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Abstract. In the growth of bacterial colonies, a great variety of complex patterns are observed in exper-
iments, depending on external conditions and the bacterial species. Typically, existing models employ
systems of reaction-diffusion equations or consist of growth processes based on rules, and are limited to a
discrete lattice. In contrast, the two-dimensional model proposed here is an off-lattice simulation, where
bacteria are modelled as rigid circles and nutrients are point-like, Brownian particles. Varying the nutrient
diffusion and concentration, we simulate a wide range of morphologies compatible with experimental obser-
vations, from round and compact to extremely branched patterns. A scaling relationship is found between
the number of cells in the interface and the total number of cells, with two characteristic regimes. These
regimes correspond to the compact and branched patterns, which are exhibited for sufficiently small and
large colonies, respectively. In addition, we characterise the screening effect observed in the structures by
analysing the multifractal properties of the growth probability.

1 Introduction

The concept of active matter is relatively new within
soft matter physics; the fundamental units of this type
of matter, called active agents, have the particularity of
absorbing energy from their environment and dissipat-
ing it in order to move, grow or replicate, among other
activities [1]. Most of the examples of active matter are
biological, such as bacteria. Although they can be seen
as the simplest living organisms, they present interesting
behaviours, both individually and collectively.

Bacteria exhibit many different types of movement,
depending on the species and the environment, which
determines the macroscopic appearance of the colony.
According to Henrichsen [2], six types of motility can be
identified: swimming, swarming, twitching, darting, glid-
ing (newer studies subdivide this category [3]) and sliding.
We focus on the last one, which is a mechanism produced
by the expansive forces of the colony, in combination with
special properties of the cell membranes characterised by
low friction with the substrate on which they grow; the
bacteria do not move by their own motors, but push each
other by duplicating themselves and competing for the
same spaces. Despite its simplicity, its importance has
been pointed out in more complex bacterial processes,
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such as in the formation, dispersion and restructuring
of biofilms [4]. Although we will not strictly enter the
biofilms field in this work, it is important to mention they
are the focus of numerous studies, due to the complex-
ity of the processes involved, their resistance to hostile
environments, and the challenge they present to medicine
[4-8].

At the end of the 80s, Matsuyama [9], Fujikawa and
Matsushita [10], showed that the patterns of bacte-
rial colonies obtained in the laboratory could be frac-
tal objects. The properties of their patterns depend on
two main factors: the concentration of nutrients, which
influences the growth rate of the colony, and the con-
centration of agar, which determines the hardness of
the substrate, and therefore, the mobility of the bac-
teria. In the absence of special forms of motility, the
patterns were classified in a two-dimensional phase dia-
gram in which five characteristic patterns were identified:
diffusion-limited aggregation-like (DLA-like), Eden-like,
dense branching morphology (DBM), concentric ring and
homogeneous disk-like. The experiments were performed
mainly with the species Bacillus subtilis [10-13]. With-
out self-propulsion, only DLA and Eden-like patterns are
expected.

At the theoretical level, continuous models are the most
traditional and extended way of studying the patterns
exhibited by bacteria colonies. In them, both bacteria
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and nutrients (or any other variable of interest) are rep-
resented by density functions per unit area, and the
spatio-temporal evolution of the system is described by
systems of reaction-diffusion equations [11,14-23]. These
models are successful in describing a wide range of pat-
terns, although they are valid only at a mesoscopic scale.
To represent growth at the microscopic level, microor-
ganisms must be represented by discrete mobile entities
(agents) [24-27]. In this scheme, on-lattice [26] and off-
lattice [24,25,27,28] approaches can be chosen.

The motivation of this work is to propose a microscopic
model that can explain the experimental observations,
based on the fact that sliding is dominated by the mechan-
ical interaction between the bacterial cells. As has been
said, continuous models work well only on a mesoscopic
scale, whereas in agent-based models, if space is discre-
tised as Euclidean networks, mechanical laws cannot be
used. In spite of being computationally expensive, in this
work, we choose an off-lattice model, in order to rep-
resent our agents as rigid bodies governed by laws of
mechanics. Thus, we can analyse the growth of bacterial
colonies on a microscopic level. The off-lattice approach
also avoids anisotropies in the patterns exhibited by the
colonies induced by the discretization of the space.

A typical way to characterise the complex structures
that arise in surface growth is by means of the Hausdorff
dimension, often referred to as the fractal dimension. How-
ever, the fractal dimension is not a unique descriptor,
as it was shown that two structures may have the same
fractal dimension but are fundamentally different [29]. In
order to describe structures more deeply and unequivo-
cally, the determination of the multifractal properties of
an associated measure (e.g. growth probability) offers a
suitable supplement to the sole measurement of their frac-
tal dimension. This is an entropy-based approach [30],
classified this way to differentiate it from other analy-
ses that rely only on metric concepts. Here the scaling
properties are analysed for variations in different parts of
the pattern, which are overlooked by a simple measure-
ment of the fractal dimension. As it is arduous to treat
growth models with nonlocal rules analytically [31], it may
be interesting to characterise an associated measure such
as the growth probability to gain some insight about the
process.

A way to describe the multifractal behaviour is through
the generalised dimensions D, (also known as Rényi
dimensions). If one covers the support of the measure (set
of all points where the measure is positive) with a set of
boxes of size | and defines a probability P;(l) (integrated
measure) in the ith box, the generalised dimensions D
correspond to the scaling exponents for the gth moments
of P;, defined by > PY(l) ~ 1(@=DPa_ In this context, g

1
is typically referred to as the order ¢ of the generalised
dimension D,. Solving for D, and taking the limit of
Il — 0, the conventional expression for the generalised
dimensions is given by

In 3 P{(1)
Da= o
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For the case ¢ = 1, the L’Hopital’s rule must be used;
thus,

S, (1) log Pi(1)
. 1
Dy = jig Inl
The generalised dimensions are exponents that charac-
terise the non-uniformity of the measure; the positive
orders ¢q accentuate the regions with higher probabilities
while the negative ¢’s the opposite.

In early works, D, was only defined for ¢ > 0 [32],
so the previous definition had the particularity that the
first value of the set, i.e. Dy—g, corresponded to the
Hausdorff dimension of the support (because all the boxes
have the same weight). There are also specific names for
other certain values. For example, D,—; is known as the
information dimension, which is interesting in the case
of diffusion-limited aggregations, since it can be physi-
cally interpreted as the fractal dimension of the active
region, i.e., the unscreened region [29]; Dy—o is known
as the correlation dimension; D, 4+ are known as the
Chebyshev dimensions, which are calculated with the
maximum and minimum probabilities, respectively; equiv-
alences with other dimensions definitions can be made,
even for fractional ¢ values [30].

This is not the only multifractal analysis possible. In
other works, the singularity spectrum is computed [33,34],
which is closely related to the Rényi dimensions by a
Legendre transform. Temporal fractals can also be stud-
ied, where the local scaling properties are now related to
time behaviour [35]. We will use the generalised dimen-
sions to characterise quantitatively the patterns produced
by our model.

2 Model

In this paper, we model the growth of non-motile bac-
terial colonies under different environmental conditions,
specifically, nutrient concentration and nutrient diffusion.
The growth rules are inspired by biology, as we cap-
ture the essential characteristics of bacteria without losing
simplicity. We consider a two-dimensional and off-lattice
space, which allows us to consider mechanical interactions
between the agents, as we will explain below.

There are two kinds of particles in the model, nutrient
particles and bacterial cells. Both of them have physi-
cal properties such as size, mass, position, velocity and
might have applied forces. Nutrient particles are idealised
as Brownian particles, so its initial velocities follow the
Maxwell-Boltzmann distribution and evolve according to
a Langevin equation of the form mo(t) = —5Lv(t) + f(t),
where x is the Boltzmann’s constant, T' is the tempera-
ture and D is the diffusion coefficient. The function f(t)
is a stochastic force whose components follow a Gaussian
probability distribution with mean zero and standard
deviation o = kT'y/2/D. The Langevin equation is numer-
ically integrated using a small time step At, following the
explanations in The Fokker-Planck Equation by Risken
[36]. Nutrient particles are considered point-like, non-
interacting with each other and with a small mass. The
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Table 1. Numerical values used for the simulation.

Variable Value [arbitrary units]
kT 1
At 0.01
Th 1
m (nutrient mass) 0.0001
. - Cell division” - -

, -~

Particle to "
incorporate

Fig. 1. Feeding and reproduction. Bacteria cells (circles) can
absorb the particles diffusing in the medium (dots) and dupli-
cate, causing collisions with neighbours, which move in the
direction pointed by the arrows. The double blue arrow (colour
online) points the direction in which the newborn bacteria
disaggregate.

bacterial cells are modelled as rigid circles with radius
rp, 80 they can interact with each other through normal
forces. The numerical values used in the simulations can
be found in Table 1.

In addition to the physical properties, bacterial cells
have two biological characteristics: they can be fed and
reproduce. The first one is an interaction with the nutri-
ents, which are absorbed by the cell when they are in
contact. Reproduction is the process by which the bac-
terium duplicates: an identical copy of the cell is generated
in the same position as the original, so they overlap. Then,
they are disaggregated by opposing velocities in a ran-
dom direction. As a consequence, these cells may collide
elastically with neighbours, according to the mechanics
of rigid bodies, as shown in Figure 1. When the cells
stop overlapping, they stop moving and become static
because the medium is considered to be very viscous so
that the momentum gained by the collisions is immedi-
ately dissipated. All the calculations to resolve collisions
and overlaps are based on an iterative constraint solver
introduced by Catto [37].

In summary, reproduction causes both the movement of
newborn cells and their neighbours, representing sliding
motility.

The simulation begins with a single cell in the origin
of coordinates in a 2D substrate and a given quantity
of nutrient particles diffusing in space, according to the

Page 3 of 8

Fig. 2. A ring surrounding the colony (in red) acts as a nutri-
ent reservoir. The concentration of nutrient is constant inside
it, but decreases in the proximity of the colony, because of the
feeding. The distance between the ring and the colony is 607
at least.

concentration and diffusion coefficient specified. When a
nutrient particle touches the cell, it is absorbed and the
bacteria duplicates. Now the colony is formed by two cells,
which can absorb nutrients and reproduce. The process
continues in this way and the colony grows progres-
sively. All the bacteria have a time delay (20 integration
time steps), during which they can’t duplicate; this rule
ensures that no duplication occurs while newborn cells
are still overlapping and it is consistent with biological
observations, e.g., Bacillus subtilis species has a delay of
~25 minutes between duplications [17].

In order to keep the nutrient concentration constant,
there is a ring that acts as a nutrient reservoir located at a
given distance from the most external position of the bac-
teria. This distance increases progressively as the colony
grows, so the separation is 607}, at least. The nutrient con-
centration within the ring (r > 60r;) is kept constant at
a specified value. But, closer to the colony (r < 60ry),
the concentration drops due to nutrient absorption by the
bacteria. Periodic boundaries conditions are considered for
the outer side of the ring (Fig. 2).

The growth stops when the colony reaches a radius of
6007, when characteristic patterns are fully developed.
This implies that we have up to half a million cells forming
the colony, depending on the parameters.

3 Results and discussions

3.1 First characterization of the structures

In order to see the variety of morphologies that the model
can produce, we choose several different values of nutrient
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Fig. 3. Examples of different morphologies. In (a) there is a sample of the model predictions. On the X-axis, the diffusion
coeflicient D is varied (in arbitrary units), while on the Y-axis the nutrient concentration is varied (measured as the number
of particles per unit area). Each curve, in a different shade of grey, corresponds to a different time. All other sub-figures
correspond to experiments. The parameter C, corresponds to the agar concentration, which determines the hardness of the
substrate, and C,, corresponds to the nutrient concentration. (b) C, = 10g/l; C, = 20g/l. (c) Co = 9g/1; C, = 4.5g/L
(d) Co =8g/l; Cr =3g/L (e) Ca =9g/1; Cr, =1g/1. ((b) is from [11], reprinted with permission from Elsevier. (c), (d) and
(e) are from [12], ©(1992) The Physical Society of Japan, reproduced with permission.)

concentration and nutrient diffusion, and register the posi-
tion of the bacteria along the perimeter of the colony over
time and average over a hundred realizations for each
set of parameters. A morphology diagram is shown in
Figure 3a, where it can be seen that it is possible to gener-
ate round and compact colonies, as well as ramified, going
through a variety of intermediate patterns. Similar mor-
phological crossover can be seen in Figures 3b—3e, which
corresponds to the experiments carried out in [11,12]. The
fractal dimension of intermediate patterns in experiments
was reported for the case of the most ramified one. In
Table 2, we summarise the results found in the bibliogra-
phy [10,12] and ours (for the most ramified cases), which
are in good agreement.

3.2 Scaling properties

Despite using different values for the parameters, it is
observed that the curves of the number of bacteria at the
interface S versus the total number N show two power-law
regimes. The first regime corresponds to initial compact
structures S ~ N'/2, while the second regime corresponds
to ramified structures with S ~ N, as shown in Figure 4a.
These two behaviours are characteristic of the Eden and
DLA models, respectively.

To characterise the crossover between regimes, we com-
pute the total number of bacteria N* at which the

Table 2. Fractal dimension Dy. Values reported in
experimental works, our model and DLA (the error is
the standard deviation). Only the results for the most
branched cases are included with C' = 1/80, D = 512 and
C = 1/40,D = 512. Greater values than for the case of
DLA are expected, where only one particle diffuses at a
time, unlike our case where we have many (C > 0).

Dy
Model [C =1/80; D = 512] 1.760 + 0.004
Model [C' = 1/40; D = 512] 1.778 + 0.003
Experiment [10] 1.73 £0.02
Experiment [12] 1.70 £ 0.02
DLA [29,31] 1.71 £ 0.01

crossover takes place. To achieve this, we simply fit power-
law functions in the tails of the S vs. N curves and
compute the intersection. More sofisticated methods for
an automatic determination of crossovers can be found
n [38]. After dividing N by N* in each of the data sets,
the Y-axis is divided by some value S* looking for a sat-
isfactory collapse of the curves. We found that the best
collapse occurs when N* = S*2, as shown in Figure 4b.

It can be seen that N* depends on the diffusion D
and the concentration C, having an increasing relationship
with both (Fig. 5).
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Fig. 4. Power-law regimes. (a) Results, averaging over all real-
izations, of the number of bacteria in the interface S versus the
total number of cells N. (b) Collapsed curves of S versus N.
Both plots are double-logarithmic.
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Fig. 5. Relationship between N* and the parameters. (a) N*
is plotted against the nutrient concentration C, leaving the
diffusion coefficient D constant; (b) the same but for D.
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Taking these observations into account, an attempt
is made to establish a scaling law. We know that the
behaviour of S is:

NY2 N <« N*
S ~ bl << b (1)
N, N > N*,

where N* = N*(C, D). The curves collapse dividing N
and S by N* and S*, respectively, so:

* (N/N*)l/27
S/57 ~ {N/N*,

Then, having validated the relationship N* = S*2 and
proposing the scaling function

const, <1,
oy {07 T

N/N* « 1,

N/N* > 1. @)

3)

the relation between N and S can be written as:

5= N2y [(;\X)Uzl. )

This result suggests that if we allow N to grow suffi-
ciently, branches will always be generated, after a critical
number of cells is reached, dependent on the parameters
C and D.

3.3 Multifractality of the growth probability

The growth probability of each region of the colony can
give information about why a certain pattern displays.
Every cell duplicates when a nutrient particle is captured,
so the growth probability is associated with the proba-
bility that a diffusing particle reaches the site where the
cell is. We use two methods to estimate this probabil-
ity, focusing on the final stage of the colony. The first
one consists on counting how many nutrient particles are
absorbed by each cell without letting it duplicate, i.e., the
colony is “frozen” and the growth probability of each cell
is computed dividing this counting by the total of particles
incorporated by the whole colony (we use approximately
10° particles). We will refer to this method as C.M. The
disadvantage with this method is that it does not estimate
low probabilities well, because several million particles
may be captured by the colony in total, but the internal
regions may hardly incorporate any. Due to this, we also
solve the Laplace equation V2¢ = 0, where ¢ represents
the nutrient concentration, by the relaxation method [39],
where ¢ = 1 at infinity and ¢ = 0 along the perimeter of
the colony, as it can be seen that the growth probability
is proportional to the gradient of the potential V¢ [29].
We use an iteration error of 10~°, after checking that the
multifractal curves do not vary appreciably. In order to
use this method, referred to as L.M. henceforth, properly,
space has to be discretised, so some differences with the
C.M. are expected.
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Fig. 6. Example of the C.M. results for a branched colony.
After 10° particles are captured, the green colour marks the
cells who absorbed more than (a) 1 particle, (b) 20 particles
and (c) 80 particles.

In Figure 6, it is shown how uneven is the number of
nutrient particles consumed between the outer and inner
regions of a ramified colony. This phenomenon is usually
referred to as ‘shadowing’ or ‘screening’ effect and is more
or less noticeable depending on the parameters. As the
structures that emerge from the simulations are fractal,
the proper way to study this effect is by the multifractal
formalism, explained in the first section.

In Figure 7, the generalised dimension Dy~ curve
is plotted for different morphologies. It can be seen
that the probability associated with a ramified colony
presents a strong multifractality since D, varies signifi-
cantly with q. It is also included in Figure 7 the curve
for a diffusion-limited aggregate [40] for comparison. The
standard deviations are presented in Table 3. Unfortu-
nately, this analysis cannot be carried out in very compact
colonies since the fractal regime is very short to be reli-
able or it is not observable. Nor can it be done in the early
stages of the growth process for the same reason.

In Figure 8, the generalised dimension is plotted again,
but now including the ¢ < 1 interval. Only the results
obtained by the L.M. can be used in this interval. The
value of Dy« _1 is very interesting, because it quanti-
fies the shadowing effect, making evident the differences
between different morphologies. It is worth noting that
Dg—¢ should not be equal to the fractal dimension Dy
presented in the previous subsection because D,—q is the
fractal dimension of the support of the measure, i.e., the
perimeter of the colony, while Dy is the fractal dimen-
sion of the area. All of these characteristic points are
summarised in Table 3, which also includes the values
corresponding to diffusion-limited aggregation as a com-
parison [29,40]. The asymptotic values are estimated with
q =25 and q = —25.
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Fig. 7. Generalised dimension curve for ¢ > 1. Different icons
correspond to different values of nutrient concentration C and
diffusion coefficient D. Red dashed line corresponds to DLA.
Results using the (a) C.M. and (b) L.M.
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Fig. 8. Generalised dimension curve including negative values
of gq. Only the L.M. results are plotted. Different icons cor-
respond to different values of nutrient concentration C' and
diffusion coefficient D. Note that the curves do not collapse
for ¢ > 0, the difference between them cannot be seen on this
scale (see Fig. 7).

Note that the curves of the generalised dimension are
always above the case of DLA. In the region of ¢ > 0,
taking into account the calculated standard deviations,
the differences are not as noticeable, but they are in the
region of ¢ < 0. In this region, where the measurement
best distinguishes each case, they depart notoriously from
the case of DLA. Always considering branched cases, it
is observed that higher values are associated with higher
C and D values, which can be understood if we associate
this measure with the screening phenomenon. The larger
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Table 3. Some characteristic values of the generalised dimension D, (the error is the standard deviation). DLA results

found in [29,40] are included for comparison.

C =1/20;D = 512

C =1/40; D = 512

C =1/40; D = 1024

C.M. L.M. C.M. L.M. C.M. L.M.
Dy—o - 1.60 4 0.01 - 1.63 + 0.01 - 1.53 + 0.01
Dg—y 1.08 + 0.01 1.08 £0.05 1.09 +0.01 1.10 £ 0.09 1.11 +0.01 1.09 £ 0.08
Dy—2 1.00 + 0.02 1.00 = 0.09 1.00 £+ 0.02 1.01 £0.12 1.04 4+ 0.01 1.01 £0.13
Dgsa 0.82 +£0.04 0.75 4+ 0.09 0.82 +£0.04 0.79 +£0.15 0.87 +£0.04 0.78 £ 0.15
Dy — 19.0£1.5 — 155+ 1.5 — 18.7+ 2.1
C =1/80; D =512 C =1/80; D = 1024 DLA

C.M. L.M. C.M. L.M. [29] [40]
Dy—o - 1.64 +0.01 - 1.56 + 0.01 1.64 +0.01
Dy—s 1.09 + 0.01 1.08 4 0.07 1.13 +0.01 1.08 4 0.06 1.04 +0.01 1
Dy—s 1.00 4 0.02 0.98 +0.11 1.04 +0.01 1.00 +0.10 — 0.92
Dysa 0.80 +0.03 0.73+0.14 0.85 + 0.03 0.76 +0.13 0.67 +0.03 0.66
Dye—1 - 14.0+ 1.4 - 18.3+1.9 ~9 -

are C and D, the thicker and narrower the branches and
the fjords become, respectively, so the screening increases
to the interior areas. Nevertheless, note that there is a
limit on how large the parameters can be. If C and D are
too large, so the branches disappear, the screening effect is
barely noticeable. The growth probability becomes almost
uniform, and the multifractality should be lost.

4 Conclusions

The goal of this work is the construction of a model based
on basic theories of physics, capable of generating a variety
of complex patterns observed in bacteria colonies. Under
the hypothesis that there is a single collective movement
mechanism behind the different morphologies (sliding),
the different results are achieved by varying parameters of
the environment outside the colony, without changing the
behaviour of the agents. Under these precepts, we manage
to generate patterns from the most round and compact to
extremely ramified, going through different intermediate
morphologies. The different approaches used to charac-
terise the structures also allow comparison with the two
most studied models that predict patterns of bacterial
colonies, the Eden model and DLA.

The fractal dimension analysis of simulations with
branched colonies shows a fractal dimension compatible
with experiments [10]. Although there are distinct dif-
ferences between the present and the DLA model, their
fractal dimensions are in good agreement, which suggests
that the most ramified cases considered are close to the
diffusion limit.

On the other hand, the characterization using scal-
ing laws show that there are two characteristic growth
regimes, one compact and one branched. According to the
relation found, the crossover between regimes occurs at a
critical number of cells, that depends on the parameters
for nutrition concentration C' and nutrition diffusion D.
Thus, branches will always be generated for finite values
of these parameters.

The multifractal measurement shows strong multifrac-
tality for the ramified cases. In case the order ¢ of the
generalised dimension D; is ¢ > 0, the curves of D, of
the simulations of different values of C' and D are close
to each other, but in the region of ¢ < 0, their differences
become notoriously. All these curves are, however, always
above the DLA curve and, as expected, approach to the
DLA curve for lower values for C' and D. Higher values
are associated with higher C' and D values because fjords
into the interior are narrow.

Unfortunately, a more in-depth comparison between
simulation and experimental data cannot be carried out
due to the lack of quantitative experimental data. To
date, there are almost exclusively qualitative character-
izations of the morphologies of bacterial colonies, which
only in some rare cases provide additional information
on the fractal dimension (which is not a complete indi-
cator). Although the methods that we use in this work
to calculate the generalised dimensions cannot be used
in experiments, there are other methods that might be
used, such as the one described by Ohta and Honjo [41],
based on associating probabilities according to the varia-
tion of the area occupied by the colony in a certain section.
Only such a deeper experimental analysis would offer a
complete characterization of the processes involved in the
structure formation of bacterial colonies and would allow
contrasting the proposed model with experiments.
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