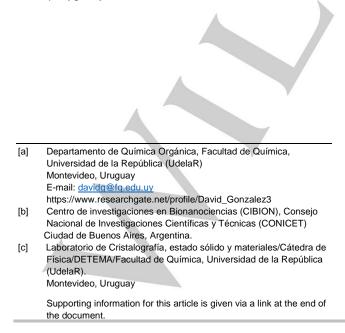


FULL PAPER

WILEY-VCH


Chemoenzymatic synthesis of hygromycin A aminocyclitol moiety and its C2 epimer.

Dr. Gonzalo Carrau,^[a] Dra. Ana Inés Bellomo,^[b] Dr. Leopoldo Suescun^[c] and Dr. David Gonzalez.^{*[a]}

Abstract: This manuscript describes the enantioselective synthesis of the aminocyclitol moiety of the antibiotic hygromycin A in eight steps and 39% overall yield from a non-chiral starting material. The sequence made use of an initial enzymatic step to transfer chirality to an aromatic ring and was followed by selective organic chemistry transformations (oxidation, protection, azidation, hydrolysis) of the six-membered ring in order to achieve the target. The approach is also amenable to the synthesis of other related unnatural analogues as exemplified by the synthesis of the C2 epimer of the natural aminocyclitol. All the intermediates were fully characterized, and the absolute stereochemistry assigned by spectrometric methods.

Introduction

Hygromycin A (Figure 1) is an antibiotic first isolated in 1953 from *Streptomyces hygroscopicus*,^[1] that inhibits peptidyl transferase activity.^[2] It exerts moderate activity against gram-positive and some gram-negative bacteria,^[3] but exhibits potent activity both *in vitro*^[4] and *in vivo*^[4-5] against the spirochete responsible for swine dysentery. This fact encouraged a research group from Pfizer to synthesize several analogues by a semi-synthetic approach to develop new antibiotics of potential veterinary use (see^[6] and references therein). To date, two total syntheses of hygromycin A have been described, the first one by Ogawa group,^[7] and the second one by Donohoe et al.^[8] One formal synthesis was also accomplished by Yan group,^[9] and Trost group has synthesized C-2"-epi-hygromycin A.^[10]

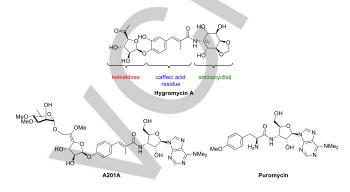


Figure 1: Structure of antibiotics: hygromycin A, A201A, and puromycin.

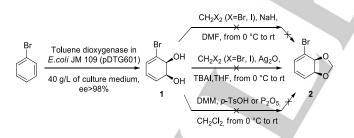
Hygromycin A structure is originated from the assembling of three independent subunits: a ketoaldose, a substituted caffeic acid residue, and an aminocyclitol moiety.^[11] Both sugar and caffeic acid residues resemble those of A201A antibiotic (Figure 1), and to a lesser extent, puromycin. However, the aminocyclitol moiety is unique and does not resemble any cyclitol of the aminoglycoside antibiotics family. Hygromycin particular structure encouraged several groups to study its biosynthesis and embrace efficient synthetic approaches. To date, the literature has described five synthetic approaches towards hygromycin A aminocyclitol moiety (Table 1). Yan's group accomplished the shortest sequence to obtain the aminocyclitol core in 2012,^[9] although Shashidhar group reported the sequence with best global yield.^[12]

 Table 1: Reported syntheses of the aminocyclitol moiety associated with hydromycin A.

Research group	Starting material	Steps	Global yield
Ogawa	Methyl α-D- glucopyranoside	18	2%
	Benzoquinone	13	10%
Trost	(±)-conduritol B tetraacetate	10	23%
		14	12%
Donohoe		15	20%
Shashidhar	myo-inositol	11	31%
Yan	L-tartaric acid	9	21%
	group Ogawa Trost Donohoe Shashidhar	groupmaterialOgawaMethyl α-D- glucopyranosideTrostBenzoquinone(±)-conduritol B tetraacetateDonohoeH OShashidharmyo-inositol	groupmaterialStepsOgawaMethyl α-D- glucopyranoside18TrostBenzoquinone13(±)-conduritol B tetraacetate10DonohoeH14Donohoe15

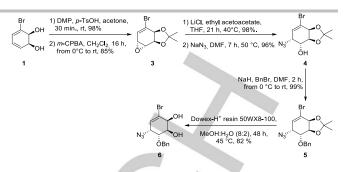
Herein we describe a chemoenzymatic approach towards hygromycin A aminocyclitol moiety, as well as its C2 epimer. The development of efficient synthetic routes, with good

FULL PAPER


diastereomeric control while introducing new stereogenic centers, could be of great value for synthesizing hygromycin A analogues. This approach would allow exploring new compounds that cannot be synthesized by a semi-synthetic approach.

We have made use of enzymatic transformations, particularly microbial dihydroxylations^[16] and, to a minor extent, yeast reductions^[17] to prepare a diverse array of optically pure chiral molecules. Aminocyclitols have been preferred targets in chemoenzymatic synthesis. In particular, the dioxygenase catalyzed oxidation of aromatics have resulted in a very efficient approach to optically pure aminoinositols,^[18] conduritols,^[19] as well as their deoxygenated analogues and conjugates.^[20] Initial efforts of Hudlicky et al. since the early nineties of the last century have developed into a full stereodivergent strategy that has been exploited around the world to render a wide diversity of this nitrogen containing polyols.^[21] Recently, we have targeted the synthesis of more complicated structures bearing a cyclitol core such as pancratistatin analogues^[22] and linear molecules inspired in the hygromycin A skeleton.^[23]

Results and Discussion


Synthesis of L-4,5-O-methylene-2-neo-inosamine (25).

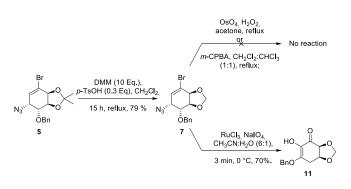
Bromobenzene was enzymatically dihydroxylated by means of a recombinant strain of *E. coli* (JM109 (pDTG601)), and a final concentration of 40 g/L of culture medium of enantiomerically pure (1S,2S)-3-bromo-3,5-cyclohexadiene-1,2-diol (1) was achieved (Scheme 1).^[24] Our initial approach was to introduce the methylenedioxy group directly on compound 1, not only to avoid aromatization but also to sterically direct the following reactions. Unfortunately, all attempts to protect the diol group led only to aromatization products and we were not able to obtain compound 2. We, therefore, decided to modify our strategy and protect the diol function as an isopropylidene (Scheme 2).

Scheme 1: Attempts to introduce the methylenedioxy group on diol 1.

The stereoselective transformation of epoxide **3** into hydroxyazide **4** was achieved by means of a two-step sequence first described by Hudlicky et al. for the corresponding chloro-analogue of compound **3** (Scheme 2).^[25] The epoxide ring was initially opened by lithium chloride. In this reaction, the presence of ethyl acetoacetate provided the optimal acidity to catalyze the reaction.^[26] In a second stage, the chloride was displaced to render the desired azide **4** with overall retention of configuration. Then the remaining hydroxyl group was protected as the benzyl ether **5** and the acetonide group was deprotected to render diol **6**, which is ready to introduce the methylenedioxy group (Scheme 2).

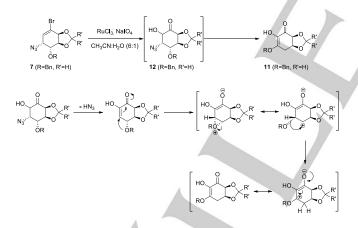
Scheme 2: Functionalization of the electron-richer olefin.

Conduritol 6 was completely resistant to acetalization under basic conditions. The diol was unreactive from 0 °C to room temperature and completely decomposed upon warming up the reaction (Table 2, entries 1-5). On the other hand, the use of silver oxide under neutral conditions to enhance the electrophilicity of the dihalomethane (entries 6-8) led to the isolation of the desired product, but only in 10% yield (entry 6). Much better results were obtained for the acid-catalyzed acetalization with dimethoxymethane (DMM) as electrophile (entries 9-14). Although p-TsOH did not promote the reaction at room temperature even using a vast excess of DMM (entry 9), the reaction did take place under reflux in dichloromethane and yielded the desired ketal 7 in 91% yield as the only product (entry 11). Along the study we observed that ketals 8, 9 and 10 were formed if only moderate excess (1,5 fold excess) of DMM was used, but they were all converted to compound 7 under refluxing temperature (entries 13 and 14).


Table 2.	Protection of azido conduritol derivative 6.

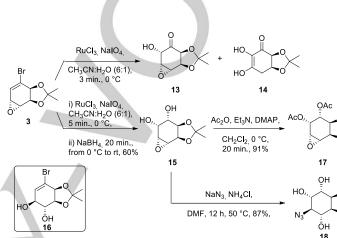
N3***	Br OH OH Tabl	e 2 N3"	Br Bi DBn D		OH OMOM ÖBn	N3 ¹¹ OBn
	6		7	8	9	10
Entry	Reagent (eq)	Catalyst (Eq)	Reaction temperature (°C)	e Solvent	Reaction time (h)	Product (yield)
1	CH ₂ I ₂ (5)	NaH	0 - rt	DMF	7	7 (trace)
2	CH ₂ Br ₂ (3.4)	NaH	0 - rt	DMF	19	Recovered sm
3	CH ₂ Br ₂ (3.4)	NaH	40 - 85	DMF	11	Decomposition
4	CH ₂ Br ₂ (3.4)	K₂CO₃, 18-c-6	rt	CH_2CI_2	96	Recovered sm (70%)
5	CH ₂ Br ₂ (3.4)	K₂CO₃, 18-c-6	reflux	CH_2CI_2	4	Decomposition
6	$CH_{2}I_{2}(15)$	Ag₂O, TBAI	rt	THF	24	7 (10%)
7	CH ₂ I ₂ (15)	Ag₂O, TBAI	reflux	THF	4	7 (trace)
8	CH ₂ I ₂ (100)	Ag₂O, TBAI	rt	CH_2I_2	10	Decomposition
9	DMM (100)	<i>p</i> -TsOH	rt	CH_2CI_2	48	7, 8, 9, 10
10	DMM (10)	<i>p</i> -TsOH	reflux	THF	24	7 (trace)
11	DMM (10)	<i>p</i> -TsOH	reflux	CH_2CI_2	19	7 (91%)
12	DMM (100)	P_2O_5	rt	CH_2CI_2	3	10 (quant.)
13	DMM (1.5)	P_2O_5	rt	CH_2CI_2	19	8, 9, 10
14	DMM (1.5)	P ₂ O ₅	reflux	CH_2CI_2	2	7 (40%)

At this point, the introduction of the methylenedioxy group was successfully accomplished, however, it was still necessary to introduce the acetonide first as a transient protective group, then operate on the electron-richer olefin, remove the acetonide and


FULL PAPER

finally introduce the methylenedioxy group. Since the acidic conditions used to introduce the methylenedioxy group may allow the deprotection of the acetonide, we envisioned that a transacetalization reaction over compound **5** might lead directly to compound **7**, without isolating diol **6**. We gladly observed that after 15 hours the reaction was completed and the desired ketal **7** was obtained in 79% yield (Scheme 3)

Scheme 3: Transacetalization reaction on 5 and functionalization of the electron-poorer olefin on the dioxolane 7.


Attempts to oxidize the bromoalkene either with *m*-CPBA or with OsO_4 led only to recovered starting material (Scheme 3). We assayed the use of the more reactive RuO_4 (generated *in situ*) and observed complete consumption of the starting material. However, we did not obtain the desired hydroxy ketone, but a compound identified as **11**. We assumed that unsaturated ketone **11** was derived from hydroxy ketone **12** by hydrazoic acid loss followed by a 1,2-hydride shift as proposed in Scheme 4.

Scheme 4: Proposed mechanism for the transformation of 7 into 11.

As we were not able to isolate the desired hydroxy ketone **12**, we decided to change the synthetic steps sequence. Attempts to functionalize the bromoalkene on epoxide **3** with RuO₄ (Scheme 5) led to a mixture of the hydroxy ketone **13** and the rearranged product **14**. The stereochemistry of the new stereogenic center in compound **13** was suggested by coupling constant measurement ($J_{2:3} = 1.4$ Hz indicates a *cis* stereochemical relationship) and NOE experiments (Figure 2). Crystallization of compound **13** followed by X-ray diffraction analysis confirmed the assigned

stereochemistry (Figure 2). Several attempts were made to maximize the formation of epoxide **13**, and it was noticed that **14** was formed during the purification stage by column chromatography. Consequently, we decided to perform a one-pot sequence adding the NaBH₄ directly to reaction flask once the consumption of epoxide **3** was verified. This approach rendered diol **15** in 60% yield for both steps. In the same reaction, bromodiol **16** was obtained as a byproduct with 22% yield. The latter probably formed by nucleophilic ring opening of the oxirane by water over the allylic position in a *trans*-diaxial fashion.

Scheme 5: Functionalization of the bromo-olefin on the epoxide 3.

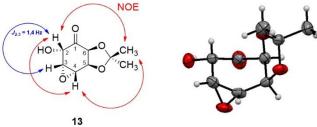


Figure 2. NOE correlations of hydroxyl-ketone 13 and ORTEP diagram.

The stereochemistry of **15** could not be derived from the ¹H-NMR spectra since the coupling constants could not be determined due to second order splitting. Therefore, the hydroxyl groups were protected to render diacetate **17** (Scheme 5). The coupling constant of H₃₋₄ (Figure 3) was determined to be 4.6 Hz, an intermediate value that could arise either from a *cis* or a *trans* relationship between the involved protons. Data from a 1D NOE experiment suggested a *cis* relationship because when irradiating the *endo* methyl group of the isopropylidene an enhancement was observed in all β protons (including H₄). In order to confirm the assignment, the epoxide was opened with azide anion. The facial approach of the azide group is governated by the Fürst-Plattner rule, and the regiochemistry of the attack was determined by COSY experiment. The ¹H-NMR spectrum showed a triplet signal (*J* = 10.0 Hz) at 3.52 ppm that was assigned to H₄ (Figure 4). This

FULL PAPER

suggested a chair conformation with H₁-H₂ and H₂-H₃ in a *trans*diaxial relationship. If OH₆ was on the β face, then H₅-H₆ should also have a *trans*-diaxial disposition, but this is not what coupling constant suggested. A measured J₁₋₆ value of 3.0 Hz hinted two *pseudo*-equatorial protons, confirming a *cis* relationship between H₅ and H₆. We were also able to crystallize compound **18**, and its structure was confirmed by single crystal X-ray crystallography (Figure 4). Structure confirmation of the *cis* isomer **20** was achieved by single-crystal X-ray diffraction analysis (Figure 5). On the other hand, to verify that **19** had the assigned stereochemistry, the compound was acetylated (**21**, Scheme 7), the acetonide was removed and the product was acetylated again. This rendered *meso* compound **22**, corroborating the assigned stereochemistry.

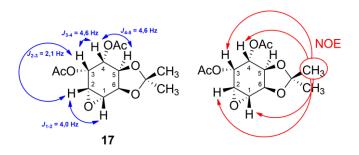


Figure 3. Coupling constants and NOE correlations of diacetate 17.

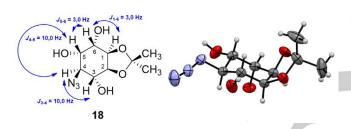
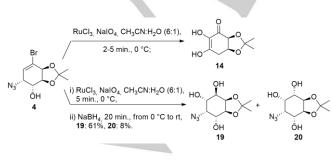



Figure 4. Coupling constant of compound 18 and its ORTEP diagram.

As the compound synthesized by the hydroxycarbonylation/reduction sequence over the epoxide was not a trans diol as we expected, we decided to explore the reaction over the less strained substrate 4 (Scheme 6). When we performed only the oxidation stage, the main isolated product was 14 (≈60%). During the reaction, another product was observed by TLC (possibly the hydroxy ketone) but it decomposed during isolation as the amount of 14 increased, so we returned to the one pot dihydroxylation/reduction procedure. In this case, a mixture of trans(19)/cis(20) diols was obtained in ratio 7.6/1. The diastereomers could be separated by column chromatography, and the desired product was obtained in 61% yield for both steps.

Scheme 6: Functionalization of the bromo-olefin on compound 4.

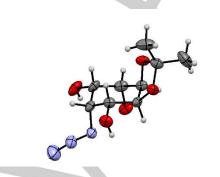
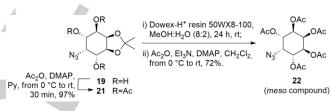
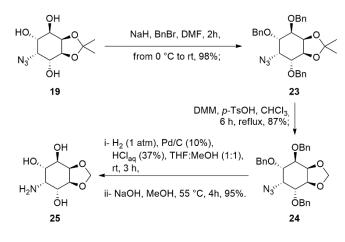
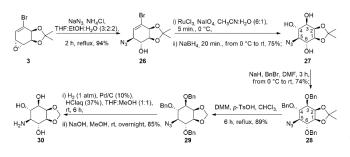




Figure 5. Crystal structure of triol 20.

Scheme 7: Confirmation of stereochemistry of compound 19.

Once the stereochemistry of **19** was confirmed, the three hydroxyl groups were protected as benzyl ethers (**23**, Scheme 8), and the methylenedioxy group was introduced by means of a transacetalization reaction. Finally, simultaneous removal of the benzyl groups and reduction of the azide moiety by hydrogenolysis rendered the natural aminocyclitol **25** in 95% yield (Scheme 8). The recorded NMR data of compound **25** is in full accordance with the reported by Shashidhar.^[12]



Scheme 8: Synthesis of natural aminocyclitol 25.

FULL PAPER

Synthesis of D-1,2-O-methylene-5-myo-inosamine [2-epi-(L-4,5-O-methylene-2-neo-inosamine)] (30).

In order to synthesize the C2 epimer, the same strategy was applied but starting from the *trans*-azidoalcohol **26** (obtained from epoxide **3**) instead of compound **4** (Scheme 9). The bromo-olefin was functionalized by the same oxidation/reduction sequence rendering the *trans* diol (**27**). The stereochemistry was confirmed by coupling constant measurement: $J_{3-4} \approx J_{4-5} \approx J_{5-6} \approx 10$ Hz indicating a *trans*-diaxial relationship between those protons. The hydroxyl groups were protected as benzyl ethers (**28**) and then the acetonide was interconverted into the methylenedioxy group to deliver **29**. Finally, a hydrogenolysis reaction rendered aminocyclitol **30** (C2-epimer).

Scheme 9: Synthesis of C2 epimer of the natural aminocyclitol.

Conclusions

The aminocyclitol core present in hygromycin A was prepared in eight steps with an overall yield of 39% from cyclohexadienediol **1**. The latter is commercially available or can be prepared in high yield by whole-cell enzymatic dihydroxylation of bromobenzene. The process has now been optimized in our 5-liter fermenter to render optically pure diol in up to 40 g/L of cell culture. Comparable yields have been described by the Hudlicky group in Canada that has pioneered the technique for over two decades. To the best of our knowledge, this is the shortest synthesis of the hygromycin A core reported to date and provides the highest overall yield.

The preparation of the C2 epimer in an even shorter sequence provided proof of concept that this approach is suitable for the preparation of hygromycin A analogues of unnatural stereochemistry. Our results in the synthesis of a series of analogues are on development and will be reported in due course.

Experimental Section

General methods

Commercially available reagents were purchased from Sigma–Aldrich and used without further purification. Melting pionts were determined either on a capilar Gallenkamp apparatus or on a capilar Electrothermal IA 9100 MK2 apparatus and are uncorrected. Optical rotation was determined on a Kruss Optronic GmbH P8000 on a 0.5 dm cell (concentration is expressed as W/V percentage). Nuclear Magnetic Resonance spectra were recorded either on a Bruker AVANCE DPX-400 instrument or on a Bruker AVANCE III 500 spectrometer. Chemical shifts (δ) are given in

parts per million downfield from tetramethylsilane, and coupling constants (*J*) are reported in Hertz. 1D-NOESY experiments were carried out at 25 °C using the DPFGSE-NOE pulse sequence of Stott et al. and a mixing time of 300 ms.^[27] Selective excitation of specific protons was achieved with Gaussian shaped pulses. Infrared spectra (IR) were recorded on a Shimadzu FT-IR model IRprestige-21. Low-resolution mass spectra (MS) were recorded on a Shimadzu GCMS-QP2010 ultra instrument (70 eV electron impact mode), using either Direct Injection (DI) or by means of GC (column DB-WAX: Length 30m, diameter 0.25 mm and Film 0.25 μ m). High-resolution mass spectra were performed on a Bruker Daltonics model ToF_{LC} (ESI + mode).

Analytical TLC was performed on silica gel 60F-254 plates and visualized with UV light (254 nm) and/or anisaldehyde– H_2SO_4 –EtOH or vanillin– H_2SO_4 –EtOH as detecting agent. Purifications by column chromatography were performed on Merck 60 silica gel (0,040–0,063 mm).

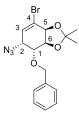
Single crystal X-ray diffraction data was collected on a Bruker D8 Venture diffractometer using Siemens Sealed-tube MoKα radiation monochromatized with a graphite single crystal (Compounds 13 and 18) and Incoatec I microfocus source 1.0 $\text{Cu}\textit{K}_{\alpha}$ radiation focused and monochromatized with a Quazar multilayer mirror (Compound 20). A single crystal of each compounds was mounted on the four-circle kappa goniometer and data was collected in all cases in shutterless mode using a PHOTON100 CMOS detector. The diffractometer was operated using APEX2 control software providing cell determination, data collection and processing and structure report routines. Data scaling and absorption correction was performed with SADABS.^[28] Structure determination was performed by modern direct methods with SHELXT program^[29] and leastsquares structure refinement with SHELXL^[30] in shelXle environment.^[31] CIF preparation and molecular graphics were prepared with enCIFer (v 1.6.2) and Mercury CSD 3.10.1 respectively. Figures S1. S2 and S3 show ORTEP representations of compounds 13, 18 and 20 and Tables S1, S2 and S3 the crystallographic data, processing and refinement details respectively. CCDC 1535525 13, 1535526 18, and 1535562 20, contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

$(1R,2R,3S,4S)\mbox{-}5\mbox{-}brom\mbox{-}1,2\mbox{-}epoxy\mbox{-}3,4\mbox{-}isopropylidenedioxy\mbox{-}5\mbox{-}cyclohexene (3). \end{tabular}$

The ¹H- and ¹³C-NMR spectra data of the compound were found to be in agreement with previous reports.^[32] $\alpha_D^{21,0} = +101$ (c = 1.55, MeOH). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.48 (dd, J₁₋₆ = 4.5 Hz, J₄₋₆ = 1.3 Hz, 1H, H₆), 4.87 (ddd, J₃₋₄ = 6.7 Hz, J₂₋₃ = 1.9 Hz, J₁₋₃ = 1.1 Hz,

1H, H₃), 4.42 (dd, $J_{3\cdot4} = 6.7$ Hz, $J_{4\cdot6} = 1.3$ Hz, 1H, H₄), 3.60 (dd, $J_{1\cdot2} = 3.7$ Hz, $J_{2\cdot3} = 1.9$ Hz, 1H, H₂), 3.34 (ddd, $J_{1\cdot6} = 4.6$ Hz, $J_{1\cdot2} = 3.7$ Hz, $J_{1\cdot3} = 1.1$ Hz, 1H, H₁), 1.46 (s, 3H, CH₃), 1.44 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 130.0 (C₅), 126.6 (C₆), 111.5 (Cisopropylidene), 74.2 (C₄), 72.7 (C₃), 49.6 (C₂), 48.4 (C₁), 27.6 (CH₃), 26.1 (CH₃).

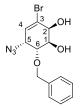
(1R,2R,5S,6S)-2-azido-4-bromo-5,6-isopropylidenedioxycyclohexa-3-Br ene-1-ol (4).^[33]



The ¹H- and ¹³C-NMR spectra data of the compound were found to be in agreement with previous reports.^[33] ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.15

(d, $J_{3\cdot2} = 3.1$ Hz, 1H, H₃), 4.66 (d, $J_{5\cdot6} = 5.3$ Hz, 1H, H₅), 4.40 (t, $J_{1\cdot6} = J_{5\cdot6} = 5.3$ Hz, 1H, H₆), 4.25-4.17 (m, 2H, H₁ and H₂), 2.49 (bs, 1H, OH₁), 1.44 (s, 3H, CH₃), 1.40 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ ppm: 126.3 (C₃), 126.4 (C₄), 110.4 (C_{isopropylidene}), 76.1 (C₆), 76.0 (C₅), 69.2 (C₁), 59.5 (C₂), 27.6 (CH₃), 26.0 (CH₃).

FULL PAPER


(1R,2R,5S,6S)-2-Azido-1-benzyloxy-4-bromo-5,6isopropylidenedioxy-3-cyclohexene (5).

122 mg of NaH 55% dispersion in mineral oil (2.8 mmol, 1.6 eq.) were added to a solution of 511 mg of compound 4 (1.7 mmol, 1 eq.) in 8 mL of dry DMF at 0 °C under N₂ atmosphere. The reaction mixture was left to stir during 15 minutes, and then 0.67 mL of BnBr (5.6 mmol, 3.2 eq.) were added. The reaction was kept at 0°C for 10 minutes, and then it was warmed up to room temperature. The reaction was monitored by TLC, and after completion of the reaction, a

saturated aqueous solution of NH4CI was added and the system was extracted with three portions of AcOEt. The combined organic phases were washed with three portions of saturated aqueous solution of CuSO₄, then washed with brine, dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure to render an oily crude. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase, and performing the following gradient elution: 0%, then 5% and finally 10 % (v/v of AcOEt in Hexane). 663 mg of 5 were obtained as a colorless oil (99 % yield). $\alpha D^{22} = -36$ (c = 3.4, AcOEt). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.41-7.28 (m, 5H, H arom), 6.17 (d, J₂₋₃ = 3.6 Hz, 1H, H₃), 4.80 (d, J_{gem} = 12.0 Hz, 1H, -O<u>CH₂</u>Ph), 4.71 (d, J_{gem} = 12.0 Hz, 1H, -OCH2Ph), 4.64 (dd, J5-6 = 5.5 Hz, J1-5 = 1.4 Hz, 1H, H5), 4.39 (t, J1-6 = J5-6 = 5.5 Hz, 1H, H₆), 4.03-3.98 (m, 1H, H₁), 3.97 (dt, J₁₋₂ = J₂₋₃ = 3.6 Hz, J₂₋₆ = 1.5 Hz, 1H, H₂), 1.40 (s, 3H, CH₃), 1.37 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 137.4 (C_{Ph-quaternary}), 128.7 (C_{Ph-m}), 128.3 (C_{Ph-p}), 128.1 (CPh-o), 127.3 (C₃), 125.5 (C₄), 110.5 (Cisopropylidene), 76.5 (C_{1or5}), 76.5 (C_{5or1}), 75.0 (C₆), 73.6 (-OCH₂Ph), 57.9 (C₂), 27.7 (CH₃), 26.2 (CH₃). FT-IR (v_{max}/cm): 3032 (=C-H arom), 2988 (CH₂), 2934 (CH₃), 2899 (CH₃), 2102 (N₃), 1645 (C=C), 1227 (C-O-C), 1074 (O-C-O), 739 (=C-H arom), 698 (=C-H arom). DI-MS m/z (Rel. Int): 352 (1), 350 (1), 324 (0.6), 322 (0.7), 191 (22), 91 (100). HRMS (ESI/Q-TOF) m/z: [M+Na]+ Calcd for $[C_{16}H_{18}BrN_3O_3Na]^+$ 402.0424; found: 402.0443.

(1R,2S,5R,6R)-5-Azido-3-bromo-6-benzyloxy-cyclohex-3-ene-1,2-diol (6).

7.06 g of DOWEX-H⁺ 50WX8-100 resin were added to a stirring solution of 706 mg of compound **5** in 18 mL of a mixture MeOH:H₂O (8:2, V/V) at room temperature, and the mixture was warmed up to 45 °C by means of an oil bath. The reaction was monitored by TLC, and once the starting material was consumed (approximately 48 h), the resin was filtered off and washed several times with methanol. The solvent was

removed under reduced pressure, and a brownish solid was obtained. The product was purified by column chromatography, using SiO₂ as stationary phase, and eluting with a solution 20% (v/v) of AcOEt in Hexane. 516 mg of 6 were obtained as a white solid (82% yield). M.P. = 103-104 °C. α_D^{22} = - 182 (c = 1.05, MeOH). ¹H NMR ((CD₃)₂CO, 400 MHz) δ (ppm): 7.47-7.39 (m, 2H, H_{Ph}), 7.39-7.25 (m, 3H, H_{Ph}), 6.18 (d, J₄₋₅ = 4.1 Hz, 1H, H₄), 4.79 (s, 2H, -OCH2Ph), 4.48 (bs, 1H, OH1), 4.45 (bs, 1H, OH2), 4.31 (bd, $J_{5-6} = 4.1$ Hz, 1H, H₆), 4.27 (dt, $J_{4-5} = J_{5-6} = 4.1$ Hz, J = 1.6 Hz, 1H, H₅), 4.16 (dd, J₁₋₂ = 7.4 Hz, J_{1-OH} = 4.0 Hz, 1H, H₁), 4.03 (dd, J₁₋₂ = 7.7 Hz, J₂- $_{OH}$ = 4.0 Hz, 1H, H₂). ¹³C NMR ((CD₃)₂CO, 101 MHz) δ (ppm): 139.3 (C_{Ph}quaternary), 129.8 (C₃), 129.1 (CPh-m), 128.7 (CPh-o), 128.5 (CPh-p), 128.0 (C₄), 78.1 (C₂), 73.7 (O<u>C</u>H₂Ph), 71.8 (C₆), 69.9 (C₁), 59.5 (C₅). FT-IR (v_{max} /cm): 3296 (OH), 2124 (N₃), 1651 (C=C), 731 (=C-H arom), 696 (=C-H arom). DI-MS m/z (Rel. Int): 312 (4), 310 (4), 254 (1), 252 (1), 150 (13), 91 (100). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₁₃H₁₄BrN₃O₃Na]⁺ 362.01108; found: 362.01195.

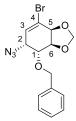
General procedure for the synthesis of dioxolane under basic media.

14 mg of NaH 55 % dispersion in mineral oil (0.32 mmol, 2.1 eq.) were added to a solution of 50 mg of diol **6** (0.15 mmol, 1 eq.) in 1 mL of dry DMF at 0 °C under N₂ atmosphere. The reaction mixture was left to stir during 45 minutes, and then 35 μ L of CH₂Br₂ (0.50 mmol, 3,4 eq.) were added in the absence of light. The reaction was taken up to the temperature listed on Table 2. After completion of the reaction, a saturated aqueous solution of NH₄Cl was added and the system was extracted with three portions of AcOEt. The combined organic phases were treated with one portion of brine, dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure to render an oily crude. Purification was accomplished by flash chromatography using SiO₂ as stationary phase.

General procedure for the synthesis of dioxolane under neutral conditions.

41 mg of diol **6** (0.12 mmol, 1 eq.) were dissolved in 1 mL of dry THF at room temperature under nitrogen atmosphere, and 145 μ L of CH₂I₂ (1.81 mmol, 15 eq.) and 9.0 mg of TBAI (tetrabutilamonium iodide, 0.024 mmol, 0.2 eq.) were added in the absence of light. After stirring for 15 minutes, 224 mg of Ag₂O (0.97 mmol, 8eq.) were added and the reaction was stirred until consumption of the starting material (conditions listed in Table 2). Et₂O was added and Ag₂O was filtered off through a pad of celite. The solvent was evaporated to render an oily crude product that was subjected to flash chromatography on silica gel.

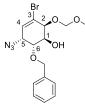
General procedure for the synthesis of dioxolane under acidic conditions using *p*-toluenesulfonic acid as catalyst.


A solution of 516 mg of diol **6** (1.52 mmol, 1 eq.) in 80 mL of dry CH₂Cl₂ was treated with the corresponding amount of DMM (Table 2) under N₂ atmosphere and 72 mg of *p*-TsOH (0.46 mmol, 0.3 eq.) were added. The reaction mixture was refluxed until consumption of the starting material, then solid NaHCO₃ was added and the resulting system was left to stand at room temperature for 5 minutes. Saturated aqueous solution of NaHCO₃ was added, and the system was extracted with three portions of CH₂Cl₂. The combined organic layers were washed with one portion of brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure rendering an oily crude that was purified over silica flash.

General procedure for the synthesis of dioxolane under acidic conditions using $\mathsf{P}_2\mathsf{O}_5$ as catalyst.

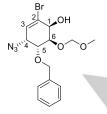
A solution of 25 mg of diol **6** (0.074 mmol, 1 eq.) in 1 mL of dry CH₂Cl₂, under N₂ atmosphere, was treated with the corresponding amount of DMM (Table 2) and 17 equiv. of P₂O₅ were added. The reaction mixture was stirred at room temperature until consumption of the starting material, and then the reaction was cooled by means of an ice bath. Cooled CH₂Cl₂ was added, and P₂O₅ excess was destroyed with cooled saturated aqueous solution of NaHCO₃. Then, the mixture was extracted with sat. NaHCO₃, washed with sat. NaCl and dried over Na₂SO₄. The solvent was evaporated under reduced pressure after the desiccant agent was filtered off, and the product was then purified by flash chromatography.

FULL PAPER


(1R,2R,5S,6S)- 2-Azido-1-benzyloxy-4-bromo-5,6-methylendioxy-3-cyclohexene (7).

Compound 7 was synthesized from 5, following the general procedure for the synthesis of dioxolane under acidic conditions using *p*-toluenesulfonic acid as catalyst. 10 eq. of DMM were used, and the reaction was kept at reflux temperature for 19h. The crude was purified by flash chromatography, performing a gradient elution: first hexane, and then a 5% v/v solution of AcOEt in hexane. Colorless oil. $\alpha D^{22} = -93$ (c = 1.24, AcOEt). ¹H NMR (CDCl₃, 400 MHz) δ (ppm):

7.39-7.30 (m, 5H, H_{Ph}), 6.26 (dd, $J_{2\cdot3} = 3.9$ Hz, $J_{3\cdot5} = 0.7$ Hz,1H, H₃), 5.00 (s, 1H, $-O\underline{CH_2}O$ -), 4.98 (s, 1H, $-O\underline{CH_2}O$ -), 4.80 (d, $J_{gem} = 11.9$ Hz, 1H, $-O\underline{CH_2}Ph$), 4.72 (d, $J_{gem} = 11.9$ Hz, 1H, $-O\underline{CH_2}Ph$), 4.65 (bd, $J_{5\cdot6} = 5.7$ Hz, 1H, H₅), 4.31 (t, $J_{1\cdot6} = J_{5\cdot6} = 5.7$ Hz, 1H, H₆), 4.01-3.94 (m, 2H, H₁ and H₂). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm): 137.2 (C_{Ph-quatemary}), 128.7 (C_{Ph-p}), 128.6 (C_{Ph-m}), 128.2 (C₃), 128.0 (C_{Ph-o}), 123.6 (C₄), 94.4 ($-O\underline{CH_2}O$ -), 76.4 (C₅), 75.9 (C₁), 74.9 (C₆), 73.5 ($-O\underline{CH_2}Ph$), 57.7 (C₂). FT-IR (v_{max}/cm): 2870 (CH₂), 2104 (N₃), 1645 (C=C), 1088 (O-C-O), 926 (O-C-O), 739 (=C-H arom), 698 (=C-H arom). DI-MS m/z (Rel. Int): 324 (3), 322 (3), 296 (1), 294 (1), 91 (100). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₁₄H₁₄BrN₃O₃Na]⁺: 374.01108; found: 374.01139.


(1S,2S,5R,6R)-5-Azido-6-benzyloxy-3-bromo-2-(methoxymethoxyl)-cyclohex-3-ene-1-ol (8).

 $\begin{array}{l} \label{eq:alpha} \mbox{Colorless oil. } \alpha_D{}^{21} = - \, 98 \; (c = 1.35, \, AcOEt). \, ^1H \; NMR \\ (400\; MHz, \; CDCl_3) \; \delta \; (ppm): \; 7.41 - 7.30 \; (m, \; 5H, \; H_{Ph}), \\ 6.16 \; (dt, \; {\it J}_{4\cdot 5} = 3.9 \; Hz, \; {\it J}_{2\cdot 4} = {\it J}_{4\cdot 6} = 1.0 \; Hz, \; 1H, \; H_4), \\ 4.84 \; (d, \; {\it J}_{gem} = 6.8 \; Hz, \; 1H, \; -OC\underline{H_2}OMe), \; 4.80 \; (d, \; {\it J}_{gem} = 6.8 \; Hz, \; 1H, \; -OC\underline{H_2}OMe), \; 4.79 \; (d, \; {\it J}_{gem} = 11.8 \; Hz, \; 1H, \; -OC\underline{H_2}OMe), \; 4.79 \; (d, \; {\it J}_{gem} = 11.8 \; Hz, \; 1H, \; -OC\underline{H_2}Ph), \; 4.68 \; (d, \; {\it J}_{gem} = 11.8 \; Hz, \; 1H, \; -OC\underline{H_2}Ph), \; 4.36 \; (bd, \; {\it J}_{1\cdot 2} = 3.9 \; Hz, \; 1H, \; H_2), \; 4.13 \; (dt, \; {\it J}_{1\cdot 6} = 7.6 \; Hz, \; {\it J}_{1\cdot 2} = {\it J}_{1\cdot OH} = 3.9 \; Hz, \; 1H, \; H_1), \; 4.09 \; (td, \; \end{tabular}$

 $\begin{array}{l} J_{4-5} = J_{5-6} = 4.0 \ \text{Hz}, \ J_{4-6} = 1.0 \ \text{Hz}, \ 1\text{H}, \ \text{H}_5), \ 3.99 \ (\text{dd}, \ J_{1-6} = 7.6 \ \text{Hz}, \ J_{5-6} = 4.0 \\ \text{Hz}, \ 1\text{H}, \ \text{H}_6), \ 3.45 \ (s, \ 3\text{H}, \ -\text{OC}\underline{\text{H}_3}), \ 2.87 \ (d, \ J_{1-\text{OH}1} = 3.9 \ \text{Hz}, \ 1\text{H}, \ \text{OH}_1). \ ^{13}\text{C} \\ \text{NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ (\text{ppm}): \ 137.5 \ (C_{\text{Ph-quaternary}}), \ 128.8 \ (C_{\text{Ph-}m}), \ 128.6 \\ (C_4), \ 128.4 \ (C_{\text{Ph-}p}), \ 128.3 \ (C_{\text{Ph-}q}), \ 125.5 \ (C_3), \ 98.0 \ (-\text{OC}\underline{\text{H}_2}\text{OMe}), \ 77.5 \ (C_2), \\ 76.8 \ (C_6), \ 73.8 \ (-\text{OC}\underline{\text{H}_2}\text{Ph}), \ 69.1 \ (C_1), \ 58.3 \ (C_5), \ 56.6 \ (-\text{OC}\underline{\text{H}_3}). \ \text{FT-IR} \\ (v_{max}/\text{cm}): \ 3458 \ (\text{OH}), \ 2897 \ (\text{CH}_2), \ 2851 \ (\text{CH}_3), \ 2102 \ (\text{N}_3), \ 1641 \ (\text{C=C}), \\ 1105 \ (\text{C-O-C}), \ 1030 \ (\text{C-O-C}), \ 741 \ (=\text{C-H} \ \text{arom}), \ 700 \ (=\text{C-H} \ \text{arom}). \ \text{DI -MS} \\ \text{m/z} \ (\text{Rel. Int}): \ 356 \ (0.9) \ 354 \ (0.9), \ 340 \ (0.4), \ 338 \ (0.4), \ 235 \ (4), \ 233 \ (4), \ 91 \ (100), \ 45 \ (62). \ \text{HRMS} \ (\text{ESI/Q-TOF}) \ \text{m/z}: \ [\text{M+Na]}^+ \ \text{Calcd} \ \text{for} \\ [\text{C}_{15}\text{H}_{18}\text{Br}\text{N}_3\text{O}4\text{Na}]^+: \ 406.0373; \ \text{found: } 406.0378. \end{array}$

$(1S,4R,5R,6R)\mbox{-}4-Azido-5-benzyloxy\mbox{-}2-bromo-6-(methoxymethoxyl)-cyclohex\mbox{-}2-ene\mbox{-}1-ol\ (9)$

Colourless oil. $\alpha_D^{21} = -54$ (c = 0.85, AcOEt). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.38 – 7.29 (m, 5H, H_{Ph}), 6.15 (dt, J₃₋₄ = 3.8 Hz, J₁₋₃ = J₃₋₅ = 0.7 Hz, 1H, H₃), 4.78 (d, J_{gem} = 6.7 Hz, 1H, -OC<u>H</u>₂OMe), 4.75 (d, J_{gem} = 11.8 Hz, 1H, -OC<u>H</u>₂Oh), 7.71 (d, J_{gem} = 6.7 Hz, 1H, -OC<u>H</u>₂OMe), 4,71 (d, J_{gem} = 11.8 Hz, 1H, -OC<u>H</u>₂Ph), 4.45-4.41 (m, 1H, H₁), 4.08-4.03 (m, 2H, H₅ + H₆), 4.00 (td, J₃₋₄ = J₄₋₅ = 3.8 Hz, J = 1.5 Hz, 1H, H₄), 3.39 (s, 3H, -OC<u>H₃)</u>, 2.99 (d,

 $\begin{array}{l} J_{1\text{-}OH1} = 6.6 \text{ Hz}, 1\text{H}, \text{OH}). \ ^{13}\text{C} \text{ NMR} \ (101 \text{ MHz}, \text{CDCI}_3) \ \delta \ (\text{ppm}): \ 137.5 \ (C_{\text{Ph}-quaternary}), 128.7 \ (C_{\text{Ph}-m}), 128.3 \ (C_{\text{Ph}-p}), 128.1 \ (C_{\text{Ph}-o}), 128.0 \ (C_3), \ 127.4 \ (C_2), \\ 98.0 \ (-O\underline{C}H_2\text{OMe}), \ 76.5 \ (C_5 \ \text{or} \ C_6), \ 76.1 \ (C_6 \ \text{or} \ C_5), \ 73.9 \ (-O\underline{C}H_2\text{Ph}), \ 70.6 \\ (C_1), \ 58.9 \ (C_4), \ 56.2 \ (-O\underline{C}H_3). \ \text{FT-IR} \ (v_{\text{max}}\text{/cm}): \ 3447 \ (\text{OH}), \ 2928 \ (\text{CH}_2), \\ 2897 \ (\text{CH}_2), \ 2102 \ (\text{N}_3), \ 1643 \ (\text{C=C}), \ 1115 \ (\text{C}\text{-O-C}), \ 1034 \ (\text{C}\text{-O-C}), \ 749 \ (\text{=C-H} \ \text{arom}), \ 698 \ (\text{=C-H} \ \text{arom}). \ \text{DI -MS} \ m/z \ (\text{Rel. Int}): \ 356 \ (0.4), \ 354 \ (0.6), \ 312 \end{array}$

(1.0), 310 (1), 194 (11), 91 (100), 45 (54). HRMS (ESI/Q-TOF) m/z: $[M+Na]^+$ Calcd for $[C_{15}H_{18}BrN_3O_4Na]^+$ 406.0373; found: 406.0371.

(1R,4R,5S,6R)-2-Azido-1-benzyloxy-4-bromo-5,6bis(methoxymethoxyl)-3-cyclohexene (10)

Compound **10** was synthesized from **6**, following the general procedure for the synthesis of dioxolane under acidic conditions using P_2O_5 acid as catalyst. 100 eq. of DMM were used, and the reaction was stirred at 0°C for 3h. The crude was purified by flash chromatography, performing a gradient elution: first hexane, and then a 5% v/v solution of AcOEt in hexane. Colorless oil (quantitative yield). $\alpha D^{22} = -74$

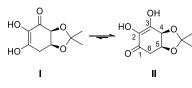
(c = 0.50, AcOEt). ¹H NMR (400 MHz, CDCI₃) δ (ppm): 7.41-7.29 (m, 5H, H_{arom}), 6.13 (d, *J*₂₋₃ = 3.8 Hz, 1H, H₃), 4.86 (d, *J*_{gem} = 6.8 Hz, 1H, -OC<u>H</u>₂OMe), 4.82 (d, *J*_{gem} = 6.8 Hz, 1H, -OC<u>H</u>₂OMe), 4.76 (d, *J*_{gem} = 6.7 Hz, 1H, -OC<u>H</u>₂OMe), 4.74 (d, *J* = 0.9 Hz, 2H, -OC<u>H</u>₂Ph), 4.71 (d, *J*_{gem} = 6.7 Hz, 1H, -OC<u>H</u>₂OMe), 4.43 (d, *J*₅₋₆ = 3.1 Hz, 1H, H₅), 4.12-4.08 (m, 1H, H₆), 4.08-4.03 (m, 2H, H₁ y H₂), 3.47 (s, 3H, -OC<u>H</u>₃), 3.37 (s, 3H, -OC<u>H</u>₃). ¹³C NMR (101 MHz, CDCI₃) δ (ppm): 137.5 (C_{Ph-quatemary}), 128.5 (C_{Ph-m}), 128.1 (C_{Ph-p}), 128.0 (C₃), 127.9 (C_{Ph-o}), 126.0 (C₄), 97.5 (-O<u>C</u>H₂OMe), 97.0 (-O<u>C</u>H₂OMe), 76.0 (C₁), 75.9 (C₅), 74.4 (C₆), 73.7 (-O<u>C</u>H₂Ph), 59.0 (C₂), 56.4 (-O<u>C</u>H₃), 155.9 (-O<u>C</u>H₃). FT-IR (v_{max}/cm): 2930 (CH₂), 2893 (CH₂), 2824 (-OCH₃), 2102 (N₃), 1641 (C=C), 1030 (O-C-O), 920 (O-C-O), 739 (=C-H arom), 698 (=C-H arom). DI-MS m/z (Rel. Int): 296 (1), 294 (1), 250 (1), 248 (2), 194.1 (11), 91 (100). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₁₇H₂₂BrN₃O₅Na]⁺ 450.06350; found 450.06519.

(5S,6S)-3-benzyloxy-2-hydroxy-5,6-methylendioxycyclohexa-2-ene-1-one (11).

59 mg of compound **7** (0.17 mmol, 1 eq.) were dissolved in 3 mL of CH₃CN, and the system was cooled to 0 °C. 43 mg of NalO₄ (0.20 mmol, 1.2 eq.) and 2.4 mg of RuCl₃·2H₂O (0.010 mmol, 0.06 eq) were

dissolved in 0.5 mL of water on a separated vial, and were also cooled to 0 °C. Once both solutions were at 0°C, the aqueous solution was added all at once over de organic solution, and the reaction was kept at 0°C under vigorous stirring during 5 minutes, and then it was quenched by the addition of 0.5 mL of an aqueous solution of Na₂S₂O₃ (20% W/V). The reaction was filtered through a SiO2 pad, washed with abundant AcOEt and the eluted was evaporated rendering 50 mg of a brownish oily crude. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase, and performing the following gradient elution: 10% followed by 20%, 30% and finally 40 % (v/v of AcOEt in Hexane). 33 mg of 11 were obtained as white solid (67 % yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.41 - 7.29 (m, 5H, H_{Ph}), 5.73 (s, 1H, -OCH₂O-), 5.49 (bs, 1H, OH₂), 5.43 (s, 1H, -OC<u>H₂</u>O-), 4.84 (d, J_{gem} = 11.7 Hz, 1H, -OC<u>H₂</u>Ph), 4.80 (d, J₅₋₆ = 8.2 Hz, 1H, H₆), 4.69 (d, J_{gem} = 11.7 Hz, 1H, -OC<u>H₂</u>Ph), 3.99 (ddd, $J_{4'-5} = 11.7$ Hz, $J_{5-6} = 8.2$ Hz, $J_{4-5} = 5.4$ Hz, 1H, H₅), 2.92 (dd, $J_{gem} = 16.9$ Hz, J₄₋₅ = 5.4 Hz, 1H, H₄), 2.52 (dd, J_{gem} = 16.9 Hz, J_{4'-5} = 11.7 Hz, 1H, H_{4'}). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 190.0 (C₁), 146.7 (C₃), 137.3 (C₂), 128.6 (CPh-m), 128.1 (CPh-p), 127.8 (CPh-o), 126.9 (CPh-quaternary), 99.9 (OCH2O), 81.5 (OCH2Ph), 75.5 (C6), 72.2 (C5), 39.2 (C4). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₁₄H₁₄O₅Na]⁺ 285.0733; found 285.0735.

(2S,3R,4R,5S,6S)-3,4-epoxy-2-hydroxy-5,6-isopropylidenedioxy-1-cyclohexanone (13).^[34]


The same procedure described for compound 11 was applied to synthetize 13, but the system was left to react during 2 minutes. Purification was accomplished by flash chromatography, using deactivated SiO_2 as stationary phase (deactivation

was achived by adding 10 mL of distilled water to 100 g of $SiO_{\rm 2}$ and stirring

FULL PAPER

several hours until it is homogeneous), and performing the following gradient elution: 20% followed by 25%, 30%, 35% and finally 40 % (v/v of AcOEt in Hexane) (NOTE: The column should be done as quickly as possible to avoid decomposition of the product, and avoid absorbing the crude in SiO₂; load it in the less possible amount of DCM). White solid. The spectroscopic data of the compound were found to be in agreement with previous reports.^[34] M.P = 125 - 126 °C. $\alpha_D^{21.5} = +77$ (c = 0.60, MeOH). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.11 (d, $J_{2-OH2} = 5.0$ Hz, 1H, H₂), 4.85 (dt, $J_{5-6} = 6.0$ Hz, $J_{4-6} = J_{3-6} = 1.4$ Hz, 1H, H₆), 4.41 (dd, $J_{5-6} = 5.9$ Hz, J_{4-5} = 1.5 Hz, 1H, H₅), 3.66 (dt, J_{3-4} = 3.8 Hz, J_{2-3} = J_{3-6} = 1.4 Hz, 1H, H₃), 3.38 $(dt, J_{3-4} = 3.8 Hz, J_{4-5} = J_{4-6} = 1.4 Hz, 1H, H_4), 3.34 (d, J = 5.0 Hz, 1H, OH_2),$ 1.59 (s, 3H, CH₃), 1.38 (s, 3H, CH₃).¹³C NMR (101 MHz, CDCl₃) δ (ppm): 202.6 (C1), 113.5 (Cisopropylidene), 78.3 (C5), 77.5 (C6), 70.2 (C2), 59.7 (C3), 54.2 (C₄), 27.5 (<u>C</u>H₃), 25.5 (<u>C</u>H₃). FT-IR (v_{max}/cm): 3507 (OH), 2947 (CH₃), 2820 (CH₃), 1744 (C=O), 1383 (gem dimethyl), 1244 (epox), 1219 (C-O), 1188 (C-O-C-O-C), 1159 (C-O-C-O-C), 1101 (C-O-C-O-C), 1069 (C-O-C-O-C). DI-MS m/z (Rel. Int): 185 (18, [M-Me]⁺), 142 (2), 100 (61), 85 (100), 71 (81). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₉H₁₂O₅Na]⁺ 223.0577; found 223.0569.

(5S,6S)-2,3-dihydroxy-5,6-isopropylidenedioxycyclohexa-2-ene-1-one (14). $^{\rm [34]}$

propose that the main structure in a methanolic solution is **II**. White solid. The spectroscopic data of the compound were found to be in agreement with previous reports.^[34] ¹H NMR (400 MHz, CD₃OD) δ (ppm): 4.90-4.85 (m-signal partially overlapped with water signal, 1H, H₄), 3.97 (ddd, *J*₅₋₆ = 11.6 Hz, *J*₄₋₅ = 8.5 Hz, *J*₅₋₆ = 5.3 Hz, 1H, H₅), 2.66 (dd, *J*_{gem} = 16.5 Hz, *J*₅₋₆ = 5.3 Hz, 1H, H₆), 2.44 (dd, *J*_{gem} = 16.5 Hz, *J*₅₋₆ = 11.6 Hz, 1H, H₆), 1.64 (s, 3H, C<u>H₃</u>), 1.59 (s, 3H, C<u>H₃</u>). ¹³C NMR (101 MHz, CD₃OD) δ (ppm): 192.5 (C₁), 152.0 (C₃), 128.1 (C₂), 118.5 (C_{isopropylidene}), 82.1 (C₄), 71.1 (C₅), 43.4 (C₆), 26.9 (<u>C</u>H₃), 24.3 (<u>C</u>H₃). FT-IR (v_{max}/cm): 3441 (OH), 2992 (CH₃), 2936 (CH₂), 1771 (enodiol-enone), 1385 (gem dimethyl), 1221 (C-C(O)-C), 1152 (C-O-C-O-C), 1130 (C-O-C-O-C), 1192 (C-O-C-O-C), 1066 (C-O-C-O-C). DI-MS m/z (Rel. Int): 200 (63, [M]⁻⁺), 142 (99), 114 (58), 71 (100), 68 (99). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₉H₁₂O₅Na]⁺ 223.0577; found 223.0575.

D-1,2-anhydro-5,6-O-isopropylidene-allo-inositol (15).[35]

3.000 g of epoxide **3** (12.15 mmol, 1 eq.) were dissolved in 97.5 mL of CH₃CN, and the system was cooled to 0 °C. 3.117 g of NaIO₄ (14,57 mmol, 1.2 eq.) and 88 mg of RuCl₃2H₂O (0.36 mmol, 0.03 eq.) were dissolved in 16.3 mL of water on a

separated vial, and were also cooled to 0 °C. Once both solutions were at 0°C, the aqueous solution was added all at once over de organic solution, and the reaction was kept at 0°C under vigorous stirring during 5 minutes, and then 923 mg of NaBH₄ (24.29 mmol, 2 eq.) were added in small portions. The reaction was kept at 0°C during 10 minutes, and then it was left to stir at room temperature for another 10 minutes. The reaction was filtered through a SiO₂ pad, washed with abundant AcOEt and the eluted was evaporated rendering 2.830 mg of a brownish solid. Purification was accomplished by flash chromatography, using SiO2 as stationary phase, and performing the following gradient elution: 10% followed by 20%, 30%, 35% and finally 40 % (v/v of AcOEt in Hexane). 1.470 g of 15 were obtained as white solid (60 % yield). $\alpha D^{21.5} = + 22$ (c = 1.41, MeOH). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 4.58 (dt, $J_{5-6} = 5.8$ Hz, $J_{1-6} = J_{2-6} = 1.3$ Hz, 1H, H₆), 4.51 (ddd, $J_{5-6} = 5.8$ Hz, $J_{4-5} = 3.6$ Hz, $J_{1-5} = 1.3$ Hz, 1H, H₅), 4.25 - 4.19 (m, 1H, H₃), 4.04 (dtd, J_{4-OH4} = 11.7 Hz, J₄₋₅ = 3.6 Hz, J = 3.6 Hz, J = 1.6 Hz, 1H, H₄), 3.53 (dq, J_{1-2} = 4.0 Hz, J_{1-6} = 1.3 Hz, J = J = 1.3 Hz, 1H, H₁), 3.38 (dt, $J_{1-2} = 4.0$ Hz, J = J = 1.4 Hz, 1H, H₂), 3.10 (d, $J_{3-OH3} = 9.4$ Hz, 1H, OH₃), 2.87 (d, $J_{4-OH4} = 11.8$ Hz, 1H, OH₄), 1.41 (s, 3H, CH₃), 1.34 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 110.1 (C_{isopropylidene}), 77.0 (C₅), 69.8 (C₆), 68.6 (C₄), 64.3 (C₃), 57.9 (C₁), 56.1 (C₂), 27.4 (CH₃), 25.1 (CH₃). FT-IR (v_{max} /cm): 3318 (OH), 3244 (OH), 2988 (C-H), 2945 (C-H), 2909 (C-H), 1385 (gem dimethyl), 1370 (gem dimethyl), 1225 (epox), 1169 (C-O-C-O-C), 1144 (C-O-C-O-C), 1088 (C-O-C-O-C), 1061 (C-O-C-O-C). DI-MS m/z (Rel. Int): 187 (100, [M-Me]⁺), 109 (72), 81 (52), 73 (53). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₉H₁₄O₅Na]⁺: 225.0733; found: 225.0774.

(1S,2R,3S,4S)-5-bromo-3,4-isopropylidenedioxycyclohexa-5-en-1,2diol (16).^[36]

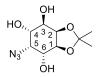
Br 6 1 2 3 HO White solid. The ¹H- and ¹³C-NMR spectra data of the compound were in agreement with previous reports.^[36] ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.26 (d, $J_{1-6} = 2.5$ Hz, 1H, H₆), 4.69 (d, $J_{3-4} = 6.1$ Hz, 1H, H₄), 4.21 (dd, $J_{2-3} = 7.8$ Hz, $J_{3-4} = 6.1$ Hz, 1H, H₃),

D-1,2-anhydro-3,4-di-O-acetyl-5,6-O-isopropyliden-allo-inositol (17).

24 mg of compound **15** (0.12 mmol, 1 eq) were dissolved in 1.0 mL of CH_2Cl_2 under nitrogen atmosphere, and the system was cooled to 0 °C. Then 132 µL of Et_3N (0.95 mmol, 8 eq), 45 µL of Ac_2O (0.48 mmol, 4 eq) and a catalytic amount of 4-

dimethylaminopyridine were added at 0°C. The reaction was kept at 0 °C during 10 minutes, then it was warmed up to room temperature and continued to stir during another 10 minutes. A saturated solution of NaHCO₃ was added, and the aqueous solution was extracted with three portions of AcOEt. The combined organic layers were washed with three portions of saturated solution of CuSO4 and one portion of brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase, and eluting with a solution 20 % (v/v) of AcOEt in Hexane. 31 mg of 17 were obtained as a colorless oil (91 % yield). $\alpha D^{21.5} = +57$ (c = 0.93, MeOH). ¹H NMR (400 MHz, CDCI₃) δ (ppm): 5.51 (dd, J₃₋₄ = 4.6 Hz, $J_{2-3} = 2.1$ Hz, 1H, H₃), 5.41 (td, $J_{3-4} = J_{4-5} = 4.6$ Hz, $J_{2-4} = 1.0$ Hz, 1H, H₄), 4.53 (d, $J_{5-6} = 5.7$ Hz, 1H, H₆), 4.25 (ddd, $J_{5-6} = 5.7$ Hz, $J_{4-5} = 4.6$ Hz, $J_{1-5} = 1.4$ Hz, 1H, H₅), 3.37 (ddt, $J_{1-2} = 4.0$ Hz, $J_{2-3} = 2.1$ Hz, $J_{2-4} = J_{2/2-6?} =$ 1.0 Hz, 1H, H₂), 3.28 (ddd, $J_{1-2} = 4.0$ Hz, $J_{1-5} = 1.4$ Hz, $J_{1-6} = 0.8$ Hz, 1H), 2.09 (s, 3H, C(O)CH₃), 2.09 (s, 3H, C(O)CH₃), 1.45 (s, 3H, CH₃), 1.34 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 170.3 (OC(O)CH₃), 170.2 (OC(O)CH₃), 110.2 (Cisopropylidene), 74.3 (C₅), 70.4 (C₆), 66.6 (C₃), 65.5 (C₄), 53.6 (C1), 52.1 (C2), 27.7 (CH3), 25.5 (CH3), 21.0 (OC(O)CH3), 20.9 (OC(O)CH₃). FT-IR (v_{max}/cm): 2990 (CH₃), 2940 (CH₃), 1748 (C=O), 1433 (gem dimethyl), 1373 (gem dimethyl), 1240 (epox), 1221 (epox), 1171 (C-O-C-O-C), 1155 (C-O-C-O-C), 1090 (C-O-C-O-C), 1065 (C-O-C-O-C). DI-MS m/z (Rel. Int): 271 (90, [M-Me]+), 229 (5), 184 (28), 127 (43), 109 (100), 81 (29). HRMS (ESI/Q-TOF) m/z: [M+Na]+ Calcd for [C13H18O7Na]+: 309.0945; found: 309.0946.

L-4-azido-4-deoxy-1,2-O-isopropyliden-chiro-inositol (18).


700 mg of epoxide **15** (3.47 mmol, 1 eq) were dissolved in 7 mL of DMF under nitrogen atmosphere. 450 mg of NaN₃ (6.93 mmol, 2 eq) and 371 mg of NH₄Cl (6.93 mmol, 2 eq) were added, and the system was warmed up to 50 °C. The reaction

was monitored by TLC, and once the starting material was consumed (approximately 12h) the solid (inorganic salts) was filtered through filter

FULL PAPER

paper, and washed with methanol. The organic solution was evaporated at reduced pressure rendering 1.192 g of a white solid. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase, and performing the following gradient elution: 30% followed by 40%, 50%, 60% and finally 70% (v/v of AcOEt in Hexane). 739 mg of 18 were obtained as white solid (87 % yield). M.P = 153.2 - 154.1 °C. $\alpha D^{21.5} = -122$ (c = 1.27, MeOH). ¹H NMR (400 MHz, CD₃OD) δ (ppm): 4.22 (dd, J₁₋₂ = 5.4 Hz, J₁₋₆ = 3.0 Hz, 1H, H₁), 4.10 (t, J₁₋₆ = J₅₋₆ = 3.0 Hz, 1H, H6), 4.04 (dd, J₂₋₃ = 7.4 Hz, J₁₋₂ = 5.4 Hz, 1H, H₂), 3.58 (dd, J₄₋₅ = 10.0 Hz, J₅₋₆ = 3.0 Hz, 1H, H₅), $3.52 (t, J_{3-4} = J_{4-5} = 10.0 \text{ Hz}, 1\text{H}, \text{H}_4), 3.42 (dd, J_{3-4} = 10.0 \text{ Hz}, J_{2-3} = 7.4 \text{ Hz},$ 1H, H₃), 1.44 (s, 3H, CH₃), 1.33 (s, 3H, CH₃). ¹³C NMR (101 MHz, CD₃OD) δ (ppm): 110.5 (Cisopropylidene), 80.5 (C2), 78.7 (C1), 76.2 (C3), 71.7 (C5), 70.4 (C₆), 66.5 (C₄), 28.4 (CH₃), 26.3 (CH₃). FT-IR (v_{max}/cm): 3350 (OH), 2999 (C-H), 2986 (C-H), 2969 (C-H), 2914 (C-H), 2124 (N₃), 1387 (gem dimethyl), 1223 (C-O-C-O-C), 1063 (C-O-C-O-C). DI-MS m/z (Rel. Int): 230 (100, [M-Me]+), 187 (2), 100 (17), 85 (24), 73 (75), 60 (25). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₉H₁₅N₃O₅Na]⁺: 268.0904; found: 268.0907.

D-5-azido-5-deoxy-1,2-O-isopropyliden-neo-inositol (19).

The same procedure described for compound **15** was applied to synthesize **19**. Purification was accomplished by flash chromatography, using SiO_2 as stationary phase and performing the following gradient elution: 30% followed by 40%, 50%, 60%, 70% and finally 80 % (v/v of AcOEt in Hexane).

White solid (61 % yield). M.P = 139.7 - 140.5 °C. $\alpha_D^{21.5} =$ - 14 (c = 1.23, MeOH). ¹H NMR (400 MHz, CD₃OD) δ (ppm): 4.35 (t, $J_{1.2} = J_{2.3} =$ 4.6 Hz, 1H, H₂), 4.04 (dd, $J_{1-6} =$ 7.9 Hz, $J_{1-2} =$ 4.6 Hz, 1H, H₁), 3.94 (ddd, $J_{3-4} =$ 10.6 Hz, $J_{2-3} =$ 4.6 Hz, $J_{2,3-7} =$ 0.9 Hz, 1H, H₃), 3.89 - 3.84 (m, 2H, H₄ + H₅), 3.77 (dd, $J_{1-6} =$ 7.9 Hz, $J_{5-6} =$ 3.0 Hz, 1H, H₆), 1.48 (s, 3H, CH<u>3</u>), 1.34 (s, 3H, CH<u>3</u>). ¹³C NMR (101 MHz, CD₃OD) δ (ppm): 110.5 (C_{isopropylidene), 80.3 (C₁), 77.5 (C₂), 72.8 (C₆), 71.1 (C₄), 70.0 (C₃), 69.7 (C₅), 28.7 (CH₃), 26.3 (CH₃). HT-IR (V_{max}/cm): 3399 (OH), 2988 (C-H), 2936 (C-H), 2911 (C-H), 2108 (N₃), 1375 (gem dimethyl), 1219 (C-O), 1163 (C-O-C-O-C), 1076 (C-O-C-O-C), 1053 (C-O-C-O-C). DI-MS m/z (Rel. Int): 230 (80, [M-Me]⁺), 185 (2), 100 (18), 85 (26), 73 (100), 60 (31). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₉H₁₅N₃O₅Na]⁺: 268.0904; found: 268.0903.}

D-2-azido-2-deoxy-5,6-O-isopropyliden-allo-inositol (20).

White solid (8 % yield). M.P = 140.2 - 141.1 °C. $\alpha_D^{21.5}$ = + 23 (c = 1.55, MeOH). ¹H NMR (400 MHz, CD₃OD) δ (ppm): 4.29 - 4.22 (m, 2H, H₅ + H₆), 4.08 - 4.00 (m, 2H, H₁ + H₃), 3.79 (dd, *J* = 5.0, 3.4 Hz, 1H, H₄), 3.64 (dd, *J* = 3.5, 2.5 Hz, 1H, H₂), 1.45 (s, 3H, CH₃), 1.35 (s,

3H, CH₃). ¹³C NMR (101 MHz, CD₃OD) δ (ppm): 110.2 (C_{isopropylidene}), 79.1 (C_{50r6}), 79.0 (C_{50r6}), 72.9 (C_{10r30r4}), 72.8 (C_{10r30r4}), 72.1 (C_{10r3}), 63.0 (C₂), 28.6 (CH₃), 26.4 (CH₃). FT-IR (v_{max}/cm): 3412 (OH), 2990 (C-H), 2938 (C-H), 2110 (N₃), 1383 (gem dimethyl), 1219 (C-O), 1163 (C-O-C-O-C), 1101 (C-O-C-O-C), 1067 (C-O-C-O-C), 1055 (C-O-C-O-C). DI-MS m/z (Rel. Int): 230 (24, [M-Me]⁺), 160 (15), 142 (9), 100 (61), 85 (33.9), 73 (100), 60 (44). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₉H₁₅N₃O₅Na]⁺: 268.0904; found: 268.0904.

D-3,4,6-tri-O-acetyl-5-azido-5-deoxy-1,2-O-isopropyliden-neo-inositol (21).

70 mg of triol **19** (0.29 mmol, 1 eq) were dissolved in 0.5 mL of pyridine under nitrogen atmosphere, and the system was cooled to 0 °C. 162 μ L of Ac₂O (1.71 mmol, 6 eq) and a catalytic amount of 4-dimethylaminopyridine were added. The system was

left to react during 15 minutes at 0 $^\circ C$, and was then warmed up to rt and left to stir for another 15 minutes. The reaction was quenched by addition

WILEY-VCH

of saturated aqueous solution of NH₄CL and extracted with three portions of AcOEt. The combined organic layers were washed with four portions of saturated aqueous solution of CuSO₄, one portion of brine, dried over Na₂SO₄, filtered and evaporated under reduced pressure. 107 mg of a colorless oil were obtained. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase and performing the following gradient elution: 10% and then 20 % (v/v of AcOEt in Hexane). 103 mg of **21** were obtained as a colourless oil (97 % yield). $\alpha D^{21.5} = -8$ (c = 0.91, MeOH). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.44 (dd, J₃₋₄ = 10.4 Hz, J₂₋₃ = 4.1 Hz, 1H, H₃), 5.36 (dd, J₃₋₄ = 10.4 Hz, J₄₋₅ = 3.0 Hz, 1H, H₄), 5.07 (dd, $J_{1-6} = 8.0$ Hz, $J_{5-6} = 3.0$ Hz, 1H, H₆), 4.49 (t, $J_{1-2} = J_{2-3} = 4.5$ Hz, 1H, H₂), 4.29 (dd, J₁₋₆ = 8.0 Hz, J₁₋₂ = 4.5 Hz, 1H, H₁), 4.16 (t, J₄₋₅ = J₅₋₆ = 3.0 Hz, 1H, H₅), 2.14 (s, 3H, OC(O)CH₃), 2.11 (s, 3H, OC(O)CH₃), 2.09 (s, 3H, OC(O)CH₃), 1.53 (s, 3H, CH₃), 1.31 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 170.3 (O<u>C</u>(O)CH₃), 170.0 (O<u>C</u>(O)CH₃), 169.7 (OC(O)CH₃), 110.9 (Cisopropylidene), 75.6 (C1), 73.0 (C2), 71.9 (C6), 69.0 (C4), $68.0 \ (C_3), \ 61.8 \ (C_5), \ 28.0 \ (\underline{C}H_3), \ 26.2 \ (\underline{C}H_3), \ 20.9 \ (OC(O)\underline{C}H_3), \ 20.9$ (OC(O)CH3), 20.7 (OC(O)CH3). FT-IR (vmax/cm): 2990 (C-H), 2938 (C-H), 2920 (C-H), 2110 (N₃), 1748 (C=O), 1433 (gem dimethyl), 1373 (gem dimethyl), 1225 (C-O-C-O-C), 1159 (C-O-C-O-C), 1007 (C-O-C-O-C), 1069 (=C-O-C), 1047 (=C-O-C). DI-MS m/z (Rel. Int): 356 (57, [M-Me]+), 328 (0.6), 184 (19), 166 (100), 142 (23), 124 (99), 109 (28), 73 (19). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₁₅H₂₁N₃O₈Na]⁺: 394.1221; found: 394 1215

meso-1,2,3,4,6-penta-O-acetyl-5-azido-5-deoxy-neo-inositol (22).

Compound 22 was synthesized from 21 following the same procedure described for the synthesis of compound 6 (but at room temperature). The crude was subjected to esterification following the same procedure described for the synthesis of compound 17.

Purification was accomplished by flash chromatography, using SiO₂ as stationary phase and performing the following gradient elution: 20% and then 30 % (v/v of AcOEt in Hexane). White solid (72 % yield). $\alpha D^{21.5} = 0$ (c = 0.67, MeOH). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.57 (s, 1H, H₂), 5.30 (bs, 4H, H₁+H₃+H₄+H₆), 4.35 (s, 1H, H₅), 2.14 (s, 3H, CH₃), 2.10 (s, 6H, 2xCH₃), 1.98 (s, 6H, 2xCH₃). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 169.9 (2xAc), 169.9 (Ac), 169.5 (2xAc), 68.7 (C₁ + C₃ or C₄ + C₆), 68.1 (C₂), 67.3 (C₄ + C₆ or C₁ + C₃), 60.7 (C₅), 20.8 (Ac), 20.7 (2xAc), 20.6 (2xAc). FT-IR (v_{max}/cm): 2990 (C-H), 2941 (C-H), 2106 (N₃), 1748 (C=O), 1372 (C-N), 1225 (C-O), 1076 (=C-O-C), 1045 (=C-O-C). DI-MS m/z (Rel. Int): 356 (3, [M-OAc]⁺), 225 (35), 183 (54), 157 (46), 115 (100), 103 (35), 73 (26). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₁₆H₂₁N₃O₁₀Na]⁺: 438.1119; found: 438.1138.

D-2-azido-1,3,4-tri-O-benzyl-2-deoxy-5,6-O-isopropyliden-neoinositol (23).

The same procedure described for the synthesis of compound **5** was followed for synthetizing compound **23**, with the following modifications: 300 mg of compound **19** (1.22 mmol, 1 eq) were dissolved in 2 mL of DMF, 4.5 eq of NaH (55%

mineral oil dispersion) and 5 eq of BnBr were used. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase, and performing the following gradient elution: 0%, then 2% and finally 5 % (v/v of AcOEt in Hexane). 619 mg of **23** were obtained as a coloruless oil OH (0.255 - 1.26) (0.255 - 1.26 MaOH (0.255 - 1.26) (0.255 - 1.26) (0.255 - 1.26 MaOH (0.255 - 1.26) (0.255 - 1.26) (0.255 - 1.26) (0.255 - 1.26) (0.255 - 1.26) (0.255 - 1.26)

 $\begin{array}{l} \text{4.17} (\text{dd}, \ J_{1\cdot6} = 7.6 \ \text{Hz}, \ J_{5\cdot6} = 4.7 \ \text{Hz}, \ 1\text{H}, \ \text{H}_6), \ \text{4.01} (\text{dd}, \ J_{3\cdot4} = \ 9.6 \ \text{Hz}, \ J_{4\cdot5} \\ = 4.7 \ \text{Hz}, \ 1\text{H}, \ \text{H}_4), \ 3.94 \ (\text{t}, \ J_{1\cdot2} = J_{2\cdot3} = 3.0 \ \text{Hz}, \ 1\text{H}, \ \text{H}_2), \ 3.82 \ (\text{dd}, \ J_{3\cdot4} = 9.6 \\ \text{Hz}, \ J_{2\cdot3} = 3.0 \ \text{Hz}, \ 1\text{H}, \ \text{H}_3), \ 3.45 \ (\text{dd}, \ J_{1\cdot6} = 7.6 \ \text{Hz}, \ J_{1\cdot2} = 3.0 \ \text{Hz}, \ 1\text{H}, \ \text{H}_1), \\ 1.37 \ (\text{s}, \ 3\text{H}, \ \text{CH}_3), \ 1.32 \ (\text{s}, \ 3\text{H}, \ \text{CH}_3). \ ^{13}\text{C} \ \text{NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ (\text{ppm)}: \end{array}$

FULL PAPER

138.3 (Phquatemary), 138.2 (Phquatemary), 137.8 (Phquatemary), 128.6 (2xCPh), 128.6 (2xCPh), 128.5 (2xCPh), 128.2 (2xCPh), 128.0 (1xCPh), 128.0 (2xCPh), 127.9 (2xCPh), 127.8 (2xCPh), 109.6 (Cisopropylidene), 78.0 (C6), 77.6 (C1), 77.5 (C3), 75.9 (C4), 74.4 (C5), 73.8 (OCH2Ph), 73.7 (OCH2Ph), 72.0 (OCH2Ph), 62.5 (C2), 28.3 (CH3), 26.1 (CH3). FT-IR (vmax/cm): 3032 (=C-H arom), 2987 (C-H), 2916 (C-H), 2872 (C-H), 2106 (N3), 1954 (Ph), 1877 (Ph), 1811 (Ph), 1748 (Ph), 1497 (Ph), 1454 (Ph), 1381 (gem dimethyl), 1371 (gem dimethyl), 1219 (C-O-C-O-C), 1155 (C-O-C-O-C), 1094 (C-O-C-O-C), 1076 (C-O-C-O-C), 1051 (C-O-C-O-C), 737 (Ph), 698 (Ph). DI-MS m/z (Rel. Int): 500 (0.1, [M-Me]⁺), 424 (0.6), 396 (2), 106 (6), 91 (100), 65 (4). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₃₀H₃₃N₃O₅Na]⁺: 538.2312; found: 538.2305.

D-2-azido-1,3,4-tri-O-benzyl-2-deoxy-5,6-O-methylen-neo-inositol (24).

The general procedure for the synthesis of dioxolane under acidic conditions using p-TsOH as catalyst was used, but changing DCM for CHCl₃ as solvent, in order to increase de boiling point temperature. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase, and

performing the following gradient elution: 5%, then 10% and finally 20 % (v/v of AcOEt in Hexane). Coloruless oil (87 % yield). $\alpha_D^{25.5} = -18$ (c = 1.21, MeOH). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.34 – 7.27 (m, 15H, Phx3), 5.07 (s, 1H, OCH2O), 4.97 (s, 1H, OCH2O), 4.83 (d, Jgem = 11.8 Hz, 1H, OCH2Ph), 4.81 (d, Jgem = 11.8 Hz, 1H, OCH2Ph), 4.77 (d, Jgem = 11.8 Hz, 1H, OCH₂Ph), 4.73 (d, J_{gem} = 12.2 Hz, 1H, OCH₂Ph), 4.68 (d, J_{gem} = 11.8 Hz, 1H, OCH₂Ph), 4.65 (d, J_{gem} = 12.2 Hz, 1H, OCH₂Ph), 4.30 (dd, J₁₋₆ = 7.8 Hz, $J_{6-5} = 4.6$ Hz, 1H, H₆), 4.12 - 4.04 (m, 2H, H₄ + H₅), 3.94 (t, $J_{1-2} =$ $J_{2-3} = 2.9$ Hz, 1H, H₂), 3.80 (dd, $J_{3-4} = 9.0$ Hz, $J_{2-3} = 2.9$ Hz, 1H, H₃), 3.39 (dd, $J_{1\text{-}6}$ = 7.8 Hz, $J_{1\text{-}2}$ = 2.9 Hz, 1H, H1). ^{13}C NMR (101 MHz, CDCl3) δ (ppm): 138.1 (Phquaternary), 138.0 (Phquaternary), 137.7 (Phquaternary), 128.7 (2xC_{Ph}), 128.6 (2xC_{Ph}), 128.5 (2xC_{Ph}), 128.1 (2xC_{Ph}), 128.0 (1xC_{Ph}), 128.0 (1xCPh), 127.9 (3xCPh), 127.8 (2xCPh), 95.0 (OCH₂O), 77.5 (C₃), 77.4 (C₆), 75.9 (C1 or 4 or 5), 75.8 (C1 or 4 or 5), 75.6 (C1 or 4 or 5), 73.6 (OCH2Ph), 73.6 (OCH₂Ph), 72.2 (OCH₂Ph), 62.5 (C₂). FT-IR (v_{max}/cm): 3030 (=C-H arom), 2974 (C-H), 2102 (N₃), 1956 (Ph), 1879 (Ph), 1813 (Ph), 1797 (Ph), 1454 (Ph), 1206 (C-O-C-O-C), 1098 (C-O-C-O-C), 945 (-OCH2O), 737 (Ph), 696 (Ph). DI-MS m/z (Rel. Int): 458 (0.2), 396 (1, [M-Bn]+), 368 (2), 106 (6), 91 (100), 65 (5). HRMS (ESI/Q-TOF) m/z: [M+Na]+ Calcd for [C₂₈H₂₉N₃O₅Na]⁺: 510.1999; found: 510.1968.

L-2-amino-2-deoxy-4,5-O-methylen-neo-inositol (25).[12]

213 mg of **24** (0.44 mmol, 1 eq) were dissolved in 8 mL of a solution THF:MeOH (1:1). 21 mg of Pd-C 10% and 40 μ L of HCl_{cc} (0.48 mmol, 1.1 eq) were added, and hydrogen was bubbled into the system (P=1 atm). Once the reaction was completed (approximately 3 h), nitrogen was bubbled during 10 minutes to remove

dissolved H₂, then the catalyst was removed by filtration and washed with a solution MeOH:H₂O (8:2, v/v). The solvent was evaporated under reduced pressure (absolute EtOH was used to remove H₂O by azeotropic destillation) rendering 100 mg of a very hygroscopic white solid (gum). Pure product was obtained as the hydrochloride, then no purification was needed. Hydrochloride: ¹H NMR (400 MHz, D₂O, with MeOH as internal reference at δ = 3.34 ppm^[37]) δ (ppm): 5.23 (s, 1H, OCH₂O), 4.81 (s, 1H, OCH₂O), 4.36-4.30 (m, 2H, H₄ + H₅), 4.21 (dd, J₁₋₆ = 7.9 Hz, J₅₋₆ = 2.3 Hz, 1H, H₆), 4.11 (dd, $J_{1-6} = 7.9$ Hz, $J_{1-2} = 6.5$ Hz, 1H, H₁), 4.01 (t, $J_{2-3} = J_{3-4} = J_{3-4} = J_{3-4}$ 3.3 Hz, 1H, H₃), 3.78 (dd, J_{1-2} = 6.5 Hz, J_{2-3} = 3.3 Hz, 1H, H₂). ¹³C NMR (101 MHz, D₂O, with MeOH as internal reference at δ = 49.50 ppm^[37]) δ (ppm): 95.5 (OCH₂O), 76.8 (C_{4 o 5}), 76.2 (C_{5 o 4}), 70.5 (C₆), 67.7 (C_{1 o 3}), 67.7 (C_{3 o 1}), 50.9 (C₂). FT-IR (v_{max} /cm): 3402 (OH), 2930 (NH), 1630 (NH3⁺), 1508 (NH3⁺), 1080 (C-O), 957 (methylenedioxy). ID-MS m/z (Int. Rel.): 192 (1, M⁺), 191 (3), 173 (6), 126 (9), 101 (26), 88 (100), 73 (65). Free base: an ion exchange chromatography was employed for obtaining the free base. DOWEX 50WX8-100 resin was used as stationary phase, and a gradient elution was applied: first a solution 9:1 (MeOH:NH4OHcc), followed by a 8:2 solution (MeOH:NH₄OH_{cc}), then a 7:3 solution (MeOH:NH4OHcc), followed by a 6:4 solution (MeOH:NH4OHcc), and finally a 5:5 solution (MeOH:NH4OHcc). Methanol was removed under reduced pressure, and the remaining water was lyophilized rendering the free base aminocyclitol as a hygroscopic white solid. Spectroscopic data was in concordance with previously described values.^{[12] 1}H NMR (400 MHz, D₂O, HDO signal was used as internal reference at δ = 4.79 ppm) δ (ppm): 5.19 (s, 1H, OCH₂O), 4.93 (s, 1H, OCH₂O), 4.28 (dd, J₃₋₄ = 7.5 Hz, J₄₋₅ = 5.1 Hz, 1H, H₄), 4.18 (t, J₄₋₅ = J₅₋₆ = 4.7 Hz, 1H, H₅), 4.13 (dd, J₁₋₆ = 9.6 Hz, J₅₋₆ ₆ = 4.3 Hz, 1H, H₆), 3.87 (dd, J₁₋₆ = 9.6 Hz, J₁₋₂ = 3.9 Hz, 1H, H₁), 3.74 (dd, $J_{3-4} = 7.5$ Hz, $J_{2-3} = 3.5$ Hz, 1H, H₃), 3.40 (t, $J_{1-2} = J_{2-3} = 3.7$ Hz, 1H, H₂). ¹³C NMR (101 MHz, D₂O, <u>C</u>H₂O signal of EtOH was used as internal reference at δ = 58.05 ppm^{[37]} δ (ppm): 94.9 (OCH_2O), 77.7 (C_4), 77.5 (C_5), 70.3 (C103), 70.2 (C301), 68.8 (C6), 55.1 (C2). FT-IR (vmax/cm): 3370 (OH), 2982 (C-H), 2929 (C-H), 1634 (N-H), 1389 (O-H), 1138 (C-O-C-O-C), 1088 (C-O-C-O-C), 1045 (C-O-C-O-C), 972 (N-H). HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for [C₇H₁₄NO₅]⁺: 192.0866; found: 192.0866.

(1R,2S,5S,6S)-2-azido-4-bromo-5,6-isopropylidenedioxycyclohexa-3ene-1-ol (26).^[38]

6.008 g of epoxide **3** (24.32 mmol, 1 eq) were dissolved in 175 mL of a solution THF:EtOH:H₂O (3:2:2). 4.743 g of NaN₃ (72.97 mmol, 3 eq) and 2.863 g of NH₄Cl (53.51 mmol, 2.2 eq) were added. The system was heated to reflux temperature and kept

stirring at that temperature until consumption of the starting material (approximately 2 h). Water was added, and the system was extracted with three portions of AcOEt. The combined organic layers were washed with brine, dried with Na₂SO₄, filtered and concentrated under reduced pressure, rendering 7 g of a white solid. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase, and performing the following gradient elution: 10%, then 15% and finally 20 % (v/v of AcOEt in Hexane). 6.597 g of a white solid were obtained (94 % yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.12 (d, J_{2-3} = 1.6 Hz, 1H, H₃), 4.69 (dd, J_{5-6} = 6.2 Hz, J₂₋₅ = 1.6 Hz, 1H, H₅), 4.17 (dd, J₁₋₆ = 8.6 Hz, J₅₋₆ = 6.2 Hz, 1H, H₆), 3.92 (dt, $J_{1-2} = 8.6$ Hz, $J_{2-3} = J_{2-5} = 1.6$ Hz, 1H, H₂), 3.71 (t, $J_{1-2} = J_{1-6} = 8.6$ Hz, 1H, H₁), 2.84 (bs, 1H, OH₁), 1.56 (s, 3H, CH₃), 1.44 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 131.0 (C₃), 120.6 (C₄), 111.4 (Cisopropylidene), 77.9 (C5), 77.2 (C5, signal overlapped with the central peak of CDCl₃), 73.0 (C₄), 62.3 (C₂), 28.3 (CH₃), 26.0 (CH₃). FT-IR (v_{max}/cm): 3447 (OH), 2986 (C-H), 2943 (C-H), 2880 (C-H), 2112 (N₃), 1377 (gem dimethyl), 1331 (gem dimethyl), 1252 (O-H), 1157 (C-O-C-O-C), 1084 (C-O-C-O-C), 1072 (C-O-C-O-C). DI-MS m/z (Rel. Int): 276 (52, [M-Me]⁺), 274 (53, [M-Me]⁺), 188 (2), 101 (48), 59 (35), 43 (100). HRMS (ESI/Q-TOF) m/z: $[M+Na]^+$ Calcd for $[C_9H_{12}BrN_3O_3Na]^+$: 311.9954; found: 311.9954.

D-5-azido-5-deoxy-1,2-O-isopropyliden-myo-inositol (27).

The same procedure described for compound 15 was applied for synthetizing 27. Purification was accomplished by flash chromatography, using SiO₂ as stationary phase and performing the following gradient elution: 30% followed by 40%, 50%, 60%, 70%, 80% and finally 90% (v/v of AcOEt in Hexane). Colourless syrup (75 % yield). $\alpha p^{25.5} = -52$ (c = 1.54, MeOH). ¹H NMR (400 MHz, (CD₃)₂CO) δ (ppm): 4.74 (d, J_{6-OH6} = 5.0 Hz, 1H, OH₆), 4.58 (d, J_{4-OH4} = 4.2 Hz, 1H, OH₄), 4.38 (dd, J_{1-2} = 5.2 Hz, J_{2-3} = 3.9 Hz, 1H, H₂), 4.07 - 3.99 (m, 2H, H₁ + OH₃), 3.79 (ddd, J₃₋₄ = 9.3 Hz, $J_{3-OH3} = 5.8$ Hz, $J_{2-3} = 3.9$ Hz, 1H, H₃), 3.63 (td, $J_{3-4} = J_{4-5} = 9.3$ Hz, J_{4-OH4} = 4.2 Hz, 1H, H₄), 3.58 (ddd, J_{5-6} = 10.3 Hz, J_{1-6} = 7.3 Hz, J_{6-OH6} = 5.0 Hz, 1H, H₆), 3.18 (dd, J₅₋₆ = 10.3 Hz, J₄₋₅ = 9.3 Hz, 1H, H₅), 1.41 (s, 3H, CH₃), 1.29 (s, 3H, CH₃). ¹³C NMR (101 MHz, (CD₃)₂CO) δ (ppm): 109.8 (Cisopropylidene), 80.6 (C1), 77.1 (C2), 74.8 (C6), 72.6 (C4), 71.8 (C3), 68.9 (C5), 28.4 (CH₃), 26.1 (CH₃). FT-IR (v_{max}/cm): 3383 (OH), 2990 (C-H), 2938 (C-H), 2922 (C-H), 2110 (N₃), 1377 (O-H), 1221 (C-O), 1146 (C-O-C-O-C), 1099 (C-O-C-O-C), 1042 (C-O-C-O-C). DI-MS m/z (Rel. Int): 230 (100, [M-

FULL PAPER

Me]⁺), 109 (13), 96 (12), 85 (22), 73 (88), 60 (35). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₉H₁₅N₃O₅Na]⁺: 268.0904; found: 268.0912.

D-5-azido-3,4,6-tri-O-benzyl-5-deoxy-1,2-O-isopropyliden-myoinositol (28).

The same procedure described for the synthesis of compound 23 was followed for synthetizing compound 28. Purification was accomplished by flash chromatography, using SiO2 as stationary phase, and performing the following gradient elution:

0%, then 2%, 5% and finally 10 % (v/v of AcOEt in Hexane). Coloruless oil (74 % yield). $\alpha_D{}^{25.5}$ = + 19 (c = 1.37, MeOH). 1H NMR (400 MHz, CDCl_3) δ (ppm): 7.44 - 7.27 (m, 15H, 3xPh), 4.91 - 4.70 (m, 6H, 3xOCH₂Ph), 4.26 (dd, $J_{1-2} = 5.5$ Hz, $J_{2-3} = 3.6$ Hz, 1H, H₂), 4.10 (dd, $J_{1-6} = 6.9$ Hz, $J_{1-2} = 5.5$ Hz, 1H, H₁), 3.74 (t, J₃₋₄ = J₄₋₅ = 8.9 Hz, 1H, H₄), 3.68 (dd, J₃₋₄ = 8.9 Hz, J₂₋ $_{3}$ = 3.6 Hz, 1H, H₃), 3.56 (dd, J_{5-6} = 10.3 Hz, J_{1-6} = 6.9 Hz, 1H, H₆), 3.34 (dd, J₅₋₆ = 10.3 Hz, J₄₋₅ = 8.9 Hz, 1H, H₅), 1.51 (s, 3H, CH₃), 1.36 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCI₃) δ (ppm): 138.0 (Ph_{quaternary}), 138.0 (2xPh_{quaternary}), 128.6 (2xPh), 128.6 (2xPh), 128.5 (2xPh), 128.4 (2xPh), 128.2 (2xPh), 128.2 (2xPh), 128.1 (Ph), 128.0 (Ph), 127.9 (Ph), 110.2 $(C_{isopropylidene}), \ 80.9 \ (C_6), \ 79.4 \ (C_1 \ _{or} \ _4), \ 79.3 \ (C_4 \ _{or} \ _1), \ 77.4 \ (C_3), \ 75.6$ (OCH₂Ph), 74.6 (C₁), 73.7 (OCH₂Ph), 73.4 (OCH₂Ph), 65.9 (C₅), 28.0 (CH₃), 25.9 (CH₃). FT-IR (v_{max}/cm): 3063 (=C-H arom), 3032 (=C-H arom), 2988 (C-H), 2911 (C-H), 2874 (C-H), 2106 (N₃), 1952 (Ph), 1877 (Ph), 1811 (Ph), 1497 (Ph), 1454 (Ph), 1371 (gem dimethyl), 1265 (C-O), 1242 (C-O-C-O-C), 1219 (C-O-C-O-C), 1153 (C-O-C-O-C), 1072 (C-O-C-O-C), 1047 (C-O-C-O-C), 737 (Ph), 696 (Ph). DI-MS m/z (Rel. Int): 500 (0.3, [M-Me]⁺), 424 (0.4), 290 (1), 181 (2), 106 (6), 91 (100), 65 (4). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₃₀H₃₃N₃O₅Na]⁺: 538.2312; found: 538.2278.

D-5-azido-3,4,6-tri-O-benzyl-5-deoxy-1,2-O-methylen-myo-inositol (29).

OBn BnO. N₂ ŌΒn The general procedure for the synthesis of dioxolane under acidic conditions using p-TsOH as catalyst was used, but changing DCM for CHCl3 as solvent, in order to increase de boiling point temperature. Purification was accomplished by flash chromatography, using

SiO₂ as stationary phase, and performing the following gradient elution: 5%, then 10% (v/v of AcOEt in Hexane). Coloruless oil (89 % yield). $\alpha D^{25.5}$ = + 10 (c = 0.73, MeOH). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 - 7.26 (m, 15H, 3xPh), 5.18 (s, 1H, OCH₂O), 4.99 (s, 1H, OCH₂O), 4.86 (d, J_{gem} = 11.3 Hz, 1H, OCH2Ph), 4.82 - 4.69 (m, 5H, OCH2Ph), 4.20 - 4.12 (m, 2H, H₁ +H₂), 3.75 (dd, J₃₋₄ = 8.3 Hz, J₂₋₃ = 3.2 Hz, 1H, H₃), 3.69 (t, J₃₋₄ = $J_{4-5} = 8.3$ Hz, 1H, H₄), 3.61 - 3.50 (m, 1H, H₆), 3.39 (dd, $J_{5-6} = 10.3$ Hz, $J_{4-7} = 10.3$ Hz, 5 = 8.3 Hz, 1H, H₅). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 137.9 (2xPhquaternary), 137.8 (Phquaternary), 128.6 (2xPh), 128.6 (2xPh), 128.5 (2xPh), 128.4 (2xPh), 128.3 (2xPh), 128.1 (Ph), 128.1 (Ph), 128.0 (2xPh), 128.0 (Ph), 95.5 (OCH2O), 79.3 (C4), 79.0 (C6), 78.9 (C1 or 2), 77.3 (C3), 75.3 (C_{2 or 1}), 75.2 (OCH₂Ph), 73.9 (OCH₂Ph), 73.2 (OCH₂Ph), 65.8 (C₅). FT-IR (v_{max}/cm): 3030 (=C-H arom), 2876 (C-H), 2106 (N₃), 1954 (Ph), 1877 (Ph), 1811 (Ph), 1497 (Ph), 1454 (Ph), 1207 (C-O-C-O-C), 1094 (C-O-C-O-C), 920 (-OCH2O-), 737 (Ph), 698 (Ph). DI-MS m/z (Rel. Int): 458 (0.2), 396 (0.6, [M-Bn]+), 262 (2), 106 (7), 91 (100), 65 (5). HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ Calcd for [C₂₈H₂₉N₃O₅Na]⁺: 510.1999; found: 510.1966.

D-5-amino-5-deoxy-1,2-O-methylen-myo-inositol (30).

ŌН

The same procedure described for compound 25 was applied for synthetizing 30. Colourless syrup (85 % yield). Hydrochloride: $\alpha_D^{25.5} = -42$ (c = 1.41, MeOH). ¹H NMR (400 MHz, D₂O, HDO signal was used as internal reference at δ = 4.79 ppm) δ (ppm): 5.22 (s,

1H, OCH₂O), 4.98 (s, 1H, OCH₂O), 4.26 - 4.13 (m, 2H, H₁ and H₂), 3.95 -3.86 (m, 1H, H₃), 3.71 (t, J₃₋₄ = J₄₋₅ = 9.9 Hz, 1H, H₄), 3.65 - 3.55 (m, 1H, H₆), 2.96 (t, $J_{4-5} = J_{5-6} = 9.9$ Hz, 1H, H₅). ¹³C NMR (101 MHz, D₂O, CH₃ signal of EtOH was used as internal reference at δ = 17.47 ppm) δ (ppm): 95.4 (OCH2O), 78.7 (C1), 77.9 (C2), 70.9 (C3), 70.4 (C6), 70.1 (C4), 55.3 (C5). FT-IR (vmax/cm): 3404 (OH), 2922 (CH2), 2851 (C-H), 1636 (N-H), 1240 (C-N), 1165 (C-O-C-O-C), 1069 (C-O-C-O-C), 924 (-OCH₂O-). DI-MS m/z (Rel. Int): 191 (2, [M] $^{+}),\,173$ (4), 126 (3), 113 (6), 101 (20), 88 (100) 72 (38), 60 (31). HRMS (ESI/Q-TOF) m/z: [M+H]+ Calcd for [C₇H₁₄NO₅]⁺: 192.0866; found: 192.0866.

Acknowledgements

The authors are grateful to PEDECIBA and CSIC-UdelaR for support of this project. GC acknowledges Agencia Nacional de Investigación e Innovación (ANII) and Comisión Académica de Posgrado (CAP) for a PhD fellowship. The authors also acknowledge Prof. Alejandra Rodriguez for HRMS experiments.

Keywords: Cyclitol • Biocatalysis • Amino alcohols • Dihydroxylation • Asymmetric synthesis.

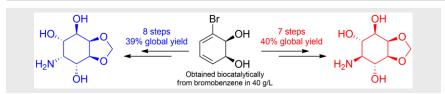
[1] 1953, 3, 1279-1282 M. d. C. Guerrero, J. Modoell, Eur. J. Biochem. 1980, 107, 409-[2] 414 R. C. Pittenger, R. N. Wolfe, M. M. Hoehn, P. N. Marks, W. A. [3] Daily, J. M. McGuire, Antibiot. Chemother. 1953, 3, 1268-1278. [4] S. Omura, A. Nakagawa, T. Fujimoto, K. Saito, K. Otoguro, J. C. Walsh, J. Antibiot. 1987, 40, 1619-1626. A. Nakagwa, T. Fujimoto, S. Omura, J. C. Walsh, R. L. Stotish, B. [5] George, J. Antibiot. 1987, 40, 1627-1635. [6] S. F. Hayashi, L. J. L. Norcia, S. B. Seibel, A. M. Silvia, J. Antibiot. 1997, 50, 514-521. N. Chida, M. Ohtsuka, K. Nakazawa, S. Ogawa, J. Org. Chem. [7] 1991, 56, 2976-2983. [8] a) T. J. Donohoe, A. Flores, C. J. R. Bataille, F. Churruca, Angew. Chem. Int. Ed. Eng. 2009, 48, 6507-6510; b) T. J. Donohoe, A. Flores, C. J. R. Bataille, F. Churruca, Angew. Chem. 2009, 121, 6629-6632 H.-J. Lo, Y.-K. Chang, T.-H. Yan, Org. Lett. 2012, 14, 5896-5899. [10] B. M. Trost, J. Dudash Jr, O. Dirat., Chem. Eur. J. 2002, 8, 259-268 [11] N. Palaniappan, S. Ayers, S. Gupta, E.-S. Habib, K. A. Reynolds, Chem. Biol. 2006, 13, 753-764. B. P. Gurale, M. S. Shashidhar, R. G. Gonnade, J. Org. Chem. [12] 2012, 77, 5801-5807. [13] N. Chida, M. Ohtsuka, K. Nakazawa, S. Ogawa, J. Chem. Soc., *Chem. Commun.* **1989**, 436-438. a) B. M. Trost, O. Dirat, J. Dudash Jr, E. J. Hembre, *Angew*. [14] Chem. Int. Ed. Eng. 2001, 40, 3658-3660; b) B. M. Trost, O. Dirat,

R. L. Mann, R. M. Gale, R. F. van Abeele, Antibiot. Chemother.

- J. Dudash, Joseph, E. J. Hembre, Angew. Chem. 2001, 113, 3770-3772 T. J. Donohoe, P. D. Johnson, R. J. Pye, M. Keenan, Org. Lett. [15]
- 2005, 7, 1275-1277. [16] a) A. Bellomo, D. Gonzalez, Tetrahedron Lett. 2007, 48, 3047-3051; b) N. Thevenet, V. de la Sovera, M. A. Vila, N. Veiga, D.
- Gonzalez, G. Seoane, I. Carrera, Org. Lett. 2015, 17, 684-687. C. Coronel, G. Arce, C. Iglesias, C. M. Noguera, P. R [17] Bonnecarrère, S. R. Giordano, D. Gonzalez, J. Mol. Catal. B:
- Enzym. 2014, 102, 94-98. [18] a) V. de la Sovera, P. Garay, N. Thevenet, M. A. Macias, D. Gonzalez, G. Seoane, I. Carrera, *Tetrahedron Lett.* 2017, *57*, 2484-2487; b) J. A. Griffen, J. C. White, G. Kociok-Köhn, M. D. Lloyd, A. Wells, T. C. Arnot, S. E. Lewis, *Tetrahedron* **2013**, *69*, 5989-5997; c) S. Pilgrim, G. Kociok-Köhn, M. D. Lloyd, S. E. Lewis, Chem. Commun. 2011, 47, 4799-4801; d) B. J. Paul, J. Willis, T. A. Martinot, I. Ghiviriga, K. A. Abboud, T. Hudlický, J. Am. Chem. Soc. 2002, 10416., J. Am. Chem. Soc. 2002, 124, 10416-10426.

FULL PAPER

[19]	 a) M. Pazos, B. Gonzalez, L. Suescun, G. Seoane, I. Carrera, <i>Tetrahedron Lett.</i> 2017, <i>58</i>, 2182-2185; b) C. Vitelio, A. Bellomo, M. Brovetto, G. Seoane, D. Gonzalez, <i>Carbohydr. Res.</i> 2004, <i>339</i>, 1773-1778; cA. Bellomo, C. Giacomini, B. Brena, G. Seoane, D. Gonzalez, <i>Synth. Commun.</i> 2007, <i>37</i>, 3509. 	
[20]	a) A. Bellomo, J. B. Bonilla, J. López-Prados, M. Martín-Lomas, D. Gonzalez, <i>Tetrahedron: Asymm.</i> 2009 , <i>20</i> , 2061-2064; b) G. Carrau, N. Veiga, L. Suescun, G. F. Giri, A. G. Suárez, R.	
[21]	Spanevello, D. González, <i>Tetrahedron Lett.</i> 2016 , <i>57</i> , 4791-4794. a) K. A. Oppong, T. Hudlicky, F. Yan, C. York, B. V. Nguyen, <i>Tetrahedron</i> 1999 , <i>55</i> , 2875-2880; b) T. Hudlicky, J. Rouden, H. Luna, S. Allen, <i>J. Am. Chem. Soc.</i> 1994 , <i>116</i> , 5099-5107; c) T. Hudlicky, H. F. Olivo, <i>Tetrahedron Lett.</i> 1991 , <i>32</i> , 6077-6080.	
[22]	 a) V. de la Sovera, A. Bellomo, D. Gonzalez, <i>Tetrahedron Lett.</i> 2011, 51, 430-433; b) V. de la Sovera, L. Suescun, A. Bellomo, D. Gonzalez, <i>Eur. J. Org. Chem.</i> 2017, 2017, 3912-3916. 	
[23]	G. Carrau, C. C. Drewes, A. L. B. Shimada, A. Bertucci, S. H. P. Farsky, H. A. Stefani, D. Gonzalez, <i>Bioorg. Med. Chem.</i> 2013, 21, 4225-4232.	
[24]	M. A. Vila, M. Brovetto, D. Gamenara, P. Bracco, G. Zinola, G. Seoane, S. Rodríguez, I. Carrera, J. Mol. Catal. B: Enzym. 2013, 96, 14-20.	
[25]	T. C. Nugent, T. Hudlicky, J. Org. Chem. 1998, 63, 510-520.	
[26]	J. S. Bajwa, R. C. Anderson, <i>Tetrahedron Lett.</i> 1991 , <i>32</i> , 3021- 3024.	
[27]	K. Stott, J. Keeler, Q. N. Van, A. J. Shaka, <i>J. Magn. Reson.</i> 1997 , 125, 302-324.	
[28]	L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, <i>J. Appl. Cryst.</i> 2015, 48, 3-10.	
[29]	G. Sheldrick, Acta Cryst. 2015, A71, 3-8.	
[30]	G. Sheldrick, Acta Cryst. 2015, C71, 3-8.	
[31]	C. B. Hubschle, G. M. Sheldrick, B. Dittrich, <i>J. Appl. Cryst.</i> 2011, 44, 1281-1284.	
[32]	T. Hudlicky, F. Rulin, T. Tsunoda, H. Luna, C. Andersen, J. D. Price, Israel J. Chem. 1991 , <i>31</i> , 229-238.	


- B. A. Johns, Y. T. Pan, A. D. Elbein, C. R. Johnson, *J. Am. Chem. Soc.* **1997**, *119*, 4856-4865. [33]
- T. Hudlicky, M. Mandel, J. Rouden, R. S. Lee, B. Bachmann, T. Dudding, K. J. Yost, J. S. Merola, *J. Chem. Soc. Perkin Trans.* 1 [34] **1994**, 1553-1567.
- B. Ananthan, W.-C. Chang, J.-S. Lin, P.-H. Li, T.-H. Yan, J. Org. Chem. 2014, 79, 2898-2905. [35]
- Chem. 2014, 19, 2530-2500.
 T. Hudlicky, H. Luna, H. F. Olivo, C. Andersen, T. Nugent, J. D. Price, J. Chem. Soc., Perkin Trans. 1 1991, 2907 2917. [36]
- [37] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
- A. Bellomo, D. Gonzalez, H. A. Stefani, J. Organomet. Chem. [38] **2008**, 693, 1136-1142.

Accepted Manuscript

FULL PAPER

Entry for the Table of Contents

FULL PAPER

This article describes the synthesis of hygomycin A aminocyclitol moiety and its C2 epimer from bromobezene by a chemoenzymatic strategy. The sequence involved epoxidation, stereocontrolled oxirane ring opening, dihydroxylation of an electron-poor olefin, and introduction of a methylenedioxy group. The aminocyclitols were obtained in high chemical and optical purity.

Key Topic: Aminocyclitol synthesis

Gonzalo Carrau, Ana Inés Bellomo, Leopoldo Suescun and David Gonzalez*

Title "Chemoenzymatic synthesis of hygromycin A aminocyclitol moiety and its C2 epimer"

Page No. – Page No.