension 1 × [k(T + 1) + 4]. Observe that the covariances

E(yi2µi), . . . , E(yiTµi) can be completely characterized in terms of (γ◦, β
′
◦, σ

2
µ◦, τ

′
◦).

By eq. (1) and Assumption 2:

E(yi2µi) = γ◦τ
y
1◦ + τx′2◦β◦ + σ2

µ◦. (3)

It can be shown by induction that

E (yitµi) = γt−1
◦ τ y1◦ +

t∑
j=2

γt−j◦ τx′j◦β◦ +
γt−1
◦ − 1

γ◦ − 1
σ2
µ◦, (4)

for 2 ≤ t ≤ T . Note that σ2
µ◦ = 0 implies τ◦ = 0(kT+1)×1.

In light of the previous discussion, we now parameterize the covariances E (Z′iµi) ιT−1

and σ2
µ◦. Consider the row vector θ = (α, γ, β′, σ2

µ, τ
′) ∈ R× (−1, 1)×Rk×R×RkT+1

and let Θ be a compact subset such that θ◦ ∈ interior(Θ). Although σ2
µ◦ ≥ 0, σ2

µ may

be allowed to take negative values as the identification result (Lemma 1 below) does

not rely on the restriction σ2
µ ≥ 0. In view of expressions (2)-(4), we construct the

function Ψ : Θ→ Rh×1 as

Ψ(θ) =

 0(T−1)×1

ΨY (θ)
ΨX(θ)

 , (5)

where

ΨY (θ)
hy×1

= (τ y1 , τ
y
1 , ψ2(θ), τ y1 , ψ2(θ), ψ3(θ), τ y1 , . . . , τ

y
1 , . . . , ψT−1(θ))′,

ΨX(θ)
hx×1

= (τx′1 , τ
x′
2 , τ

x′
1 , τ

x′
2 , τ

x′
3 , τ

x′
1 , . . . , τ

x′
1 , . . . , τ

x′
T )′,

and

ψt(θ) = γt−1τ y1 +
t∑
l=2

γt−lτx′l β +
γt−1 − 1

γ − 1
σ2
µ, (6)

for 2 ≤ t ≤ T − 1 and |γ| < 1. Note that Ψ(θ) depends only on (γ, β′, σ2
µ, τ

′) and not

on the data.

8



Alternatively, ΨY (θ) and ΨX(θ) can be constructed as follows. The parameter τ y1

occupies the positions {[t(t − 1)/2] + 1 : t = 1, . . . , T − 1} of ΨY (θ), ψ2(θ) occupies

positions {[t(t−1)/2]+2 : t = 2, . . . , T−1} of ΨY (θ), and in general for 2 ≤ j ≤ T−1,

ψj(θ) occupies positions {[t(t − 1)/2] + j : t = j, . . . , T − 1} of ΨY (θ). Regarding

ΨX(θ), let Ψ
(j1:j2)
X (θ) denote the sub-vector of ΨX(θ) from position j1 to j2. For each

t = 1, . . . , T and l = max{t − 1, 1}, . . . , T − 1, we set j1 = k[t − 2 + l(l + 1)/2] + 1,

j2 = k[t− 1 + l(l + 1)/2], and Ψ
(j1:j2)
X (θ) = τxt .

Observe that ψt(θ◦) = E(yitµi) for t ≥ 2 due to eq. (4). The matrices E (Z′Y iµi)

and E (Z′Xiµi) can then be written as

E(Z′Y iµi) =


τ y1◦ 0 0 0 . . . . . . . . . . . . 0
0 τ y1◦ ψ2(θ◦) 0 . . . . . . . . . . . . 0
0 0 0 τ y1◦ . . . . . . . . . . . . 0
...

...
...

...
. . . . . . . . . . . .

...
0 0 0 0 . . . τ y1◦ ψ2(θ◦) . . . ψT−1(θ◦)


and

E(Z′Xiµi) =


τx′1◦ τx′2◦ 01×k 01×k 01×k 01×k . . . . . . . . . 01×k
01×k 01×k τx′1◦ τx′2◦ τx′3◦ 01×k . . . . . . . . . 01×k
01×k 01×k 01×k 01×k 01×k τx′1◦ . . . . . . . . . 01×k
...

...
...

...
...

. . . · · · · · · · · · ...
01×k 01×k 01×k 01×k 01×k 01×k . . . τx′1◦ . . . τx′T◦

 ,

respectively, which implies

E (Z′iui)−Ψ(θ◦) = 0h×1. (7)

Define the function gi : Θ→ Rh×1 as

gi(θ)
h×1

= Z′i(yi − xiκ)−Ψ(θ), (8)

where θ = (κ′, σ2
ε , σ

2
µ, τ

′), κ = (α, γ, β′)′, and xi = (ιT−1, yi,−1, x
′
i). This function

satisfies E[gi(θ◦)] = 0h×1 since ui = yi − α◦ιT−1 − γ◦yi,−1 − x′iβ◦ and eq. (7). After

imposing a standard rank condition, we will show that θ◦ is the unique solution to

the (nonlinear) system of equations E[gi(θ)] = 0h×1 with θ ∈ Θ.

Write Z̃i = (Z̃Y i, Z̃Xi)(T−2)×h̃, where Z̃Y i is constructed by removing the last of

row and the last T − 1 columns of ZY i, Z̃Xi is constructed in a similar manner
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by removing the last of row and the last kT columns of ZXi, and h̃ = [T − 1 +

k(T + 1)](T − 2)/2. Denote further ∆yi,−1 = (yi2 − yi1, . . . , yi,T−1 − yi,T−2)′, ∆x̃i =

(xi3 − xi2, . . . , xiT − xi,T−1)′, and ∆xi = (∆yi,−1,∆x̃i)(T−2)×(k+1). Now we are ready

to impose the following rank condition.

Assumption 3. E
(
Z̃′i∆xi

)
has rank k + 1.

This assumption is standard in the dynamic panel literature, e.g. it coincides with

Assumption 3 in Yamagata (2008), and rules out perfect multicollinearity among

regressors. It is employed for identification purposes and is verifiable for any given

sample.

To complete this section, the next identification lemma characterizes the true

parameters vector θ◦ as the unique solution of a system of moment conditions based

on gi(·). A detailed proof of this lemma is provided in Appendix A.3.

Lemma 1. Under Assumptions 1-3, θ◦ ∈ Θ is the unique solution of E[gi(θ)] = 0h×1.

4 Optimal GMM estimator

This section proposes a GMM estimator for θ◦ and derives its asymptotic properties.

Consider Ω ≡ E[gi(θ◦)gi(θ◦)
′]. Since gi(θ◦) = Z′iui − E(Z′iui) by eqs. (7)-(8), Ω

is the variance-covariance matrix of Z′iui: Ω = E{[Z′iui −E(Z′iui)][Z
′
iui −E(Z′iui)]

′}.
Assumption 1 (finite fourth moments) implies that Ω is finite, symmetric, and positive

semidefinite. Further, we impose the following assumption. Let
P→ denote convergence

in probability.

Assumption 4. Ω is positive definite and there exists an estimator Ω̇ that satisfies

Ω̇
P→ Ω under Assumptions 1-3.

Assumption 4 is standard is the context of linear IV models (particularly, in

dynamic panels). Essentially, the product between any instrument and any residual

must be nonconstant (have positive variance) and perfect collinearity among such

products is not allowed. Regarding the existence of a consistent estimator of Ω,
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Appendix A.1 provides a concrete suggestion for Ω̇, as well as a first-step consistent

estimator of θ◦.

The optimal GMM estimator of θ◦ is defined as

θ̂ = argmin
θ∈Θ

ḡ(θ)′Ω̇−1ḡ(θ),

where ḡ(θ) = (1/N)
∑N

i=1 gi(θ) and θ̂ = (α̂, γ̂, β̂′, σ̂2
µ, τ̂

′). Since ḡ(·) is continuously dif-

ferentiable, θ̂ can be characterized as the unique solution of the system of (nonlinear)

equations

Oθḡ(θ)′Ω̇−1ḡ(θ) = 0[k(T+1)+4]×1, (9)

where Oθḡ(θ) = (1/N)
∑N

i=1 Oθgi(θ) and

Oθgi(θ)
h×[k(T+1)+4]

=
∂gi(θ)

∂θ
=

(
∂gi(θ)

∂α

∂gi(θ)

∂γ

∂gi(θ)

∂β′
∂gi(θ)

∂σ2
µ

∂gi(θ)

∂τ ′

)
.

Two remarks are noteworthy. First, computational differentiation is not required

to calculate Oθḡ(θ). A closed-form expression of the Jacobian matrix of Ψ(θ) is

provided in Appendix A.2. Second, the system of equations (9) can be solved by

standard numerical methods, e.g., by using the Newton-Raphson algorithm. We

suggest using a first-step consistent estimator of θ0 as initial value (Appendix A.1

provides an example of such an estimator). Following this suggestion, the initial

value for solving (9) would be close to the global minimum and therefore multiple

local minima (or equivalently, multiple solutions to eq. (9)) would not be a concern.

The next assumption is imposed to derive the asymptotic normality of θ̂.

Assumption 5. G′Ω−1G is nonsingular where G = E[Oθgi(θ0)].

The following theorem contains the asymptotic results. Let
D→ denote convergence

in distribution.

Theorem 1 (Consistency and asymptotic normality). The following conditions hold.

1. Under Assumptions 1-4, we have θ̂
P→ θ◦.

2. Under Assumptions 1-5, the asymptotic distribution of our estimator is given

by
√
N(θ̂ − θ◦)

D→ N(0,Σ), where Σ = B−1 with B = G′Ω−1G.
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Under Assumptions 1-5, we have θ̂
P→ θ◦ and the asymptotic distribution of our

estimator is given by
√
N(θ̂ − θ◦)

D→ N(0,Σ), where Σ = B−1 with B = G′Ω−1G.

The asymptotic variance Σ can be consistently estimated by Σ̂ = B̂−1, where

B̂ = Ĝ′Ω̂−1Ĝ, Ĝ = ḡ(θ̂), and Ω̂ = (1/N)
∑N

i=1 gi(θ̂)gi(θ̂)
′.

Lemma 2. Under Assumptions 1-5, Σ̂
P→ Σ.

Among other hypotheses of interests, the results in Theorem 1 and Lemma 2

can be used to derive a simple test for the absence of individuals effects, which is

an economically relevant issue in the literature that distinguished true dependence

vs. that derived from unobserved heterogeneity, as in the classic paper by Lillard and

Willis (1978) mentioned in the Introduction. Under the null H0 : (σ2
µ◦, τ

′
◦) = 01×(kT+2),

we have

(σ̂2
µ, τ̂

′)Σ̂−1
σ2
µτ

(σ̂2
µ, τ̂

′)′
D→ χ2

kT+2,

where Σ̂σ2
µτ

is the sub-matrix of Σ̂ associated with (σ̂2
µ, τ̂

′) and χ2
kT+2 denotes a (cen-

tral) chi-square distribution with kT + 2 degrees of freedom. This results compares

to tests derived by Harris, Mátyás, and Sevestre (2008, sec. 8.6.2) and Wu and Zhu

(2012) in a different context.

5 Comparison with existing GMM estimators

and efficiency gains

This section relates our estimator to the ones proposed by Arellano and Bond (1991)

and by Ahn and Schmidt (1995). We compare the asymptotic variances and show

that our estimator is at least as efficient as these classic alternatives. We also establish

under which conditions our estimator is more efficient or, in other words, when our

asymptotic variance is strictly smaller than the one from its competitors.

The optimal Arellano-Bond GMM estimator can be obtained by

(γ̂AB, β̂AB′) = argmin
(γ,β′)

ḡAB(γ, β′)′(Ω̇AB)−1ḡAB(γ, β′), (10)

12



where ḡAB(γ, β′) = (1/N)
∑N

i=1 g
AB
i (γ, β′), gABi (γ, β′) = DABgi(θ), DAB is a h̃ × h

nonstochastic matrix that is characterized in Appendix A.3.1, and Ω̇AB is a consistent

estimator of

ΩAB ≡ E
[
gABi (γ◦, β

′
◦)g

AB
i (γ◦, β

′
◦)
′] = DABΩDAB′.

Specifically, we have that

gABi (γ, β′)
h̃×1

= Z̃′i (∆yi − γ∆yi,−1 −∆x̃iβ) ,

so the linear transformation DAB removes not only the individual effects, but also the

function Ψ(·) from gi(·). We highlight that the specific form of ΩAB depends on the

assumptions about εi –such as homoskedasticity–.

Example (T = 4 & k = 0). We have

gABi (γ) =

 yi1(∆yi3 − γ∆yi2)
yi1(∆yi4 − γ∆yi3)
yi2(∆yi4 − γ∆yi3)


and

DAB

3×9
=

 0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 1 0

 .

The function gABi is related to the moment conditions

E

 yi1∆ui3
yi1∆ui4
yi2∆ui4

 = 03×1.

The asymptotic distribution of (γ̂AB, β̂AB′) is given by

√
N

[(
γ̂AB

β̂AB′

)
−
(
γ◦
β′◦

)]
D→ N

(
0,ΣAB

γβ

)
,

where ΣAB
γβ = [GAB′(ΩAB)−1GAB]−1,

GAB = E[O(γ,β′)g
AB
i (γ◦, β

′
◦)] = DABE[O(γ,β′)gi(θ◦)],

13



and

O(γ,β′)g
AB
i (γ, β′)

h̃×(1+k)

=

(
∂gABi (γ, β′)

∂γ

∂gABi (γ, β′)

∂β′

)
.

Ahn and Schmidt (1995, 1997) have incorporated to the Arellano-Bond estimator

the quadratic moment conditions that exploit the absence of serial correlation in εit

(Assumption 2.2). The optimal Ahn-Schmidt GMM estimator can be obtained by

(γ̂AS, β̂AS′) = argmin
(γ,β′)

ḡAS(γ, β′)′(Ω̇AS)−1ḡAS(γ, β′), (11)

where ḡAS(γ, β′) = (1/N)
∑N

i=1 g
AS
i (γ, β′), gASi (γ, β′) = DAS(γ, β′)gi(θ), DAS(γ, β′)

is a h̃′ × h nonstochastic matrix described in eq. (A.7) of Ahn and Schmidt (1995),

h̃′ = h̃+ T − 3, and Ω̇AS is a consistent estimator of

ΩAS ≡ E
[
gASi (γ◦, β

′
◦)g

AS
i (γ◦, β

′
◦)
′] = DAS(γ◦, β

′
◦)ΩDAS′(γ◦, β

′
◦).

Specifically, we have that

gASi (γ, β′)
h̃×1

=


gABi (γ)

(yiT − γyi,T−1 − x′itβ) (∆yi3 − γ∆yi,2 −∆x′i3β)
...

(yiT − γyi,T−1 − x′itβ)
(
∆yi,T−1 − γ∆yi,T−2 −∆x′i,T−1β

)
 ;

when T = 3, Ahn-Schmidt estimator coincides with Arellano-Bond’s.

Example (T = 4 & k = 0, cont.). We have

gASi (γ) =


yi1(∆yi3 − γ∆yi2)
yi1(∆yi4 − γ∆yi3)
yi2(∆yi4 − γ∆yi3)

(yi4 − γyi3)(∆yi3 − γ∆yi2)

 =

(
gABi (γ)

(yi4 − γyi3)(∆yi3 − γ∆yi2)

)

and

DAS(γ)
4×9

=


0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 γ −(γ + 1) 1

 .

The function gASi is related to the moment conditions

E


yi1∆ui3
yi1∆ui4
yi2∆ui4
ui4∆ui3

 = 04×1.
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The asymptotic distribution of (γ̂AS, β̂AS′) is given by

√
N

[(
γ̂AS

β̂AS′

)
−
(
γ◦
β′◦

)]
D→ N

(
0,ΣAS

γβ

)
,

where ΣAS
γβ = [GAS′(ΩAS)−1GAS]−1, GAS = E[O(γ,β′)g

AS
i (γ◦, β

′
◦)], and

O(γ,β′)g
AS
i (γ, β′)

h̃′×(1+k)

=

(
∂gASi (γ, β′)

∂γ

∂gASi (γ, β′)

∂β′

)
.

To compare our estimator (γ̂, β̂′) with the previous ones, we consider the function

gDi (θ)
h×1

=

(
gDi,1(γ, β′)

gDi,2(γ, β′; θ\γβ)

)
,

where

gDi,1(γ, β′)
(h̃′+T−2)×1

=

(
gASi (γ, β′)

∆yi − γ∆yi,−1 −∆x̃iβ

)
,

θ\γβ = (α, σ2
µ, τ

′), and

gDi,2(γ, β′; θ\γβ)
(kT+3)×1

=



yiT − γyi,T−1 − x′iTβ
yi1(yi3 − α− γyi2 − βxi3)
xi1(yi3 − α− γyi2 − βxi3)

...
xiT (yiT − α− γyi,T−1 − βxiT )
yi2(yi3 − α− γyi2 − βxi3)


−



α
τ y1
τx1
...
τxT

γτ y1 + τx2 β + σ2
µ


.

Several remarks are noteworthy. First, gDi,1(γ, β′) incorporates the zero-mean con-

dition of εit (Assumption 2.2) through ∆yi − γ∆yi,−1 −∆x̃iβ, so in this regard there

might be a risk of misspecification bias only if E(∆uit) 6= 0. Second, gDi,1(γ, β′) does

not depend on θ\γβ. Third, gDi (θ) can be obtained by applying a transformation to

gi(θ) along the lines of eqs. (10)-(11): there is a h × h matrix D(γ, β′) such that

gDi (θ) = D(γ, β′)gi(θ). Fourth, this matrix is nonsingular because none of the rows of

gDi (θ) can be written as a linear combination of others. Hence, our estimator θ̂ can

be expressed as

θ̂ = argmin
θ∈Θ

ḡ(θ)′D(γ, β′)′
[
D(γ, β′)Ω̇D(γ, β′)′

]−1

D(γ, β′)ḡ(θ)

= argmin
θ∈Θ

ḡD(θ)′
[
Ω̇D(γ, β′)

]−1

ḡD(θ), (12)
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where ḡD(θ) = (1/N)
∑N

i=1 g
D
i (θ) and Ω̇D(γ, β′) = D(γ, β′)Ω̇D(γ, β′)′; note that

Ω̇D(γ, β′) is a consistent estimator of ΩD(γ, β′) = D(γ, β′)ΩD(γ, β′)′. From expres-

sion (12), our estimator θ̂ can be regarded as a continuous updating GMM estimator

based on gDi (θ) using Ω̇D(γ, β′)−1 as weighting matrix. We refer to Hall (2005, sec.

3.7) for further discussion on these types of GMM estimators. Fifth, the asymptotic

distribution of θ̂, as well as its asymptotic variance, has been obtained in Theorem 1.

To compare the asymptotic variances, let Σγβ denote the (k+1)×(k+1) sub-matrix

of Σ associated with (γ◦, β
′
◦), i.e. the asymptotic variance-covariance matrix of (γ̂, β̂′).

Theorem 2 below compares the asymptotic variances Σγβ and ΣAS
γβ ; ΣAB

γβ is omitted

from the comparison because we already know that the Ahn-Schmidt estimator is

asymptotically as efficient as Arellano-Bond’s, i.e., the difference ΣAB
γβ −ΣAS

γβ is positive

semi-definite. Denote GD
1,2 = E(∆x̃i), ΩD

11 = E[gDi,1(γ◦, β
′
◦)g

D
i,1(γ◦, β

′
◦)
′], and partition

ΩD
11 =

 ΩAS

h̃′×h̃′
ΩD

11,12

h̃′×(T−2)

ΩD′
11,12

(T−2)×h̃′
ΩD

11,22
(T−2)×(T−2)

 .

Theorem 2. Under Assumptions 1-5,

Σ−1
γβ − (ΣAS

γβ )−1 = [GAS′(ΩAS)−1ΩD
11,12 −GD′

1,2]Υ[GAS′(ΩAS)−1ΩD
11,12 −GD′

1,2]′,

being Υ ≡
[
ΩD

11,22 − ΩD′
11,12(ΩAS)−1ΩD

11,12

]−1
positive definite.

Observe that our estimator has smaller (asymptotic) variance than Arellano-Bond

estimator, i.e., the difference ΣAS
γβ − Σγβ is positive definite, if and only if Σ−1

γβ −
(ΣAS

γβ )−1 is positive definite. So from Theorem 2, the efficiency gain of using moment

conditions in levels depends crucially on the terms ΩD
11,12 and GD

1,2: our estimator of is

asymptotically equivalent to Ahn-Schmidt’s if and only if GAS′(ΩAS)−1ΩD
11,12 = GD′

1,2.

As an illustration, we provide the following example.

Example (T = 4 & k = 0, cont.). We have GD′
1,2 = E[∆yi] and

ΩD
11,12 = E




yi1∆ui3
yi1∆ui4
yi2∆ui4

(α◦ + ui4)∆ui3

 (∆ui3 ∆ui4)

 .
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In this example, the efficiency gain of our estimator comes from two sources: (i)

the variation in the unconditional mean of the dependent variable, which is captured

by GD
1,2; (ii) the interactions between (∆ui3,∆ui4) = (∆εi3,∆εi4) and (ui4, yi1, yi2),

which is captured by ΩD
11,12. There is no efficiency gain, e.g., when ΩD

11,12 = 04×2 and

GD
1,2 = 02×1. These two conditions hold under very particular circumstances, e.g., if

{yi1, µi, εi2, εi3, εi4} are independent of each other and E(yi1) = α◦ = 0.

6 Monte Carlo experiments

In this section we study the finite sample performance of the proposed estimator. To

facilitate comparisons and replicability, we use the design in Yamagata (2008) and

Wu and Zhu (2012).

Consider the dynamic panel data model

yit = α + γyit−1 + xitβ + µi + εit,

xit = δt + 0.5xit−1 + 0.5εit−1 + ρµi + vit,

with i = 1, 2, . . . , N and t = −48,−47, . . . , T . We set the initial conditions to yi,−49 =

xi,−49 = 0 and discard the initial 50 observations.

We let µi
i.i.d.∼ N(0, σ2

µ), εit
i.i.d.∼ N(0, σ2

ε), vit
i.i.d.∼ N(0, σ2

v). We fix α = 0, β = 1,

σ2
µ = 53/108, σ2

ε = 55/20 and σ2
v = 1 as in Yamagata (2008, p. 141) and different

parameter values specifications: γ ∈ {0, 0.25, 0.5, 0.75}, ρ ∈ {0, 0.25}. The sample

sizes considered are N ∈ {200, 300} and T ∈ {4, 8}.1 We consider two different

scenarios. First, we consider xit stationary using δt = 0. Then, we use δt = t for

which xit is trend non-stationary. The parameters (α, γ, β) are estimated using three

different GMM estimators: (i) our proposed GMM model, (ii) Ahn and Schmidt

(1995) (AS) estimator, and (iii) Arellano and Bond (1991) (AB) estimator. The

number of Monte Carlo repetitions is 2000. In all cases we report the empirical bias

and root-mean square error (RMSE).

Consider first the model where xit is stationary and has zero mean. Tables 1 and

2 report bias and RMSE for estimating γ and β, respectively. For this case, the three

1Although not reported, we also considered additional sample sizes and distributions as in Wu
and Zhu (2012).
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procedures under comparison perform similarly as expected from previous section’s

discussion. Still, it is interesting to remark that throughout the different parameter

configurations, the proposed estimator is always ranked above AS and below AB in

terms of bias and RMSE. Results are presented graphically in Figure 1. The figure

shows RMSE for the three estimators and each point corresponds to each row of the

Tables 1 and 2. The top graph corresponds to the estimation of γ (Table 1) and

the bottom graph to the estimation of β (Table 2). The graph shows that the three

estimators behave similarly for this case.

[ INSERT TABLES 1 AND 2 HERE ]

[ INSERT FIGURE 1 HERE ]

When xit is non-stationary (Tables 3 and 4 for γ and β, respectively), our proposed

estimator systematically over-performs both AS and AB in terms of RMSE and bias

for the ‘small T’ case (T = 4). This result can be explained by the previous section’s

discussion. For example, when γ = 0.25 and ρ = 0.25, the RMSE of our procedure

when estimating β is 0.0358, compared to 0.0801 of AS and 0.1157 of AB. Though

qualitatively these differences persist for the T = 8 case, they are quantitatively

smaller. Figure 2 presents the results of Tables 3 and 4 graphically.

[ INSERT TABLES 3 AND 4 HERE ]

[ INSERT FIGURE 2 HERE ]
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As a by-product, the proposed set of moment conditions leads to a simple pro-

cedure to estimate σ2
µ explicitly and conduct hypothesis tests. As mentioned before

this is empirically relevant in cases where the interest lies in measuring the relative

contribution of pure dynamic persistence vs. that derived from the presence of unob-

served heterogeneity, as in the classic paper by Lillard and Willis (1978). See Arias,

Marchionni, and Sosa-Escudero (2011) for a recent study along these lines.

In the context of this paper, the null hypothesis of no unobserved heterogeneity

(H0 : σ2
µ = 0) implies that the τ parameters are themselves 0. The test would pro-

ceed by directly estimating σ2
µ and then testing down the corresponding null through

a simple Wald-type test. Monte Carlo results for bias and RMSE for the estimation of

σ2
µ are reported in Tables 5 and 6 for the stationary and non-stationary case, respec-

tively. We compare these results with those of Wu and Zhu (2012), who derive tests

for random-effects for dynamic panel data models. In particular, our experimental

design allows us to compare with the results of Wu and Zhu (2012, Table 1, Case (i))

for γµ2 with (N, T ) = (200, 8) and (N, T ) = (300, 8). This corresponds to ρ = 0 and

γ = 0.5 in our experiments, for xit stationary.

Our estimator has a bias of 0.0138 and 0.0066 for (N, T ) = (200, 8) and (N, T ) =

(300, 8), respectively, significantly smaller than the bias of 0.044 and 0.035 for Wu and

Zhu. In terms of RMSE, our estimator achieves 0.0104 and 0.007 for (N, T ) = (200, 8)

and (N, T ) = (300, 8), respectively, again smaller than their 0.0143 and 0.0095. Note

that although both bias and RMSE decrease with N and T , they increase when γ

increases, pointing out that, as in Zincenko, Montes-Rojas, and Sosa-Escudero (2014),

dynamic persistence and unobserved heterogeneity are confounding factors. In fact,

our model can be seen as an extension of Zincenko et al (2014) to allow for an arbitrary

covariance between the individual effects and the exogenous covariates.

7 Concluding remarks

This paper proposes a simple framework for the estimation of dynamic panel models

based on parameterizing the relationship between covariates and unobserved time

invariant effects, in the spirit of Chamberlain’s (1980, 1982) approach.
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Such a perspective has been already adopted in many panel structures (in partic-

ular those involving qualitative data) and in some dynamic models. Our approach

leads to a set of moment conditions that are embedded in a GMM framework to

derive an asymptotically optimal estimator of the parameters of interest. The paper

explicitly compares the proposed moment conditions and resulting estimator with

those in classic papers like Arellano and Bond (1991) and Ahn and Schmidt (1995,

1997), implying no efficiency loss.

Though mostly of theoretical and modeling interest, Monte Carlo results suggest

that the new estimator performs better (in terms of bias and RMSE) for the case of

non-stationary covariates. Also, the framework leads to a simple variance estimator

that can be used to test for the presence of unobserved effects. The derived procedure

performs better than available alternatives like Wu and Zhu (2012).

There are several contexts in which our approach can be useful. For instance, the

unequally-spaced dynamic panels considered by Sasaki and Xin (2017), among others.

In this context, moments in levels may provide necessary and sufficient identification

conditions, as well as an efficient estimator for the parameters of interest.
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A Appendix

A.1 Consistent estimator of Ω

To construct a consistent estimator of Ω, first, we propose a consistent (first-step)

estimator of θ◦. We suggest using θ̇ = (α̇, γ̇, β̇′, σ̇2
µ, τ̇

′), where (γ̇, β̇′) is the first-step

Arellano-Bond estimator of (γ◦, β
′
◦):(

γ̇

β̇

)
=

[(
1

N

N∑
i=1

∆x′iZ̃i

)(
1

N

N∑
i=1

Z̃′i∆xi

)]−1(
1

N

N∑
i=1

∆x′iZ̃i

)(
1

N

N∑
i=1

Z̃′i∆yi

)
.

Further, we propose

α̇ =
1

N(T − 1)

N∑
i=1

T∑
t=2

(
yit − γ̇yi,t−1 − x′itβ̇

)
,

σ̇2
µ =

1

N(T − 2)

N∑
i=1

T∑
t=3

u̇itu̇i,t−1,

τ̇ y1 =
1

N(T − 1)

N∑
i=1

T∑
t=2

yi1u̇it,

τ̇x1 =
1

N(T − 1)

N∑
i=1

T∑
t=2

xi1u̇it,

τ̇xj =
1

N(T − j + 1)

N∑
i=1

T∑
t=j

xiju̇it for j ≥ 2,

τ̇ = (τ̇ y1 , τ̇
x′
1 , . . . , τ̇

x′
T )′, and u̇it = yit − α̇ − γ̇yi,t−1 − x′itβ̇. The natural estimator of Ω

then becomes

Ω̇ =
1

N

N∑
i=1

gi(θ̇)gi(θ̇)
′.

The next lemma establishes consistency.

Lemma A.1. Under Assumptions 1-3, θ̇
P→ θ◦ and Ω̇

P→ Ω.

Proof. Consistency of (γ◦, β
′
◦) follows by standard arguments. First, note that

1

N

N∑
i=1

∆x′iZ̃i
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and (1/N)
∑N

i=1 Z̃′i∆yi converge in probability to E(∆x′iZ̃i) and E(Z̃′i∆yi), respec-

tively; as a result,(
γ̇

β̇

)
P→
[
E
(

∆x′iZ̃i

)
E
(
Z̃′i∆xi

)]−1

E
(

∆x′iZ̃i

)
E
(
Z̃′i∆yi

)
. (A.1)

Then, the desired result follows from

E
(
Z̃′i∆yi

)
= E

(
Z̃′i∆xi

)( γ◦
β◦

)
. (A.2)

To show that the other estimators are consistent, we use Lemma 4.3 in Newey

and McFadden (1994). Define the function

fα([(yi1, y
′
i)
′, (xi1, xi)

′]; γ, β′) =
1

T − 1

T∑
t=2

(yit − γyi,t−1 − x′itβ)

and write

α̇ =
1

N

N∑
i=1

fα([(yi1, y
′
i)
′, (xi1, xi)

′]; γ̇, β̇′).

Then, observe that E {fα([(yi1, y
′
i)
′, (xi1, xi)

′]; γ◦, β
′
◦)} = α0 and, by Lemma 4.3 of

Newey and McFadden (1994), we have that

1

N

N∑
i=1

fα([(yi1, y
′
i)
′, (xi1, xi)

′]; γ̇, β̇′)
P→ E {fα([(yi1, y

′
i)
′, (xi1, xi)

′]; γ◦, β◦)}

if the following conditions hold: (i) fα([(yi1, y
′
i)
′, (xi1, xi)

′]; γ, β′) is continuous at

(γ◦, β
′
◦) with probability one; (ii) there is neighborhood B of (γ◦, β

′
◦) such that

E[ sup
(γ,β′)∈B

|fα([(yi1, y
′
i)
′, (xi1, xi)

′]; γ, β′)|] <∞;

(iii) (γ̇, β̇′)
P→ (γ◦, β

′
◦). Clearly, (i) holds because fα([(yi1, y

′
i)
′, (xi1, xi)

′]; γ, β′) is linear

in (γ, β′) for any realization of [(yi1, y
′
i)
′, (xi1, xi)

′]. Condition (ii) holds for any such

a neighborhood because E |[(yi1, y′i)′, (xi1, xi)′]| is a finite matrix and T is also finite.

Condition (iii) holds from eqs. (A.1)-(A.2).

Proceeding in a similar manner with the rest of the estimators, we obtain the

desired results. In particular, being ‖ · ‖∞ the elementwise sup-norm of a matrix

or vector, we highlight that E[supθ∈N ‖gi(θ)gi(θ)′‖∞] < ∞ for any neighborhood N
containing θ◦ because (yi1, y

′
i, x
′
i1, . . . , x

′
iT ) has finite second fourth moment. This is

an immediate implication of Assumption 1, which is discussed in sec. 2.
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A.2 Closed-form expression for OθΨ(θ)

Consider any θ ∈ Θ. The Jacobian matrix of Ψ(θ), denoted by OθΨ(θ), can parti-

tioned in 5 blocks:

OθΨ(θ)
h×[k(T+1)+4]

=

(
OαΨ(θ)

h×1

OγΨ(θ)
h×1

OβΨ(θ)
h×k

Oσ2
µ
Ψ(θ)
h×1

OτΨ(θ)
h×(kT+1)

)
≡

(
∂Ψ(θ)
∂α

∂Ψ(θ)
∂γ

∂Ψ(θ)
∂β′

∂Ψ(θ)
∂σ2
µ

∂Ψ(θ)
∂τ ′

)
.

It follows immediately that OαΨ(θ) = 0h×1. We provide below closed-form expressions

for OγΨ(θ), OβΨ(θ), Oσ2
µ
Ψ(θ), and OτΨ(θ). Such expressions will be employed to

compute Oθgi(θ).

First, observe that

∂ψt(θ)

∂γ
= (t− 1)γt−2τ y1 +

t∑
l=2

(t− l)γt−l−1τ ′x,lβ +

{
(t− 1)

γt−2

γ − 1
− γt−1 − 1

(γ − 1)2

}
σ2
µ.

Then, we can write

OγΨ(θ) =

 0(T−1)×1

OγΨY (θ)
0hx×1

 ,

where OγΨY (θ) ≡ ∂ΨY (θ)/∂γ is a hy × 1 vector that has the following form: 0

occupies the positions {[t(t − 1)/2] + 1 : t = 1, . . . , T − 1}, ∂ψ2(θ)/∂γ occupies

positions {[t(t − 1)/2] + 2 : t = 2, . . . , T − 1}, and in general ∂ψj(θ)/∂γ occupies

positions {[t(t− 1)/2] + j : t = j, . . . , T − 1} for 2 ≤ j ≤ T − 1.

Second, note that

∂ψt(θ)

∂β′
1×k

=
t∑
l=2

γt−lτx′l .

Then,

OβΨ(θ) =

 0(T−1)×k
OβΨY (θ)

0hx×k

 ,

where OβΨY (θ) ≡ ∂ΨY (θ)/∂β′ is a hy × k matrix whose rows can be constructed as

in OγΨY (θ). Proceeding in a similar manner, we can also construct Oσ2
µ
Ψ(θ).
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Next consider OτΨ(θ). We write

OτΨ(θ) =

 0(T−1)×1 0(T−1)×k . . . 0(T−1)×k . . . 0(T−1)×k
Oτy1

ΨY (θ) Oτx,1ΨY (θ) . . . Oτx,tΨY (θ) . . . Oτx,TΨY (θ)

0hx×1 Oτx,1ΨX(θ) . . . Oτx,tΨX(θ) . . . Oτx,TΨX(θ)

 ,

where Oτy1
ΨY (θ) ≡ ∂ΨY (θ)/∂τ y1 , Oτx,tΨY (θ) ≡ ∂ΨY (θ)/∂τx,t and

Oτx,tΨX(θ) ≡ ∂ΨX(θ)/∂τx,t.

The dimensions of these sub-matrices are hy×1, hy×k and hx×k, respectively. They

can be constructed following previous steps. In particular, if Oτx,tΨ
(j1:j2,:)
X (θ) denote

the sub-matrix of Oτx,tΨY (θ) from row j1 to j2 and containing all columns, then

Oτx,tΨ
(j1:j2,:)
X (θ) = Ik×k

for each (j1, j2) ∈ {(k[t − 2 + l(l + 1)/2] + 1, k[t − 1 + l(l + 1)/2]) : l = max{t −
1, 1}, . . . , T − 1}, whereas the remaining elements of Oτx,tΨY (θ) are all equal to 0.

A.3 Proofs

The section of the Appendix contains the proof of the lemmas and theorems stated

in the body of the text.

A.3.1 Proof of Lemma 1

From eqs. (7)-(8), θ◦ is a solution of E[gi(θ)] = 0h×1. We show that θ◦ is indeed the

unique solution. Let θ̃ = (α̃, γ̃, β̃′, σ̃2
µ, τ̃

′) satisfy E[gi(θ̃)] = 0h×1.

We prove first that (γ̃, β̃′) = (γ◦, β
′
◦). Let Z

(t,l)
i and Z̃

(t,l)
i denote the (t, l)-coefficient

of Zi and Z̃i, respectively. Define the mappings J : {1, . . . , h} → {1, . . . , T − 1} and

J̃ : {1, . . . , h̃} → {1, . . . , T − 2} such that

Z
(J (l),l)
i 6= 0 and Z̃

(J̃ (l),l)
i 6= 0.

Essentially, J (l) (or J̃ (l)) provides the number of the row that contains the nonzero

element of column l of Zi (or Z̃i). Note that both J (l) and J̃ (l) are well-defined
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as each column of Zi and Z̃i contains only one nonzero coefficient. Now, for a given

l = 1, . . . , h̃, define further (L1(l),L2(l)) ∈ {1, . . . , h}2 such that

Z̃
(J̃ (l),l)
i = Z

(J̃ (l),L1(l))
i = Z

(J̃ (l)+1,L2(l))
i .

Observe that both L1(l) and L2(l) are well-defined as Z̃i is a submatrix of Zi and

also each row of Zi and Z̃i does not contain nonzero repeated elements. Moreover,

we must have L1(l) < L2(l) by construction of Zi. Then, let DAB be nonstochastic

h̃× h matrix whose components are given by

[
DAB

](l̃,l)
=


−1 if l = L1(l̃),

1 if l = L2(l̃),
0 otherwise.

For instance, when T = 3 and k = 1, we have

DAB

3×10
=

 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 −1 0 1 0

 .

By construction, DAB must satisfy

DABZ′i(yi − xiκ) = Z̃′i∆yi − Z̃′i∆xi

(
γ
β

)
(A.3)

as well as DABΨ(θ) = 0h̃×1 (see eqs. (5)-(7)). We refer to Ahn and Schmidt (1995,

Appendix A.2) for further discussion and examples about these results. Observe that

E[DABgi(θ̃)] = DABE[gi(θ̃)] = 0h̃×1, so eq. (A.3) yields Arellano and Bond (1991)’s

system of linear equations:

E
(
Z̃′i∆xi

)( γ̃

β̃

)
= E

(
Z̃′i∆yi

)
. (A.4)

Since E(Z̃i∆xi) has full rank (Assumption 3), there is a unique solution to this system

of (linear) equations and, as a result, we must have (γ̃, β̃′) = (γ◦, β
′
◦).

Regarding the other parameters, using the first equation of the system E[gi(θ̃)] =

0h×1, we obtain

E(yi2)− α̃− γ̃E(yi1)− E(x′i2)β̃ = 0
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and therefore α̃ = E(yi2)− γ̃E(yi1)− E(x′i2)β̃ = E(yi2)− γ◦E(yi1)− E(x′i2)β◦ = α◦.

Using also the T -th equation of E[gi(θ̃)] = 0, it follows that

τ̃ y1 = E
[
yi1

(
yi2 − α̃− γ̃yi1 − x′i1β̃

)]
= E [yi1 (yi2 − α◦ − γ◦yi1 − x′i1β◦)] = E(yi1ui2) = E(yi1µi) = τ y1◦.

Proceeding in a similar manner, we can prove that τ̃xt = τxt◦ for every t = 1, . . . , T .

Finally, exploiting the (T + 2)-th equation of E[gi(θ̃)] = 0h×1 related to expression

(3), we obtain

E
[
yi2

(
yi2 − α̃− γ̃yi1 − x′i1β̃

)]
−
(
γ̃τ̃ y1 + τ̃x′2 β̃ + σ̃2

µ

)
= 0

and therefore

σ̃2
µ = E

[
yi2

(
yi2 − α̃− γ̃yi1 − x′i1β̃

)]
−
(
γ̃τ̃ y1 + τ̃x′2 β̃

)
= E [yi2 (yi2 − α◦ − γ◦yi1 − x′i1β◦)]− (γ◦τ̃

y
1◦ + τx′2◦β◦)

= σ2
µ◦.

A.3.2 Proof of Theorem 1

1. By Theorem 2.6 in Newey and McFadden (1994), to establish consistency it

suffices to check that the following conditions are satisfied:2

(i) Ω̇
P→ Ω and Ω is positive definite;

(ii) E[gi(θ)] = 0 if and only if θ = θ◦;

(iii) θ◦ ∈ interior(Θ) for some compact set Θ;

(iv) gi(·) is a continuously differentiable on interior(Θ) with probability one;

(v) E[supθ∈Θ ‖gi(θ)‖2
∞] is finite.

2Theorem 2.6 in Newey and McFadden (1994) indeed requires weaker conditions than (i)-(v).
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Conditions (i) and (ii) follows immediately from Assumption 4 and Lemma 1,

respectively. For condition (iii), we can take any compact set of R× (−1, 1)× Rk ×
R × RkT+1 containing θ◦. Note that the functions gi(·) and Ψ(·) are well-defined

on R× (−1, 1)× Rk × R× RkT+1. Condition (iv) holds because gi(·) is continuously

differentiable on R×(−1, 1)×Rk×R×RkT+1 for any realization of [(yi1, y
′
i)
′, (xi1, xi)

′].

In particular, closed-forms expression for the Jacobian matrix of Ψ(θ) are provided in

Appendix A.2. Condition (v) holds for any compact set Θ because (yi1, y
′
i, x
′
i1, . . . , x

′
iT )

has finite fourth moment.

2. By Theorem 3.4 in Newey and McFadden (1994), in addition to conditions (i)-(v),

to establish asymptotic normality it suffices to verify:

(vi) G′Ω−1G is nonsingular.

(vii) E[supθ∈Θ ‖Oθgi(θ)‖2
∞] is finite.

Condition (vi) follows immediately from Assumption 5, while (vii) follows by

construction of gi(θ) (see eq. (8)) and the characterization provided in Appendix A.2.

A.3.3 Proof of Lemma 2

By Theorem 4.5 in Newey and McFadden (1994), conditions (i)-(vii) are sufficient to

establish the consistency of the asymptotic variance estimator.

A.3.4 Proof of Theorem 2

Denote ΩD = ΩD(γ◦, β
′
◦) = E[gDi (θ◦)g

D
i (θ◦)

′] and consider the unfeasible estimator

θ̃ = argmin
θ∈Θ

ḡD(θ)′(ΩD)−1ḡD(θ).

The reason for considering such an estimator is that, by expression (12), it has the

same asymptotic variance as θ̂; see Hall (2005, sec. 3.7). After partitioning

ΩD =

 ΩD
11 ΩD

12
(h̃′+T−2)×(kT+3)

ΩD′
12

(kT+3)×(h̃′+T−2)

ΩD
22

(kT+3)×(kT+3)

 ,
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θ̃ can be computed by solving the following linear system of equations:(
O(γ,β′)ḡ

D
1 (γ, β′)′ O(γ,β′)ḡ

D
2 (γ, β′; θ\γβ)′

Oθ\γβ ḡ
D
1 (γ, β′)′ Oθ\γβ ḡ

D
2 (γ, β′; θ\γβ)′

)(
ΩD

11 ΩD
12

ΩD′
12 ΩD

22

)−1(
ḡD1 (γ, β′)

ḡD2 (γ, β′; θ\γβ)

)
= 0[k(T+1)+4]×1,

where O(γ,β′)ḡ
D
1 (γ, β′) = (1/N)

∑N
i=1 O(γ,β′)g

D
i,1(γ, β′),

O(γ,β′)g
D
i,1(γ, β′) =

(
∂gDi,1(γ, β′)

∂γ

∂gDi,1(γ, β′)

∂β′

)
,

and the remaining terms are defined in a similar manner. From the inverse formula

for symmetric partitioned matrices (Theil, 1983, eq. 3.2) and since gDi,1(γ, β′) does

not depends on θ\γβ, i.e. Oθ\γβ ḡ
D
1 (γ, β′) = 0(h̃′+T−2)×(kT+3), our unfeasible estimator

(γ̃, β̃′) can be obtained by solving the (linear) system of equations

O(γ,β′)ḡ
D
1 (γ, β′)′(ΩD

11)−1ḡD1 (γ, β′) = 0(k+1)×1

or, equivalently, by solving the following optimization problem:

(γ̃, β̃′) = argmin
(γ,β′)

ḡD1 (γ, β′)′(ΩD
11)−1ḡD1 (γ, β′). (A.5)

From these expressions, it follows that we can ignore the presence of θ\γβ, as well as

ΩD
12 and ΩD

22, when computing (γ̃, β̃′).

Following the arguments in the Proof of Theorem 1.2, it can be shown that the

asymptotic variance of (γ̃, β̃′) is given by
[
GD′

1 (ΩD
11)−1GD′

1

]−1
, where

GD
1 = E[O(γ,β′)g

D
i,1(γ◦, β

′
◦)].

Since (γ̃, β̃′) and (γ̂, β̂′) are asymptotically equivalent, it follows immediately that

Σγβ =
[
GD′

1 (ΩD
11)−1GD′

1

]−1
. Partition

GD
1

(h̃′+T−2)×(k+1)

=

 GAS

h̃′×(k+1)

GD
1,2

(T−2)×(k+1)

 ,

note that GD
1,2 = E(∆x̃i), and write

(ΩD
11)−1 =

(
(ΩAS)−1 + (ΩAS)−1ΩD

11,12ΥΩD′
11,12(ΩAS)−1 −(ΩAS)−1ΩD

11,12Υ
−ΥΩD′

11,12(ΩAS)−1 Υ

)
.
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This inverse is obtained by applying eq. (3.2) of Theil (1983). We have that Υ is

positive definite because ΩD = DΩD′ is positive definite (Assumption 4) and so is its

inverse. Finally, it follows that

Σ−1
γβ =

(
GAS′ GD′

1,2

)
(ΩD

11)−1

(
GAS

GD
1,2

)
= GAS′ [(ΩAS)−1 + (ΩAS)−1ΩD

11,12ΥΩD′
11,12(ΩAS)−1

]
GAS

− GD′
1,2ΥΩD′

11,12(ΩAS)−1GAS −GAS′(ΩAS)−1ΩD
11,12ΥGD

1,2

+ GD′
1,2ΥG̃D

1,2

= (ΣAS
γβ )−1 +GAS′(ΩAS)−1ΩD

11,12ΥΩD′
11,12(ΩAS)−1GAS

− GD′
1,2ΥΩD′

11,12(ΩAS)−1GAS −GAS′(ΩAS)−1ΩD
11,12ΥGD

1,2

+ GD′
1,2ΥG̃D

1,2

and therefore

Σ−1
γβ − (ΣAS

γβ )−1 = [GAS′(ΩAS)−1ΩD
11,12 −GD′

1,2]Υ[GAS′(ΩAS)−1ΩD
11,12 −GD′

1,2]′.
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Figures and tables

Figure 1: RMSE for the stationary xit case.

Notes: RMSE for the estimation of γ (top panel) and β (bottom panel) in the xit stationary
case. Thick line corresponds to our estimator, dashed line is Ahn-Schmidt and solid line is
Arellano-Bond. Horizontal axis corresponds to rows in Tables 1 and 2.
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Figure 2: RMSE for the non-stationary xit case.

Notes: RMSE for the estimation of γ (top panel) and β (bottom panel) in the xit non-
stationary case. Thick line corresponds to our estimator, dashed line is Ahn-Schmidt and
solid line is Arellano-Bond. Horizontal axis corresponds to rows in Tables 3 and 4.
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Table 1: Bias and RMSE for estimating γ, xit stationary

Bias RMSE
N T γ ρ New AS AB New AS AB

200 4 0 0 -0.006 -0.0037 -0.0088 0.0575 0.0534 0.0616
200 4 0 0.25 -0.005 -0.0024 -0.008 0.0579 0.0537 0.0639
200 4 0.25 0 -0.0106 -0.0072 -0.0143 0.0659 0.0606 0.0707
200 4 0.25 0.25 -0.0087 -0.0056 -0.0136 0.0674 0.0625 0.0743
200 4 0.5 0 -0.0118 -0.0077 -0.0171 0.0708 0.0656 0.0787
200 4 0.5 0.25 -0.0136 -0.0089 -0.0203 0.0729 0.0679 0.0844
200 4 0.75 0 -0.0136 -0.0094 -0.0199 0.0692 0.0635 0.0766
200 4 0.75 0.25 -0.0101 -0.0063 -0.0201 0.0744 0.0661 0.0837
200 8 0 0 -0.0053 -0.0016 -0.0094 0.0318 0.0229 0.0353
200 8 0 0.25 -0.0053 -0.0014 -0.0098 0.0299 0.0215 0.0334
200 8 0.25 0 -0.007 -0.0026 -0.0117 0.0302 0.0214 0.0347
200 8 0.25 0.25 -0.0065 -0.002 -0.0118 0.0302 0.0215 0.0347
200 8 0.5 0 -0.0092 -0.0036 -0.0151 0.0293 0.0202 0.0347
200 8 0.5 0.25 -0.0095 -0.0029 -0.017 0.0306 0.0209 0.0378
200 8 0.75 0 -0.0105 -0.0042 -0.0171 0.0274 0.0183 0.034
200 8 0.75 0.25 -0.0104 -0.0033 -0.0193 0.0272 0.0181 0.036
300 4 0 0 -0.0041 -0.0027 -0.005 0.0454 0.0434 0.0496
300 4 0 0.25 -0.0041 -0.0023 -0.0064 0.0475 0.0451 0.0518
300 4 0.25 0 -0.0055 -0.0036 -0.0069 0.0545 0.0518 0.0585
300 4 0.25 0.25 -0.0064 -0.0044 -0.0094 0.0542 0.0515 0.0589
300 4 0.5 0 -0.0074 -0.005 -0.0109 0.0585 0.0561 0.0632
300 4 0.5 0.25 -0.0054 -0.0027 -0.0093 0.0601 0.0573 0.0673
300 4 0.75 0 -0.0068 -0.0051 -0.0111 0.0555 0.0517 0.0604
300 4 0.75 0.25 -0.0081 -0.0063 -0.0148 0.0601 0.0538 0.0657
300 8 0 0 -0.003 -0.0013 -0.0063 0.0244 0.0194 0.0273
300 8 0 0.25 -0.0032 -0.0012 -0.0067 0.0248 0.0197 0.028
300 8 0.25 0 -0.0045 -0.0022 -0.0084 0.0241 0.0194 0.0276
300 8 0.25 0.25 -0.0051 -0.0023 -0.0101 0.0247 0.0195 0.0292
300 8 0.5 0 -0.0055 -0.0027 -0.0101 0.0238 0.0185 0.0277
300 8 0.5 0.25 -0.0054 -0.0024 -0.0111 0.0236 0.0184 0.0293
300 8 0.75 0 -0.0066 -0.0035 -0.0118 0.0208 0.0158 0.026
300 8 0.75 0.25 -0.0055 -0.0023 -0.0131 0.0216 0.0166 0.0283
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Table 2: Bias and RMSE for estimating β, xit stationary

Bias RMSE
N T γ ρ New AS AB New AS AB

200 4 0 0 -0.0015 -0.001 -0.0019 0.0575 0.054 0.0583
200 4 0 0.25 -0.0043 -0.0038 -0.0061 0.0576 0.0535 0.059
200 4 0.25 0 -0.0053 -0.0047 -0.0066 0.0589 0.0548 0.0611
200 4 0.25 0.25 -0.0038 -0.0032 -0.0069 0.0579 0.0543 0.0608
200 4 0.5 0 -0.0071 -0.0053 -0.01 0.0614 0.0581 0.0661
200 4 0.5 0.25 -0.0075 -0.0058 -0.0127 0.064 0.06 0.0707
200 4 0.75 0 -0.0093 -0.0061 -0.0141 0.068 0.0648 0.0767
200 4 0.75 0.25 -0.0086 -0.0052 -0.0174 0.0757 0.0697 0.0866
200 8 0 0 -0.0019 -0.0012 -0.002 0.0254 0.0189 0.0254
200 8 0 0.25 -0.0017 -0.0008 -0.0025 0.0259 0.0191 0.026
200 8 0.25 0 -0.0018 -0.0009 -0.0021 0.025 0.0185 0.025
200 8 0.25 0.25 -0.0006 0.0001 -0.0017 0.0251 0.0187 0.0253
200 8 0.5 0 -0.0024 -0.0013 -0.0035 0.0251 0.0186 0.0254
200 8 0.5 0.25 -0.0029 -0.0008 -0.0053 0.0249 0.0184 0.026
200 8 0.75 0 -0.006 -0.0027 -0.0092 0.0257 0.0186 0.0279
200 8 0.75 0.25 -0.0055 -0.0014 -0.0107 0.0265 0.019 0.0304
300 4 0 0 -0.0026 -0.0025 -0.0025 0.0465 0.0445 0.0465
300 4 0 0.25 -0.0023 -0.0018 -0.0034 0.0468 0.0447 0.0486
300 4 0.25 0 -0.0025 -0.0021 -0.0028 0.0472 0.0454 0.0482
300 4 0.25 0.25 -0.0023 -0.0018 -0.0037 0.0477 0.0457 0.0489
300 4 0.5 0 -0.0027 -0.002 -0.0047 0.0511 0.0492 0.0534
300 4 0.5 0.25 -0.0037 -0.0026 -0.0067 0.0525 0.0502 0.0569
300 4 0.75 0 -0.0055 -0.0044 -0.0089 0.0569 0.0537 0.0612
300 4 0.75 0.25 -0.0067 -0.0052 -0.0128 0.0592 0.0547 0.0661
300 8 0 0 -0.0014 -0.0011 -0.0014 0.0212 0.0172 0.0212
300 8 0 0.25 -0.0005 -0.0003 -0.001 0.0208 0.0168 0.0209
300 8 0.25 0 -0.001 -0.0007 -0.001 0.0201 0.0164 0.0201
300 8 0.25 0.25 -0.0003 0.0001 -0.0013 0.0202 0.0165 0.0205
300 8 0.5 0 -0.0011 -0.0005 -0.002 0.0203 0.0164 0.0205
300 8 0.5 0.25 -0.0015 -0.0005 -0.0031 0.0203 0.0165 0.0208
300 8 0.75 0 -0.0037 -0.0023 -0.0064 0.0208 0.0166 0.0224
300 8 0.75 0.25 -0.0035 -0.0015 -0.0081 0.021 0.0165 0.0238
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Table 3: Bias and RMSE for estimating γ, xit non-stationary

Bias RMSE
N T γ ρ New AS AB New AS AB

200 4 0 0 -0.0053 0.0029 -0.0062 0.0525 0.0696 0.0852
200 4 0 0.25 -0.0032 0.0035 -0.0049 0.0514 0.0706 0.0873
200 4 0.25 0 -0.0052 -0.005 -0.0091 0.0497 0.0759 0.1035
200 4 0.25 0.25 -0.0047 -0.0082 -0.0105 0.0507 0.0782 0.1062
200 4 0.5 0 -0.0021 -0.0069 -0.0051 0.0408 0.0577 0.0651
200 4 0.5 0.25 -0.0038 -0.0088 -0.0058 0.0386 0.0586 0.0677
200 4 0.75 0 -0.0013 -0.0008 -0.001 0.0233 0.0252 0.0272
200 4 0.75 0.25 0.0002 -0.0007 -0.0001 0.0228 0.0261 0.0286
200 8 0 0 -0.0038 -0.0016 -0.0074 0.0301 0.0235 0.0348
200 8 0 0.25 -0.0035 -0.0009 -0.0071 0.0285 0.0224 0.0333
200 8 0.25 0 -0.0038 -0.0018 -0.0068 0.026 0.0228 0.0329
200 8 0.25 0.25 -0.0041 -0.0018 -0.0074 0.026 0.0225 0.0326
200 8 0.5 0 -0.0032 -0.003 -0.0058 0.0205 0.0193 0.0286
200 8 0.5 0.25 -0.003 -0.003 -0.006 0.0202 0.0194 0.028
200 8 0.75 0 -0.0007 -0.0009 -0.0015 0.0107 0.0094 0.0142
200 8 0.75 0.25 -0.0009 -0.0014 -0.0014 0.0109 0.0097 0.0148
300 4 0 0 -0.0032 0.0026 -0.0042 0.0423 0.0598 0.0693
300 4 0 0.25 -0.003 0.0025 -0.006 0.0426 0.0608 0.0707
300 4 0.25 0 -0.0032 -0.0055 -0.0102 0.0413 0.0672 0.087
300 4 0.25 0.25 -0.0037 -0.0049 -0.0085 0.0394 0.0657 0.0853
300 4 0.5 0 -0.0027 -0.0061 -0.0048 0.0314 0.0482 0.052
300 4 0.5 0.25 -0.0009 -0.0052 -0.0021 0.0313 0.0488 0.054
300 4 0.75 0 -0.0005 -0.0007 -0.0005 0.0192 0.0211 0.0224
300 4 0.75 0.25 -0.0005 -0.001 -0.0004 0.0182 0.021 0.0223
300 8 0 0 -0.0022 -0.0009 -0.0051 0.0232 0.0204 0.0273
300 8 0 0.25 -0.0025 -0.0011 -0.0055 0.0234 0.0204 0.0278
300 8 0.25 0 -0.0027 -0.0017 -0.0053 0.0211 0.0206 0.0267
300 8 0.25 0.25 -0.0033 -0.0021 -0.0064 0.0209 0.0203 0.0271
300 8 0.5 0 -0.0021 -0.0026 -0.0042 0.0161 0.0178 0.0229
300 8 0.5 0.25 -0.0019 -0.0027 -0.0044 0.0159 0.0177 0.023
300 8 0.75 0 -0.0004 -0.0008 -0.0008 0.0085 0.0086 0.0114
300 8 0.75 0.25 -0.0002 -0.0009 -0.0007 0.0087 0.0088 0.012
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Table 4: Bias and RMSE for estimating β, xit non-stationary

Bias RMSE
N T γ ρ New AS AB New AS AB

200 4 0 0 0.0015 -0.0046 0.0018 0.0329 0.0663 0.0839
200 4 0 0.25 0.0005 -0.0034 0.002 0.0329 0.0686 0.0881
200 4 0.25 0 0.0024 0.0048 0.0066 0.0368 0.0794 0.1138
200 4 0.25 0.25 0.0025 0.0094 0.009 0.0358 0.0801 0.1157
200 4 0.5 0 0.0011 0.0093 0.0051 0.04 0.0732 0.0844
200 4 0.5 0.25 0.0004 0.0093 0.0031 0.0377 0.0754 0.0895
200 4 0.75 0 0.0015 0.0011 0.0008 0.0435 0.0512 0.0561
200 4 0.75 0.25 0.0002 0.0028 0.0009 0.0429 0.0549 0.061
200 8 0 0 0.0018 0.0011 0.0037 0.0162 0.0144 0.0208
200 8 0 0.25 0.0017 0.0005 0.0035 0.0159 0.0142 0.0206
200 8 0.25 0 0.0022 0.0013 0.0043 0.0183 0.018 0.0257
200 8 0.25 0.25 0.0026 0.0013 0.0047 0.0181 0.0174 0.0253
200 8 0.5 0 0.0031 0.0035 0.0057 0.021 0.0216 0.0322
200 8 0.5 0.25 0.0027 0.0032 0.0058 0.0206 0.0214 0.0314
200 8 0.75 0 0.001 0.0018 0.0025 0.021 0.019 0.0296
200 8 0.75 0.25 0.0014 0.0028 0.0024 0.0216 0.0197 0.0311
300 4 0 0 0.0005 -0.0033 0.0017 0.0266 0.0597 0.0698
300 4 0 0.25 0.0013 -0.0023 0.0046 0.0254 0.0593 0.0702
300 4 0.25 0 0.0015 0.0065 0.0099 0.029 0.0705 0.0956
300 4 0.25 0.25 0.0015 0.0052 0.0071 0.0284 0.0698 0.0949
300 4 0.5 0 0.0013 0.0072 0.0043 0.0314 0.0636 0.0692
300 4 0.5 0.25 0 0.0073 0.0017 0.031 0.0641 0.0721
300 4 0.75 0 0.0003 0.0013 0.0005 0.0366 0.0434 0.0464
300 4 0.75 0.25 0.0004 0.0019 0.0002 0.0339 0.0432 0.0467
300 8 0 0 0.0008 0.0004 0.0024 0.0125 0.0129 0.0167
300 8 0 0.25 0.001 0.0005 0.0026 0.0127 0.0129 0.0171
300 8 0.25 0 0.0014 0.0011 0.0032 0.0145 0.0163 0.0209
300 8 0.25 0.25 0.0021 0.0016 0.0043 0.0145 0.0161 0.0213
300 8 0.5 0 0.0019 0.0028 0.0041 0.0163 0.0197 0.0257
300 8 0.5 0.25 0.0019 0.0031 0.0047 0.016 0.0198 0.0259
300 8 0.75 0 0.0007 0.0017 0.0015 0.0165 0.0174 0.0237
300 8 0.75 0.25 0.0004 0.0019 0.001 0.0171 0.0179 0.0253
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Table 5: Bias and RMSE for estimating σ2
µ, xit stationary

N T γ ρ Bias RMSE
200 4 0 0 0.026 0.0195
200 4 0 0.25 0.0297 0.024
200 4 0.25 0 0.0461 0.0332
200 4 0.25 0.25 0.0493 0.0447
200 4 0.5 0 0.0811 0.0632
200 4 0.5 0.25 0.1037 0.0951
200 4 0.75 0 0.1815 0.1919
200 4 0.75 0.25 0.2385 0.5908
200 8 0 0 -0.0035 0.0064
200 8 0 0.25 -0.0002 0.0071
200 8 0.25 0 0 0.0077
200 8 0.25 0.25 0.0051 0.0093
200 8 0.5 0 0.0138 0.0104
200 8 0.5 0.25 0.0246 0.0151
200 8 0.75 0 0.0504 0.0253
200 8 0.75 0.25 0.0644 0.0351
300 4 0 0 0.0156 0.0116
300 4 0 0.25 0.0235 0.0167
300 4 0.25 0 0.0277 0.0203
300 4 0.25 0.25 0.0365 0.0296
300 4 0.5 0 0.0516 0.0397
300 4 0.5 0.25 0.0594 0.0591
300 4 0.75 0 0.1093 0.1019
300 4 0.75 0.25 0.1643 0.2188
300 8 0 0 -0.007 0.0042
300 8 0 0.25 -0.0024 0.0046
300 8 0.25 0 -0.0002 0.0051
300 8 0.25 0.25 0.0026 0.0058
300 8 0.5 0 0.0066 0.007
300 8 0.5 0.25 0.0123 0.0089
300 8 0.75 0 0.0302 0.0139
300 8 0.75 0.25 0.0345 0.021
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Table 6: Bias and RMSE for estimating σ2
µ, xit non-stationary

N T γ ρ Bias RMSE
200 4 0 0 0.015 0.0151
200 4 0 0.25 0.011 0.0139
200 4 0.25 0 0.0152 0.018
200 4 0.25 0.25 0.0142 0.0182
200 4 0.5 0 0.0191 0.0195
200 4 0.5 0.25 0.0196 0.019
200 4 0.75 0 0.0163 0.0181
200 4 0.75 0.25 0.0142 0.0191
200 8 0 0 -0.008 0.006
200 8 0 0.25 -0.0073 0.0062
200 8 0.25 0 -0.0092 0.0067
200 8 0.25 0.25 -0.0054 0.0069
200 8 0.5 0 -0.0071 0.007
200 8 0.5 0.25 -0.0055 0.0072
200 8 0.75 0 -0.0097 0.007
200 8 0.75 0.25 -0.0103 0.0067
300 4 0 0 0.0077 0.0092
300 4 0 0.25 0.0111 0.0102
300 4 0.25 0 0.0104 0.0112
300 4 0.25 0.25 0.0128 0.0116
300 4 0.5 0 0.0131 0.0115
300 4 0.5 0.25 0.0105 0.0122
300 4 0.75 0 0.0099 0.0118
300 4 0.75 0.25 0.0093 0.0124
300 8 0 0 -0.0099 0.004
300 8 0 0.25 -0.0055 0.0039
300 8 0.25 0 -0.0052 0.0044
300 8 0.25 0.25 -0.0048 0.0042
300 8 0.5 0 -0.0056 0.0047
300 8 0.5 0.25 -0.0042 0.0045
300 8 0.75 0 -0.0068 0.0044
300 8 0.75 0.25 -0.0081 0.0046
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