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We study the eigenstates of open maps whose classical dynamics is pseudointegrable and for which the
corresponding closed quantum system has multifractal properties. Adapting the existing general framework
developed for open chaotic quantum maps, we specify the relationship between the eigenstates and the classical
structures, and we quantify their multifractality at different scales. Based on this study, we conjecture that
quantum states in such systems are distributed according to a hierarchy of classical structures, but these states are
multifractal instead of ergodic at each level of the hierarchy. This is visible for sufficiently long-lived resonance
states at scales smaller than the classical structures. Our results can guide experimentalists in order to observe
multifractal behavior in open systems.
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I. INTRODUCTION

Multifractals are a generalization of the simpler, better
known fractals [1,2]. Generically, a physical object or ob-
servable is multifractal when a single fractal dimension is not
enough to describe the patterns that repeat themselves at every
scale. Originally introduced to treat dissipation fluctuations in
fluid turbulence [3], it has proven a valuable tool to charac-
terize many classical complex phenomena and has recently
found application in the quantum realm as well. Notably, at
the critical point of certain quantum phase transitions, like the
metal-insulator transition of the celebrated Anderson model
[4], wave functions exhibit nontrivial fluctuations compatible
with a multifractal description [5]. Other noteworthy sys-
tems in which multifractality is present are pseudointegrable
systems [6–11], ground states of spin chains [12], systems
with a many-body localization transition [13–15], and the
related problem of random graphs with disorder [16–24].
While much progress has been made on the theoretical side
[5–10,25–37], the possibility of observation in experiments
has remained difficult (with, however, some indirect char-
acterizations [38–41]), mainly due to the fact that in a real
experimental setting there are perturbations and imperfections
that cannot be completely controlled. One first attempt to
solve this problem consisted in studying the extent to which
the multifractal character of a quantum state persists when
the original system is subjected to different types of modifi-
cations. This direction was pursued in detail in Refs. [42,43],
where it was shown that there are two main scenarios: one
in which there is a characteristic scale beyond which mul-
tifractality survives, and another in which multifractality is
destroyed at all scales.

A related question to be considered is that measurement
schemes often involve opening the system in some way. It then
becomes important to determine how much of the original
structure of the closed system remains when it is opened.

First steps in this direction were taken in Refs. [10,44,45]
by studying the Wigner delay times and the multifractality of
wave packets.

Here we will consider quantum maps that are the quan-
tized counterparts of classical area-preserving maps [46].
They have been extensively exploited, due to their inherent
simplicity, to study generic quantum properties, particularly
of systems with chaotic classical dynamics. Open quantum
maps, in which the evolution is no longer unitary and reso-
nance eigenstates have a finite lifetime, are a natural extension
to be considered in a realistic setup. There has been much
interest and progress in determining the spectral as well as
the eigenstate properties of these systems in the chaotic case
[47–61] (see [62] for a more extensive list of references). As
regards the distribution of resonance eigenstates, it was found
in Ref. [52] that the weight of these on certain classical sets
determined by the classical escape dynamics is directly related
in the semiclassical limit to the norm of the corresponding
eigenvalues. Also, in Ref. [61] a relevant classical hierarchy
of structures was identified and a family of conditionally
invariant measures was explicitly constructed to explain the
eigenstate distribution.

In this work, we consider a family of quantum maps whose
classical dynamics is pseudointegrable [63]. This is reflected
in the spectrum, with intermediate level-spacing statistics, but
also in the eigenfunctions that are delocalized but multifractal
[6–11]. Our objective is to describe the structure of eigen-
functions and reveal how multifractality is affected when the
map is opened. In particular, it is to understand whether mul-
tifractality survives at some scales or is destroyed altogether,
in line with the possible scenarios mentioned above [42,43].
Our main findings are the following: we generalize the theory
of [47–61], which was built for chaotic systems, to this new
type of dynamics. As in the chaotic case, we show that the
distribution of eigenstate components is conditioned by a
classical hierarchy of phase space structures. However, in the

2470-0045/2019/100(3)/032223(16) 032223-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.032223&domain=pdf&date_stamp=2019-09-27
https://doi.org/10.1103/PhysRevE.100.032223


AGUSTÍN M. BILEN et al. PHYSICAL REVIEW E 100, 032223 (2019)

chaotic case the wave functions were ergodic on each level of
the hierarchy, whereas in our case we formulate the conjecture
that wave functions are multifractal on these structures. We
support our conjecture using extensive numerical simulations,
with some caveats: very short-lived resonances are too close
to the degenerate subspace to be reliably analyzed in this
respect; additionally, the phase space structures considered
should be large enough compared to h̄ in the relevant phase
space direction for multifractality to be seen. Moreover, since
our multifractal analysis requires us to work at a fixed system
size (and hence a fixed effective Planck’s constant), we are
led to consider a way of modifying the previously developed
theory in cases in which the characteristic size of the classical
regions is comparable to h̄. We suggest that the resulting
adaptation could be valuable in general in situations in which
one is forced to cope with finite-h̄ effects.

Our work is organized as follows. In Sec. II we outline
the methods used to measure multifractality and to describe
open quantum maps. In Sec. III we present the model, and in
Sec. IV we provide the semiclassical theory for open quantum
maps, which we then use to state our conjecture concerning
multifractality of resonance eigenstates. To support it, we
present extensive numerical results in Sec. V. Finally, we
summarize and discuss our findings in Sec. VI.

II. METHODS

A. Moment scaling and multifractality

Consider a quantum state |ψ〉 belonging to a Hilbert space
of dimension N . Multifractality of |ψ〉 expanded over a certain
basis as |ψ〉 = ∑N−1

j=0 ψ j | j〉 can be computed by considering
the measure defined by the norm-squared components μ j =
|ψ j |2 and its associated moments Pq = ∑

j μ
q
j (with q ∈ R).

The scaling of Pq with N yields the multifractal dimensions
Dq. Alternatively, one may divide the system (considered one-
dimensional and of length N) into boxes of length n, and de-
fine the coarse-grained measure μi(n) = ∑n(i+1)−1

j=ni μ j and the
corresponding coarse-grained moments Pq(n) = ∑

i μi(n)q.
The multifractal (box-counting) dimensions Dq are then de-
fined [2] through the scaling

Pq(n) ∼
(

n

N

)(q−1)Dq

, n/N → 0 (1)

keeping N fixed and varying the box size n.
The exponents Dq allow us to assess the way in which

a state is distributed over the representation at hand. For
extended states, Dq is a constant for all q with its value
coinciding with D0 (which is always equal to the dimension
of the support, here D0 = 1), whereas Dq>0 = 0 for localized
states. If Dq is a nontrivial function of q, then the state is
multifractal.

In practice, since a given value of Dq as defined above
demands a stable enough behavior through many scales in
order to be numerically well defined, it is convenient to
introduce a local multifractal dimension

D̃q(n) = 1

q − 1
log2[Pq(2n)/Pq(n)], (2)

so as to have a refined notion of what is happening from one
scale to the next, thus helping to determine if such scale-

invariance is present or not. This will be the quantity we use
to quantify multifractality in our system. More precisely, we
will be interested in ranges of n over which D̃q(n) does not
vary considerably, as this will indicate the range of scales over
which a given state has a self-similar structure.

B. Open maps

1. Quantum maps

We consider a quantum map U that is the quantum version
of some classical automorphism of the 2-torus T 2, denoted
M. The corresponding phase space is usually represented as a
square with periodic boundary conditions. Upon quantization,
this periodicity yields a discrete Hilbert space of dimension
N with an associated effective Planck constant h = 1/N and a
semiclassical limit N → ∞. Position and momentum eigen-
bases can be denoted as {|xi〉}N−1

i=0 , {|pi〉}N−1
i=0 with xi, pi ∈

{0, 1/N, . . . , (N − 1)/N}. A quantum map on the torus can
then be expressed in either of these bases as an N × N unitary
matrix U .

2. Quantum opening

Quantum mechanically, the opening in phase space can
be achieved by means of a projection operator � onto the
opening [62]. The projection operator may act before or after
the quantum map operator, or both (as in Ref. [49]). Here we
choose to define the quantum evolution operator for the open
system as

Ũ = U (1 − �). (3)

The projection operator can be represented in a specific basis
{|ξi〉}N−1

i=0 as

� ≡
�N�	−1∑

i=0

|ξi〉〈ξi|, (4)

where � ∈ (0, 1) is a fixed number and �N�	 denotes the
integer part of N�. The operator (1 − �) in Eq. (3) acts on
a state |�〉 = ∑

j � j |ξ j〉 by setting its components �i, 0 �
i � �N�	 − 1, to zero.

Since Ũ is not normal (ŨŨ † �= Ũ †Ũ ), it is necessary to
distinguish between left |�−

j 〉 and right |�+
j 〉 eigenstates of

the map, defined by Ũ |�+
j 〉 = λ j |�+

j 〉 and 〈�−
j |Ũ = 〈�−

j |λ j .
As for the eigenvalues, they have the form λ j = eiEj e−� j/2

(with Ej, � j real). Thus � j determines the spectral norm
exp(−� j/2) and the decay rate of the corresponding eigen-
state. States with |λ j | � 0 at large N correspond to short-
lived states, which decay instantly upon iteration of Ũ . States
with nonvanishing eigenvalues at large N correspond to stable
states. Among these last, states with |λ j | � 1 correspond to
so-called supersharp resonances [64], and they are suspected
to be generically tied to nonescaping periodic orbits [55,65–
67]. We will see that, in our system, the presence of classical
periodic orbits that never reach the hole will indeed lead to the
existence of this type of state.

3. Classical opening

Classically, a region 	 = {(x, p) : 0 � ξ � � ∈ [0, 1]}
(with ξ either x or p) of phase space is defined as the opening
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by ceasing to propagate all trajectories of the classical map M
that fall into it. Let 	m = Mm	 be the iterates of the opening
	 under the classical map. One can define the regions [52]

Rm
+ = {z ∈ 	−m : z /∈ 	−n for 0 � n < m}, R0

+ = 	, (5)

Rm
− = {z ∈ 	+m : z /∈ 	+n for 1 � n < m}, R1

− = 	1.

(6)

The set Rm
+ is the set of points that escape after exactly m

iterations of M, while Rm
− is the set of points that escape after

exactly m iterations of M−1. The slight asymmetry between
definitions (5) and (6) reflects the asymmetry in the definition
(3) of Ũ (the projector acts before the map).

Under successive iterations of M, a given point either
escapes after exactly m iterations or never escapes. If we
denote by K+ the forward-trapped set, that is, the set of
points that never escape in the future, then phase space can be
partitioned by K+ and the Rm

+, according to the minimum time
it takes for points to reach the opening under iterations of M.
In a similar way, one defines the backward-trapped set K− of
points that never escape in the past (under iterations of M−1),
and one can partition phase space by K− and the Rm

−. The
classical trapped set K0 = K+

⋂
K− is the set of points that

never escape in the future or the past. The sets K+ and K− are
generally fractals whose dimensions serve to relate properties
of the open system with those of the original closed system
(e.g., through the Kantz-Grassberger relation [68]), as well as
to provide links to properties of the associated quantum map
as in, for example, the fractal Weyl law (FWL) [48,49].

III. THE MODEL: INTERMEDIATE MAP

A. Definition

The model we study is obtained by quantization of a
classical kicked system with discrete time dynamics on the
2-torus generated by

H (x, p, t ) = p2 − γ {x}
∑

n

δ(t − nT ), (7)

where (x, p) is the phase space coordinate, {x} denotes the
fractional part of x, and T is the time between successive
kicks. The classical evolution, integrated over one period T ,
is then given by the map

pn+1 = pn + γ

xn+1 = xn + 2pn+1
(mod 1), (8)

which can be seen to be a combination of a kick in p
followed by free motion in x. The quantization of (8) over
one period leads to a unitary evolution operator U acting on a
Hilbert space of dimension N = 1/2π h̄ [6], which is given in
momentum representation by

Upp′ = eiφp

N

1 − e2π iNγ

1 − e2π i(p′−p+Nγ )/N
, (9)

with φp = −2π p2/N . Although this choice of φp is the proper
one for the quantized map, one can instead take these phases

as being randomly distributed in [0, 2π ] [7], allowing for the
possibility of constructing a random ensemble out of (9).

B. Properties

The properties of the classical map are tuned through the
parameter γ , which can render the system either pseudoin-
tegrable or ergodic. Pseudointegrable systems are systems
in which motion is restricted to N-dimensional surfaces for
N-degree-of-freedom systems, but the surfaces are more com-
plicated (of higher genus) than for integrable systems [63].
More precisely, for rational γ = a/b the map (8) corresponds
to an interval-exchange transformation in which motion is
restricted to a union of b 1-tori {(x, p) : p = p0 + kγ }0�k�b−1.
On the other hand, for irrational γ the map becomes ergodic,
although still not mixing [6]. These properties are in turn
reflected on the properties of the quantum system. For φp uni-
formly distributed in [0, 2π ] and γ irrational, the statistics of
the eigenphases of U follow random matrix theory (RMT) for
either the circular orthogonal ensemble or the circular unitary
ensemble (depending, respectively, on whether the symmetry
constraint φp = φN−p is imposed or not), while the eigenstates
of U are extended in momentum space. On the other hand,
for rational γ = a/b the spectral statistics is intermediate
between Poisson and RMT [7,69], and eigenstates are multi-
fractal in momentum representation. The multifractality of its
eigenfunctions and evolved wave packets have been studied in
Refs. [8–11]. In particular, it has been found that the strength
of this multifractality decreases for larger b (for instance, the
information dimension D1 behaves as 1 − 1/b).

C. Dynamical versus random system

There is an important difference between the dynamical
map (9) with phases φp = −2π p2/N and its random version
where the φp are taken as random variables uniformly dis-
tributed in [0, 2π ]. For the dynamical system, the phases φp

are directly related to the kinetic energy operator, and the
system possesses a well-defined classical limit. Semiclassical
approximations will thus be in order. However, the main
disadvantage is that a statistical treatment is then severely
limited, as no ensemble averaging is possible.

The random-phase model [7–9] provides the possibility
to have statistically significant results, and it retains some
important features of the dynamical system. In particular, its
multifractal properties are known to be very similar to the
ones of the dynamical map for the closed system. Physically,
it can mimic an average over quasimomenta that is present
in experimental results for such maps. On the other hand,
as in the random case there is no connection between the
random phases φp from a disorder realization at a given N
to a realization at another N , its behavior might be expected
to differ from the dynamical case in the semiclassical limit.

Although our theoretical framework will in principle con-
cern only the case in which the phases are the dynamical ones,
we will exploit the random-phase alternative as well, not only
to have a setting in which we can perform significant statistics
but also to probe a regime where there is no quantum-to-
classical crossover of the escape dynamics [49,51], i.e., the
open system is always in the quantum regime (see Sec. V B).
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As we shall see, this allows us to factor out some of the
classical structures that would otherwise overlay the quantum
multifractal behavior in which we are interested. In particular,
we will see that the multifractal properties of the random
open map become increasingly different from those of the
dynamical open map as the latter tends to the semiclassical
limit.

IV. SEMICLASSICAL STRUCTURE AND
MULTIFRACTALITY OF OPEN QUANTUM

SYSTEMS: THEORY

In this section, we first set out to describe the existing
framework that accounts for the semiclassical structure of
resonance eigenstates. We then formulate a conjecture that
allows us to predict at which scales we may expect multifrac-
tality to manifest itself in the open system.

A. Semiclassical structure

We first consider some general properties concerning the
semiclassical structure of the eigenstates of open maps such
as Ũ . We restrict ourselves to left eigenstates, the discussion
for the right eigenstates being largely similar, with only minor
differences (at least for our ends) stemming from the fact
that Ũ has been defined asymmetrically, that is, with the
complementary projector (1 − �) acting only on the right.
Our discussion follows mainly Ref. [52].

Let |�−
j 〉 be a left eigenstate of Ũ with eigenvalue λ j . The

Husimi function of |�−
j 〉 is defined as the normalized Weyl

symbol of the density matrix ρ ≡ |�−
j 〉〈�−

j |,

H (z) = 1

〈z|z〉Tr(|z〉〈z|ρ). (10)

Here the |z〉 ≡ |x, p〉 are coherent states of the harmonic
oscillator, periodized on the 2-torus (see Appendix A for a
precise definition). The Husimi function H (z) provides a
convenient phase space representation of |�−

j 〉 at scales above

∼√
h̄ [see Eqs. (A1) and (A2)]. In other words, the Husimi

function (10) of the eigenvector does not resolve structures at
scales smaller than ∼√

h̄ = 1/
√

2πN .
Our starting point is the assumption that the iterated action

of the quantum propagator on a coherent state parallels the
classical evolution so long as the number m of iterates is
smaller than some characteristic time tE . The time tE is called
the Ehrenfest time and is defined in the context of open
quantum maps as the time it takes for a coherent state to
stretch to the size of the opening. In the semiclassical limit
we have tE → ∞, and the behavior of the open quantum map
can be retraced to that of the classical system. The opposite
limiting case tE → 1 marks a regime in which the classical
evolution becomes irrelevant and the escape dynamics is
purely quantum.

The quantum-to-classical crossover regime corresponds to
a finite number of iterates m < tE [49,51]. In this regime,
one can estimate how the Husimi function is distributed in
phase space. Following the ideas of [52], we now state two
properties describing the support of the Husimi function and
its relative weight on the classical structures described in

the previous section. We relegate their detailed derivation to
Appendix B.

On the one hand, one can show that whenever λ j �= 0, the
Husimi function H (z) is such that

H (z) � 0 whenever z /∈ KtE+ =
( ⋃

0�m<tE

Rm
+

)c

, (11)

where c denotes the complement with respect to the torus T 2.
In other words, this means that H (z) is significant only for
z ∈ KtE+ . This result holds only in the case in which λ j �= 0:
for |λ j | close to zero, strong leakage outside of KtE+ can occur.
The set KtE+ is the set of points that escape in more than tE
iterations of M, and can therefore be thought of as a finite-time
approximation to the forward-trapped set K+ = K+|tE →∞.

On the other hand, one can consider the relative weight of
the Husimi function of a given eigenstate on each of the Rm

−. It
turns out that these weights can be related to the norm of the
associated eigenvalue through

〈�−
j |�m

−|�−
j 〉 ≈ |λ j |2(m−1)(1 − |λ j |2) (12)

for 1 � m < tE , where �m
− is the quantum projector onto Rm

−
[see (A11) for its definition]. The two results (11) and (12)
tell us that semiclassically the Husimi function concentrates
on KtE+ , and that within this set its repartition over the classical
regions Rm

− is given by (12).
In essence, these results are statements about the Husimi

function H (z) of a certain eigenstate on phase space cells z
of area h̄/2 belonging to a certain region Rm

−. In this sense,
it is important to note that they will be valid only for those z
that are sufficiently far from the borders of the region Rm

− to
which they belong. In other words, it must be kept in mind
that (11) and (12) say little or nothing about points z that
are sufficiently close to the borders of a given region Rm

− or,
more precisely, those z ∈ Rm

− for which |〈w|z〉|2 with w /∈ Rm
−

is non-negligible. In the semiclassical limit, the size of the
coherent states goes to zero and the contribution from the
boundary becomes negligible. However, multifractal analysis
for the open system requires that we fix the system size
N (and thus h̄) and consider structures at various scales.
Altogether, this means that whenever the relevant classical
regions have characteristic sizes of the order of (the fixed)
h̄, we may have to consider possible ways of adapting the
existing framework in order to contemplate finite-h̄ effects and
account for the eventual deviations from the theory outlined
above. The relevance of these remarks will become evident
when we come to the discussion of our numerical results.

B. Multifractality of open quantum systems

The theory exposed above describes the left resonance
eigenfunctions as having a semiclassical structure governed
by the sets Rm

− (m < tE ) and KtE+ . For open chaotic systems in
the semiclassical limit, it is by now a fairly well-established
idea that resonance eigenstates |�±

j 〉 should be on average,
and modulo quantum fluctuations, uniformly distributed over
appropriate substructures partitioning K∓ [47,52,61]. It would
be interesting to draw a parallel between the case of open
chaotic systems and the case of open pseudointegrable sys-
tems, in order to use the semiclassical structure theory of the
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previous section to say something about the possibility of
multifractality for resonance eigenstates. Before attempting
to do so, however, there are some fundamental differences
between the two settings that must be noted.

First, quantum fluctuations are important when discussing
the multifractal structure of eigenstates. Thus, we have to be
careful when we talk about average properties. In our case,
the wave-function moments Pq are calculated for individual
wave functions and then averaged over, as opposed to, for
instance, averaging wave-function components and then cal-
culating the moments. This type of averaging would be akin to
that employed in Ref. [61] when discussing the semiclassical
structure of resonant eigenstates. There, the eigenstate Husimi
functions are averaged over a small decay rate window.

Second, quantum multifractality is not a property of a
phase space distribution; rather, it concerns the distribution of
wave-function components in a particular basis. In situations
in which the classical structures are sufficiently intricate in
phase space, or rather badly oriented with respect to the
basis where multifractality can be seen, it may be difficult
to observe the multifractality of an eigenstate in such phase
space regions.

Having commented on these differences, we conjecture
that in the case of an open pseudointegrable system for
which the eigenstates of the closed system are multifractal,
resonance eigenstates should be multifractal on each of the
substructures partitioning K∓, and that such multifractality
will be observable only when the set K∓ and the sets Rm

−
allow for it. The considerations of the previous section on
the Husimi functions allow us to make a few general remarks
concerning the substructures on which multifractality can be
seen for the left eigenstates |�−

j 〉. Using (12), we distinguish
between three regimes, depending on whether |λ j | is close to
1, close to 0 (but different from it), or intermediate between
the two.

In the case |λ j | � 1, apart from supersharp resonance states
[64] concentrated on nonescaping periodic orbits, Eq. (12)
implies that states will have an almost vanishing weight on
all regions Rm

− with m < tE and will thus concentrate on the
set KtE− defined as

KtE− =
( ⋃

1�m<tE

Rm
−

)c

. (13)

Together with (11) this implies that they will concentrate on
KtE

0 ≡ KtE−
⋂

KtE+ , which at large tE goes to K0.
In the case in which |λ j | is intermediate between 0 and

1, states have their weight spread over many regions Rm
−.

Moreover, by virtue of (11), they will in fact be concentrated
in the intersections Rm

−
⋂

KtE+ .
Finally, when |λ j | is slightly greater than 0, states should

be supported almost exclusively on R1
−

⋂
KtE+ .

Multifractality in each of these cases will depend on the
nature of the semiclassical structures (strongly dependent on
tE ) and the scale at which one observes. In other words, we
expect that the typical size of these structures will impose
characteristic scales below which multifractality could in
principle manifest.

C. Application to our model

For a chaotic map with classical Lyapunov exponent ν, a
wave packet of size ∼√

h̄ reaches the size � of the hole in a
time tE ∼ ln h̄/ν (or, equivalently, tE ∼ ln N). In our system,
the classical evolution of a point (x, p) under (8) is given by

(x, p) �→t iterations (x′, p′) = (x + 2pt + γ t (t + 1), p + γ t ),
(14)

so that a point (x + δx, p + δp) will be mapped to a
point (x′ + δx′, p′ + δp′) with δx′ = δx + 2tδp and δp′ = δp.
Therefore, under time evolution an initial domain of linear
size

√
h̄/2 around (x, p) does not stretch in the p direction but

stretches as (2t + 1)
√

h̄/2 along the x direction. In particular,
this means that opening the map in the p direction gives an
Ehrenfest time tE → ∞, whereas for an opening in the x
direction an initial coherent state will stretch to the size � of
the opening in a finite number of iterations,

tE = ��√πN − 1/2�, (15)

where we have used h̄ = 1/(2πN ). In short, this means that
opening the dynamical quantum map in x or p yields the finite
tE > 1 and infinite tE regimes, respectively. As for the special
case tE = 1, it can be probed by using the random-phase map
opened in x (see Sec. V B below).

V. NUMERICAL RESULTS

We will now present the results of our numerical inves-
tigations for the map Eq. (9). We will consider two types
of openings defined by the choice of basis in the projector
Eq. (4): one in position (Secs. V A and V B) and the other
in momentum (Sec. V C). We will illustrate our results for
N = 212 and two different opening sizes: a small opening
� = 2−6, for which Eq. (15) yields an Ehrenfest time tE = 2,
and a large opening � = 2−2 with tE = 28. When opening in
position, we need to make the further distinction between the
dynamical and random versions of the map, as discussed in
Sec. III C.

A. Opening in position for the dynamical map

Here we consider the case in which the opening is in x
and the quantum map is (9) with dynamical phases φp =
−2π p2/N . According to Eqs. (3) and (4), the open quantum
map is defined as

Ũ = U
N−1∑

i=�N�	
|xi〉〈xi|. (16)

It is obtained in x representation by taking the Fourier trans-
form of (9) and setting the first �N�	 columns to 0. We will
be interested in the properties of its eigenvalues λ j and its left
eigenstates |�−

j 〉.

1. Classical properties

The classical structures described in the previous section
find clear illustration in the present setting. They are displayed
in Fig. 1. The shaded areas correspond to the regions Rm

±. In
particular, in Fig. 1(a) the two stripes correspond to the set
R1

− (which is the only one displayed since tE = 2 for � = 2−6
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FIG. 1. Regions Rm
− (top row, 1 � m < tE ) and Rm

+ (bottom row,
0 � m < tE ) for the classical map opened in x with � = 2−6 (left
column), 2−2 (right column), and γ = 1/3. The color scale indicates
the number of iterates m. White regions include all those regions
Rm

± corresponding to m � tE (tE = 2 for � = 2−6 and tE = 28 for
� = 2−2), i.e., the sets KtE− (top row) and KtE+ (bottom row) whose
intersection gives the trapped set KtE

0 . As tE → ∞, the sets KtE± tend
in fact to (the same) horizontal connected sets of periodic points that
stay in the system forever, either under backward (top) or forward
(bottom) evolution.

and N = 212), while the set KtE− corresponds to the white
region and covers almost all the phase space. By contrast, in
Fig. 1(c) corresponding to � = 2−2 (where tE = 28) the set R1

−
corresponds to the two darkest stripes, while KtE− is reduced to
six thin and almost one-dimensional white regions. Similarly,
the set KtE+ corresponds to the white regions in the bottom row
[Figs. 1(b) and 1(d)].

In the semiclassical limit tE → ∞, the sets KtE− and KtE+
become equal, and both tend to the trapped set K0. For any �,
this set of trapped points lies within 2b horizontal segments,
as can be deduced from the analysis of the classical map (8).
Indeed, as mentioned above, after t iterations a point (x, p)
is mapped to (x + 2t p + γ t (t + 1), p + tγ ). It is then easy
to see that in the closed map any point with a momentum
of the form p = k/(2b) with 0 � k � 2b − 1 corresponds to
a periodic point, with a period determined by its position x.
In the open system, the trapped set K0 thus corresponds to
periodic points of the closed map whose trajectory never goes
through the opening.

2. Spectral properties

As discussed in Sec. II B, we expect that multifractality of
eigenvectors of Ũ will be governed by the classical structures
and by its eigenvalues λ j . In Figs. 2(a) and 2(c) we display
the spectral norms |λ j | ordered by increasing value of their

FIG. 2. Spectral norms |λ j | (top row) of the dynamical map with
γ = 1/3, opened in x with � = 2−6 (a) and 2−2 (c), for various
system sizes N = 27, . . . , 212 (light to dark circles). The scaling of
the number of resonances with norm above 0.5 is shown in the
bottom row for each case � = 2−6 (b) and 2−2 (d). Circles correspond
to the data, while the line is the linear fit (with the solid segment
indicating the fitting range), whose slope corresponds to d0/2.

modulus (|λ j | � |λ j+1|) as a function of the rescaled index
j/N .

Some predictions can be made about the number of short-
lived or long-lived states. On the one hand, the number of
short-lived states (with eigenvalues � 0) can be estimated by
counting the number of independent minimal wave packets
whose escape time is smaller than the Ehrenfest time tE . At the
same time, the number of long-lived states can be estimated
by the fractal Weyl law (FWL) [48], a conjecture relating
the asymptotics of the resonance distribution with the fractal
dimension d0 of K0. More specifically, the FWL states that
for an N-dimensional Hilbert space, the number of resonances
λ such that |λ| > r grows as A(r)Nd0/2, where A(r) is some
function of r. In the case in which the Ehrenfest time is finite,
we may expect that the FWL is governed by properties of
the set KtE

0 . We check these predictions in Figs. 2(b) and
2(d). For � = 2−6 [tE = 2, Fig. 2(b)] we see that d0 ≈ 1.95
so that these states are located on an almost two-dimensional
support, something that is consistent with Figs. 1(a) and 1(b),
where KtE

0 covers almost all of phase space. As � (and thus tE )
increases, d0 gets closer to 1 [Fig. 2(d)], in accordance with
the fact that in this limit KtE

0 approaches K0 [see Figs. 1(c) and
1(d)], becoming almost one-dimensional.

As explained in Sec. IV A, eigenvectors of the dynamical
map should be such that their Husimi function follows the
general results (11) and (12). According to (11), states should
concentrate on the set KtE+ , and within this region the weight
of the state on the sets Rm

− should be given by Eq. (12). This
prediction is checked in Fig. 3 for the two openings � = 2−6

and 2−2. For the large opening [Fig. 3(c)], the relative weight
in regions Rm

− is quite accurately given by (12) for all values
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FIG. 3. Numerically calculated weights 〈�−
j |�m

−|�−
j 〉 of left

eigenstates of the open dynamical map on regions Rm
− for m = 1, 2,

and 3 (blue, red, green; dark to light, respectively). Dashed black
lines correspond to the theoretical prediction (12) for each of these
corresponding regions (from top to bottom in each panel). The map
(with N = 212 and γ = 1/3) is opened in x with � = 2−6 [(a) and (b)]
and � = 2−2 (c). For � = 2−6, panel (a) corresponds to the weights
calculated on the original regions (i.e., in the same way as for the
large opening), while panel (b) corresponds to the weights on the
broadened regions.

of |λ j | and m = 1, 2, 3. On the other hand, for the small
opening [Fig. 3(a)] we see that the weights fall significantly
below the theoretical prediction. To understand this behavior,
we show in Figs. 4(a)–4(d) the Husimi function of various
eigenstates, and we observe that, at least for the shortest-lived
states [Figs. 4(a) and 4(b)], the Husimi function seems to be
concentrated primarily on the Rm

−. At the same time, these
regions consist of extremely thin stripes whose width turns
out to be of order ∼√

h̄ [70]. We thus expect that, even
though the Husimi functions are mainly on the Rm

−, they have

non-negligible weight just outside the boundaries of these.
To verify if this picture is accurate, we calculate the relative
weight of the Husimi functions on the broadened version R̃m

−
of the original regions, given by

R̃m
− = {z ∈ T 2 : d (z, z′) � 2

√
h̄/2 for all z′ ∈ R}, (17)

where d is the Euclidean distance; in other words, this broad-
ening amounts to a thickening of the original regions by
two Planck cells. The results are shown in Fig. 3(b). We
see that the missing weight reappears and a good agreement
with theory is attained, with appreciable deviations only for
m � tE = 2.

These results show how one may take into account im-
portant finite-h̄ effects when the possibility of going further
into the semiclassical limit is not an option. Eventually, of
course, if the relevant classical structures were to become
much smaller than h̄, the broadening procedure should not be
expected to hold ground.

3. Quantum states: Multifractality

Multifractality of eigenstates of the open system can be
analyzed in light of the description of the classical properties
of the dynamical map given in Sec. V A 1. In Fig. 5 we
show the results of the multifractal analysis. The spectrum is
divided into regions [given by the shaded areas in the spectrum
displayed in Figs. 5(g) and 5(n)] over which we average in
order to determine the multifractal exponents associated with
each region. We display results for D̃q with q = 2, for the open
(thin colored curves) as well as for the closed map (thick black
curve) in Figs. 5(a)–5(c) and 5(h)–5(j). Similar results were
obtained for other values of q (data not shown). We observe
the following behavior depending on the value of |λ j |.

(a) (b)

0 10.5
x

0

1

0.5p

(c) (d)

(e) (f)

0 10.5
x

0

1

0.5p

(g) (h)

FIG. 4. Husimi representation of four eigenstates of the dynamical map opened in x for � = 2−6 (a)–(d) and � = 2−2 (e)–(h). Superimposed
on each panel are the classical regions R1

−, R2
−, and R3

− (blue, red, green; dark to light, respectively). The eigenvalue norm |λ| associated with
each eigenstate is (a) 0.022 23, (b) 0.718 80, (c) 0.973 35, (d) 0.999 98, (e) 0.020 07, (f) 0.720 74, (g) 0.0973 31, and (h) 0.999 89.
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FIG. 5. Multifractal analysis for the dynamical map opened in x with � = 2−6 (a)–(g) and � = 2−2 (h)–(n). The top three rows in each case
(|λ j | decreases from top to bottom): box-size n behavior of D̃2(n) for the left eigenstates of the open map |� j〉 (thin colored lines) and those of
the closed map |� (0)

k 〉 (thick black line); for |� (0)
k 〉 the average is over the N available states, whereas for |� j〉 we average over all those states

(out of the N) falling within a small norm range indicated by the color and shade of the curve in panel (g) displaying the spectral norms |λ j |.
To the right of each D̃2(n) plot, we display |〈� j |p〉|2 for an exemplifying state in the corresponding |λ j | window. Results correspond to system
size N = 212 and γ = 1/3.

For |λ j | � 1, states should be concentrated on KtE
0 . For

the small opening � = 2−6 (small tE ), this set is a large
part of phase space [see Figs. 1(a) and 1(b)]. As seen in
Fig. 4(c), these states do not spread over the full available
space. Figure 5(a) shows that most of these states are instead
multifractal on this support. Nonetheless, we note that for
|λ j | extremely close to 1, some states become localized on
K0 (a set consisting of continuous families of periodic points,
contrary to the general chaotic case), and should remain so
in the semiclassical limit. An example is shown in Fig. 4(d).
Since the set K0 is one-dimensional in p, multifractality could
only manifest itself at scales below ∼√

h̄, but in fact these
eigenstates are found to be localized on 2b = 6 basis states
and display no multifractality. On the other hand, Figs. 5(a)
and 5(d) show that in the regime |λ j | close to 1 most states
are not of this type. For the large opening � = 2−2 (large tE ),
KtE

0 is close to K0, and hence all the long-lived states are of the
extremely localized type [see Figs. 4(g), 4(h), 5(h), and 5(k)].

States with |λ j | intermediate between 0 and 1 concentrate
on Rm

−
⋂

KtE+ . For � = 2−6, KtE+ covers most of the phase
space, which means that states can, in principle, lie anywhere
within Rm

−, mainly for small m. An example of such a state

is shown in Fig. 4(b). The multifractal analysis of Fig. 5(b)
shows that these states present some multifractality at the
smallest scales (0 � log2 n � 2). However, the fact that these
regions consist of oblique stripes whose projection in the
p direction is the entire interval [0,1] makes it difficult to
relate this multifractality to a given phase space structure. For
� = 2−2, KtE+ gets closer to K+, and despite the fact that the
Rm

− are much larger than in the case � = 2−6, the intersections
Rm

−
⋂

KtE+ are very small, especially in the p direction (where
multifractality is concerned). These features appear clearly in
Fig. 4(f). The corresponding multifractal analysis of Fig. 5(i)
shows that, on average, states in this regime do not present any
evident multifractal structure.

States with |λ j | � 0 concentrate on R1
−

⋂
KtE+ . For the

small opening (since KtE+ is almost all of the phase space)
this means essentially all of R1

−. Figure 4(a) shows that
this type of state, although confined to R1

−, does not spread
over the whole available space. For the large opening, the
intersection R1

−
⋂

KtE+ amounts to an almost zero-dimensional
region [compare the white regions with the darkest regions in
Figs. 1(c) and 1(d)], something that is reflected in Fig. 4(e).
Results of the multifractal analysis are displayed in Figs. 5(c)
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and 5(j). The behavior of D̃q for both opening lengths with
|λ j | � 0 shows that there is no multifractality for either of
these cases, not even at the smallest scales corresponding
to regions within R1

−
⋂

KtE+ . In fact, the multifractal analysis
shows that they manifest instead a small-scale ergodicity
there. We will encounter a similar type of behavior as well
when considering the case |λ j | ≈ 0 for the map opened in p.

It is interesting to note that multifractality in our system
clearly depends on tE , and thus on h̄ (it is more visible for
small h̄), even though multifractality in the closed system is
manifested independently of h̄.

B. Opening in position for the random map

1. Spectral properties

We now turn to the case in which the phases φp are
taken as random variables. In this case there is no longer
an underlying classical dynamics, although the system still
retains some features of the dynamical map. In Eq. (9), the
dynamical phase φp corresponds to the free evolution operator
exp(−i p̂2/h̄), which in the p representation is diagonal with
entries exp(−2iπ p2/N ). This free evolution term corresponds
to the shift 2p along x in the classical map (8), which can be
obtained from integration of the Hamilton equation. One can
rewrite this equation as ẋ = ∂ (−h̄φp)/∂ p (where φp depends
on h̄, so that the whole equation is classical). In the random
case, one may argue that this equation yields a classical
evolution where x is randomly kicked in [0,1], while the
evolution in p remains as in the dynamical case. One way
to check the validity of this picture is to trace the short-time
dynamics of cells in a phase space coarse-grained by coherent
states. Computing the first iterates of a Gaussian wave packet
under an instance of the random map, we found (data not
shown) that it expands along x to the size of the system in
only one iteration, although an average over many first iterates
(corresponding to different random instances of the map) was
necessary in order to observe a completely uniform spread.
The fact that an initial wave packet spreads to the size of the
system in only one iteration implies that we are always in
the quantum regime, i.e., tE = 1. Furthermore, this property
is independent of N .

In Fig. 6 we display the average spectral norms 〈|λ j |〉.
Since tE = 1, the number of short-lived states 〈|λ j |〉 � 0
corresponds to the number of wave packets that escape im-
mediately, that is, wave packets supported on the opening.
Therefore, the size of the short-lived sector should simply be
�N�	 (indicated by an arrow at the top of Fig. 6; note the
rescaling of the horizontal axis), which is in agreement with
the form of the spectrum. As regards the long-lived sector, we
first note that the set KtE

0 |tE =1 is the entire phase space minus
the opening, and hence a two-dimensional set. The FWL then
predicts that the number of long-lived resonances should grow
as ∼N . This is precisely what is observed in Fig. 6, where
points corresponding to different system sizes N fall on the
same curve after rescaling by N .

2. Quantum eigenstates and multifractality

We now turn to the eigenstates. Typical Husimi represen-
tations of long-lived eigenstates are shown in Fig. 7. The

0

0.5

1

0 0.5 1 0 0.5 1

λ
j

j/N

(a)

j/N

(b)

FIG. 6. Average spectral norms 〈|λ j |〉 of the random map for
γ = 1/3, opened in x with � = 2−6 (a), 2−2 (b), and for various
system sizes N = 27 (lightest gray), . . . , 212 (darkest gray). For each
N we diagonalize M = 217/N random-phase realizations. The index
j ∈ {1, . . . , N} is defined by the ordering |λ j | � |λ j+1|, and the
average 〈|λ j |〉 is taken over the M realizations at fixed j. The arrow
at the top of each plot marks the (rescaled) theoretical prediction �

for the size of the short-lived sector.

spreading of the distribution in x over the complement of
the opening is a consequence of the instantaneous spreading
of wave packets over the size of the system. This spreading

(a)

0

max

(b)

0 10.5
x

0

1

0.5p

(c)

(d)

(e)

(f)

FIG. 7. Husimi representation of three left eigenstates of a partic-
ular realization of the open random map with γ = 1/3, N = 212, and
opened in x with � = 2−6 (a)–(c), 2−2 (d)–(f). The eigenvalue norm
|λ| associated with each eigenstate is (a) 0.740, (b) 0.900, (c) 0.995,
(d) 0.661, (e) 0.750, and (f) 0.949.
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FIG. 8. Multifractal analysis for the random map opened in x with � = 2−6 (a)–(g) and � = 2−2 (h)–(n). The top three rows in each case
(〈|λ j |〉 decreases from top to bottom): box-size n behavior of D̃2(n) for the left eigenstates of the open map |� j〉 (thin colored lines) and those
of the closed map |� (0)

k 〉 (thick black line); for |� (0)
k 〉 the average is over the M × N available states, whereas for |� j〉 we average over all

those states (out of the M × N) falling within a small norm range indicated by the color and shade of the curve in panel (g) displaying the
spectral norms 〈|λ j |〉. To the right of each D̃2(n) plot, we display |〈� j |p〉|2 for an exemplifying state in the corresponding 〈|λ j |〉 window.
Results correspond to M = 32 random realizations with N = 212 and γ = 1/3.

washes out the classical structures of the dynamical map as
they are now scattered in the x direction. The corresponding
tE = 1 is minimal, and therefore these systems represent an
extreme case of the classical description.

The wave functions are strongly localized in p at large |λ j |,
and as |λ j | decreases they become increasingly spread over
the whole interval.

The results of the multifractal analysis are gathered in
Fig. 8. In the case of the small opening � = 2−6 [Figs. 8(a)–
8(c)], we see from the behavior of D̃2 that there is a transition,
as |λ j | decreases (top to bottom row), from states that are very
localized and with a multifractality present at small scales
toward more extended states with multifractal structure at
intermediate scales. This general picture is reasonably close
to the results for the dynamical map with the same opening,
in accordance with the fact that tE is of the same order in both
cases (tE = 1 and 2, respectively).

For the larger opening � = 2−2 [Figs. 8(h)–8(j)], while the
localization of states for large |λ j | is more drastic [Figs. 8(h)
and 8(i)], the states at smaller values of |λ j | [Fig. 8(j)] present
a clear plateau for D̃2 over most of the scales, at a value that
is close to the value for the closed system. Contrary to the

situation for the � = 2−6 case, here the presence of random
phases makes the system much more multifractal compared
to the dynamical map. This is consistent with the fact that
tE for � = 2−2 is much longer for the dynamical system than
for the random one. We see thus that the presence of random
phases completely changes this timescale, and is tantamount
to the system not being sensitive to any intricate classical
structure.

The results presented show that those properties of the
dynamical map that depend on the variations of tE with the
size of the opening disappear for the random map. Instead, we
see that a clear multifractality is visible for both opening sizes,
with different behavior with respect to |λ j |. Since random
phases can represent the average of quasimomenta present in
experimental implementations, this can be seen as a positive
sign for the observation of multifractality in realistic open
maps.

C. Opening in momentum

We now consider the case in which the opening is in p.
According to Eqs. (3) and (4), the open quantum map is
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FIG. 9. Regions Rm
− (m = 1, 2, 3 as blue, blue-green, and green,

respectively) for the classical map with γ = 1/3, opened in p with
� = 2−6 (a) and 2−2 (b). As for the structures corresponding to
forward evolution, we simply have 	 = R0

+ = R3
−, R1

+ = R2
−, R2

+ =
R1

−, and K+ = K− = K0.

defined as

Ũ = U

⎛⎝1 −
�N�	−1∑

p=0

|p〉〈p|
⎞⎠, (18)

which is realized in momentum representation by simply
setting the first �N�	 rows of Upp′ to 0.

In this section, we consider, as in the previous studies, the
left eigenstates of the open map, and we work exclusively
with the random-phase version of (9). As mentioned above,
the dynamics in p is unaffected by the introduction of random
phases, and therefore, when opening in p, this is solely for the
sake of improving our statistics, and the results to be discussed
follow closely those of the dynamical map opened in p with
only minor differences regarding the exact values of the Dq.

1. Classical properties

For rational γ = 1/b, the 1/b periodicity of (8) in p implies
that opening it along this direction will yield a relatively
simple structure. The opening 	 and its classical preimages
are depicted in Fig. 9. Points either escape in the first or
second iteration or remain in the system forever. The unstable
zones (shaded regions) correspond to 	 = R0

+ = R3
−, R1

+ =
R2

−, R2
+ = R1

−. Noting that Rm
+ = Rm+1

− = � for m � 3 and
that tE is infinite for our system, this gives KtE+ = KtE− = K0,
which is the stable zone (white regions).

2. Spectral properties

This partitioning of phase space, in turn, manifests itself in
the spectrum of Ũ , as can be observed in Fig. 10, where we
display the average spectral norms 〈|λ j |〉. Again, resonances
can be classified as being either short-lived (〈|λ j |〉 � 0) or
long-lived (〈|λ j |〉 � 1). Following again the analysis of [49],
one can estimate the number of short-lived quantum reso-
nances by the (linear) size of the classical unstable region
(union of shaded regions in Fig. 9). Here, it is given by
N�b (where γ = a/b). This is in agreement with the form
of the spectrum (the arrow at the top of the plots in Fig. 10
corresponds to the rescaled value �b), and we have checked
as well that this relation is satisfied for various other � and γ ,

0

0.5

1

0 0.5 1 0 0.5 1

λ
j

j/N

(a)

j/N

(b)

FIG. 10. Average spectral norms 〈|λ j |〉 of the random map for
γ = 1/3, opened in p with � = 2−6 (a), 2−2 (b), and for various
system sizes N = 27 (lightest gray), . . . , 212 (darkest gray). For each
N we diagonalize M = 217/N random-phase realizations. The index
j ∈ {1, . . . , N} is defined by the ordering |λ j | � |λ j+1|, and the
average 〈|λ j |〉 is taken over the M realizations at fixed j. The red
arrow at the top of each plot marks the theoretical prediction �b for
the (rescaled) size of the short-lived sector.

with improved agreement as N → ∞. The FWL is trivially
verified as the spectral density converges to a step function
and K0 is two-dimensional.

3. Quantum states: Semiclassical picture and multifractality

Again, eigenvectors of the quantum map can be described
by their Husimi function, of which four examples are shown
for � = 2−6 in Figs. 11(a)–11(d) and � = 2−2 in Figs. 11(e)–
11(h). For the largest |λ j |, states are entirely in KtE

0 . Since
the set Rm

−
⋂

KtE+ is empty, as |λ j | becomes smaller the states
tend to settle at the frontier between Rm

− and KtE+ . Note that
this is not inconsistent with the semiclassical theory insofar
as borders are implicitly excluded from our analysis (see
Appendix B). Finally, for very small |λ j |, states spread over
R1

− [seen clearly in Fig. 11(e)]. Once more, even though
Rm

−
⋂

KtE+ is empty, this does not contradict the theory, since
Eq. (11) does not apply for small enough |λ j | [see Eq. (B3)
and the remark below it].

Our results for the multifractal behavior are summarized in
Fig. 12 for � = 2−6 and 2−2. Figure 11 shows that for |λ j | � 1
the wave functions are located in the set KtE+ = K0, but not in
an ergodic way. Instead, these states show multifractal proper-
ties, at least at small scales, as can be seen in Figs. 12(a)–12(c)
and 12(h)–12(j). For small opening, the multifractality curves
for the largest |λ j |, shown in Fig. 12(a), are very close to those
of the closed system. We have verified that such states have
very strong overlap with certain eigenvectors of the original
closed system; they correspond to states of the closed system
already localized in the nonescaping regions. For smaller |λ j |,
Figs. 12(b) and 12(i) show that multifractality of the open
system persists for a range of scales comparable to that of
the closed-system multifractality, regardless of the size of the
opening. Finally, as |λ j | decreases even further (but remains
close to 1), the states are at the frontier between Rm

− and KtE+
[Figs. 11(b) and 11(f)], with a width ∼√

h̄ ∼ 1/
√

N in p (i.e.,
the order of the size of a coherent state), which corresponds to
log2 n ∼ log2

√
N = 6 in Figs. 12(c) and 12(j), where it can be

seen that there is clear multifractal behavior below this scale.
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(a) (b)

0 10.5
x

0

1

0.5p

(c) (d)

(e) (f)

0 10.5
x

0

1

0.5p

(g) (h)

FIG. 11. Husimi representation of four eigenstates of a given realization of the random map opened in p for � = 2−6 (a)–(d) and � = 2−2

(e)–(h). Superimposed on each panel are the classical regions R1
−, R2

−, and R3
− (blue, red, green; dark to light, respectively). The eigenvalue

norm |λ| associated with each eigenstate is (a) 0.190 09, (b) 0.957 90, (c) 0.995 27, (d) 0.999 52, (e) 0.017 85, (f) 0.958 03, (g) 0.995 22, and
(h) 0.999 58.

The steplike spectral density makes the intermediate values
of |λ j | not relevant. As for the very small values of |λ j |, they
correspond to states concentrated on R1

− [see Figs. 12(a) and
12(h)]. Our calculations reveal that they are actually close to
ergodic on this set and that they have no multifractal proper-
ties (data not shown). Note that this resembles the situation
encountered when the dynamical map was opened in x, where
states with small |λ j | were found to be ergodic within their
associated classical structure. This may be a general effect
due to the vicinity of the huge degenerate subspace, which
contaminates this type of state.

VI. CONCLUSION

We have explored the properties of open quantum maps
whose closed counterpart has multifractal properties. We fo-
cused on a specific pseudointegrable system, where multi-
fractality is visible in momentum representation. The semi-
classical description of resonance eigenstates has been shown
to follow the general theory of [50,52–54,56,58–61], albeit
here suitably adapted for the treatment of systems in which
one must work at finite h̄. The theory links the phase space
distribution of resonance eigenstates to a hierarchical struc-
ture arising from the classical partitioning of phase space
determined by the escape dynamics: states concentrate on
Rm

−
⋂

KtE+ , with an increasing visibility for larger m when
the eigenvalue norm |λ j | increases. For chaotic systems, the
quantum states were predicted to be ergodic on average at
each hierarchical level. Our results are consistent with the
conjecture that for pseudointegrable systems, individual quan-
tum states are multifractal at each hierarchical level. We have
confirmed that multifractality manifests itself for left eigen-
states with large and intermediate values of |λ j | whenever the

classical structure has enough space for it to be visible. For
very small |λ j |, the semiclassical behavior of the states is more
involved, with states entirely on R1

− or on R1
−

⋂
KtE+ depending

on the opening, and no visible multifractality. In this extreme
regime, it must be kept in mind that not only does the general
semiclassical theory become inapplicable, but also that such
short-lived eigenstates are far from orthogonal and are very
close to the huge degenerate space at |λ j | = 0.

Instead of focusing on the semiclassical limit of very small
h̄, we have been led to adapt the formalism to the case in
which h̄ is not asymptotically small compared to the classical
structures. In chaotic systems, a spectral gap is present that
effectively limits the number of structures that are relevant
to describe a quantum state. In our case, the absence of a
spectral gap means that states with |λ j | close to unity can have
important probability on very small classical structures, which
can be comparable to h̄ for arbitrarily small values of the
Planck constant. We think that this adapted formalism should
be useful for other systems with no spectral gaps, or more
generally when finite h̄ effects are important.

In general, our study shows that the observation of multi-
fractality will depend on |λ j |, which should not be too small,
and the Ehrenfest time tE , which should not be too large
in order to avoid the presence of too intricate a hierarchical
structure in phase space becoming relevant for the quantum
system. As tE is controlled by both the opening size and h̄,
these two parameters should be chosen carefully to obtain
resonance eigenstates with multifractal properties. Note that
for phase space structures that are of relatively small sizes
and compatible with the basis where multifractality manifests
itself, it can be seen only at small scales up to a scale given
by the classical structure. Another interesting point is that
as there is no gap in the spectrum (contrary to the case of
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FIG. 12. Multifractal analysis for the random map opened in p with � = 2−6 (a)–(g) and � = 2−2 (h)–(n). Top three rows in each case
(〈|λ j |〉 decreases from top to bottom): box-size n behavior of D̃2(n) for the left eigenstates of the open map |� j〉 (thin colored lines) and those
of the closed map |� (0)

k 〉 (thick black line); for |� (0)
k 〉 the average is over the M × N available states, whereas for |� j〉 we average over all

those states (out of the M × N) falling within a small norm range indicated by the color and shade of the curve in panel (g) displaying the
spectral norms 〈|λ j |〉. To the right of each D̃2(n) plot, we display |〈� j |p〉|2 for an exemplifying state in the corresponding 〈|λ j |〉 window.
Results correspond to M = 32 random realizations with N = 212 and γ = 1/3.

chaotic systems), one can make the hierarchical structure less
visible by increasing |λ j | close to 1. Finally, although we
have confined our study to left eigenstates, we expect our
conclusions to hold for right eigenstates as well. As far as
multifractality is concerned, we have indeed verified that left
and right eigenstates corresponding to a given λ j have very
similar behavior.

Our results extend and validate the semiclassical theory
of open quantum systems in the case of pseudointegrable
systems, and they suggest that it is possible to observe mul-
tifractal behavior in open quantum systems, e.g., in scattering
experiments, for different kinds of opening.
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APPENDIX A: COHERENT STATES ON T 2

The coherent states |z〉 used to define the Husimi function
on the torus are coherent states of the harmonic oscillator
that are properly periodized as befits the torus structure of
the present context [71]. A coherent state of the harmonic
oscillator centered at (X, P) has the following expression in
x and p representation, respectively:

ψ(X,P)(x) =
(

1

π h̄

) 1
4

e− i
h̄

PX
2 e

i
h̄ Pxe− 1

2h̄ (x−X )2
, (A1)

ψ̂(X,P)(p) =
(

1

π h̄

) 1
4

e
i
h̄

PX
2 e− i

h̄ X pe− 1
2h̄ (p−P)2

. (A2)
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In the position and momentum eigenbases {|x j〉}N−1
j=0 and

{|p j〉}N−1
j=0 with x j, p j ∈ {0, 1/N, . . . , (N − 1)/N} and h̄eff =

h̄ = 1/(2πN ), a coherent state in T 2 is given by

|X, P〉 =
{∑N−1

j=0 c j (X, P)|x j〉,∑N−1
j=0 d j (X, P)|p j〉,

(A3)

with coefficients given by

c j (X, P) =
√

1

N

∑
m∈Z

ψ(X,P)(x j − m), (A4)

dj (X, P) =
√

1

N

∑
m∈Z

ψ̂(X,P)(p j − m). (A5)

Equation (A4) corresponds to Eq. (16.26) of [72] (with κ1,2 =
0, Z = i, a, b = 1 and after correction of a few misprints).

In terms of the elliptic theta function of the third kind [73],
ϑ3, defined as

ϑ3(x; τ ) =
∑
n∈Z

τ n2
e2inx (|τ | < 1), (A6)

we can rewrite the coefficients as

c j (X, P) =
(

2

N

) 1
4

e−i 2πNP( X
2 − j

N )e−πN ( j
N −X )2

ϑ3(r j ; τ )

(A7)
with r j = −πNP − πNi( j/N − X ) and τ = exp(−πN ), and

d j (X, P) =
(

2

N

) 1
4

ei 2πNX ( P
2 − j

N )e−πN ( j
N −P)2

ϑ3(s j ; τ ) (A8)

with s j = πNX − πNi(p j − P). The coherent states defined
above satisfy the following resolution of the identity:∫

T 2

dXdP

2π h̄
|X, P〉〈X, P| = 1. (A9)

In our computations, coherent states are centered at points
(Xi, Pj ) ∈ �, where � is a lattice covering the torus T 2,
consisting of �√2/h̄ + 1

2	2 square cells of width
√

h̄/2 whose
position is fixed by the first cell centered at (

√
h̄/8,

√
h̄/8). In

� the resolution becomes

1

4π

∑
(Xi,Pj )∈�

|Xi, Pj〉〈Xi, Pj | = 1̃, (A10)

where 1̃ satisfies 1̃|φ〉 = |φ〉 (up to corrections of order h̄) for
any |φ〉. A projector �R onto a region R ∈ T 2 is defined as

[74,75]

�R = 1

4π

∑
(Xi,Pj )∈�

χR(Xi, Pj )|Xi, Pj〉〈Xi, Pj |, (A11)

where χR is the characteristic function of R:

χR(X, P) =
{

1, (X, P) ∈ R,

0, (X, P) /∈ R.
(A12)

APPENDIX B: RELATIVE WEIGHTS ON CLASSICAL SETS

We now derive in detail the results quoted in the Introduc-
tion. We start from the exact relation

|λn|2m|〈�−
n |z〉|2 = |〈�−

n |Ũ m|z〉|2, (B1)

where |z〉 is a coherent state centered at z = (X, P). We have

Ũ m|z〉 = U (1 − �0) · · ·U (1 − �0)︸ ︷︷ ︸
m times

|z〉, (B2)

where �0 = � is the projector on the opening 	. Points
(X, P) starting in the opening will be eliminated by the first
projection (1 − �0), and in the regime where m < tE only
points that have not escaped after m iterations will survive
(B2). Using (B1) we thus obtain that if |λn| > 0, then

|〈�−
n |z〉|2 concentrates on z ∈ KtE+ ≡

( ⋃
0�m<tE

Rm
+

)c

. (B3)

However, as seen from (B1), for |λ j | ≈ 0 one may expect
|〈�−

n |z〉|2 to have non-negligible support in regions outside
of KtE+ .

Let A = U�0U †. From the definition R1
− = M	 we

have A ≈ �1
− as long as quantum dynamics follows clas-

sical dynamics (and provided tE > 1). Using the fact that
A = 1 − ŨŨ † we have 〈�−

n |A|�−
n 〉 = 1 − |λn|2, and thus

〈�−
n |�1

−|�−
n 〉 ≈ 1 − |λn|2. (B4)

To proceed further, we use the classical recursive relation
for the Rm

−, which reads Rm+1
− = M(Rm

−\	). Together with
the definition of Ũ it implies that for 1 � m < tE we have
Ũ m−1�1

−(Ũ †)m−1 ≈ �m
−, with �m

− being the projector onto
Rm

−. Inserting this into the identity

|λn|2(m−1)|〈�−
n |A|�−

n 〉| = |〈�−
n |Ũ m−1A(Ũ m−1)†|�−

n 〉|,
(B5)

we get

〈�−
n |�−

m |�−
n 〉 ≈ |λn|2(m−1)(1 − |λn|2), ∀m : 1 � m < tE .

(B6)
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this gives δ√
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−
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−, this quantity decreases

with m.
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