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Abstract We study the conditions of integrability when the
boundary terms are considered in the variation of the geomet-
ric contribution of the Einstein–Hilbert action. We explore
the emergent physical dynamics that is obtained when we
make a displacement from a background Riemann manifold
to an extended one, on which the non-metricity is nonzero.
Under these circumstances, a classical description of the elec-
trodynamics and non-perturbative gravitational waves is con-
sidered in the extended manifold, when we vary the action.

1 Introduction and motivation

Geometrodynamics [1,2] is a picture of general relativity
that studies the evolution of the spacetime geometry. The key
notion of geometrodynamics was the idea of charge without
charge, in which the Maxwell field was taken to be free of
sources, and hence a non-vanishing charge could only arise
from an electric flux line trapped in the topology of space-
time. With the construction of ungauged supergravity the-
ories, it was realized that the Abelian gauge fields in such
theories were source-free, and so the charges arising therein
were therefore central charges [3]. The significant advan-
tages of geometrodynamics usually come at the expense of
manifest local Lorentz symmetry [4]. During the 1970s and
1980s a method of quantization was developed in order to
deal with some unresolved problems of quantum field the-
ory in curved spacetimes [5–7]. Quantum geometrodynam-
ics, introduced by Wheeler [2,8], and quantum geometry
[9,10] are some of the geometrical frameworks involved.
Recently, a quantum unified spinor field (USF) was devel-
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oped (see [11] and the references therein), where a quantum
spinor field with components �̂α is responsible for the dis-
placement from the Riemannian manifold to an extended
one. These fields are defined on the background spacetime,
emerging from the expectation value of the quantum struc-
ture of spacetime generated by matrices that comply with a
Clifford algebra. In this framework, it was demonstrated that
spinor fields are candidate to describe all known interactions
in physics, gravitation included, and a non-linear description
of gravitational waves can be done. However, in this work we
shall refer only to classical physics. The boundary conditions
in the minimum action principle are a very important issue
which must be taken into account to develop a physical theory
[12,13]. In this framework, the conditions of the integrabil-
ity of the boundary conditions are relevant. In this paper we
aim to study the possible electromagnetic physics which can
be obtained when we consider a displacement from a back-
ground Riemannian manifold, such that the non-metricity on
the extended manifold is nonzero.

The work is organized as follows: In Sect. 2 we study
the geometrical origin of sources in the geodesic equations
which can be related to nontrivial boundary conditions in the
minimal action principle. In Sect. 3, we show that the Ein-
stein equations with cosmological parameter included in the
absence of physical sources on a Riemannian manifold are
equivalent to these equations with sources, but with a differ-
ent cosmological parameter, when the extended manifold is
displaced with respect to the Riemann one by contortional
terms. In Sect. 4, we study massless gravitational waves equa-
tions in this context. In Sect. 5 we study a particular case
where the contortion term, which characterizes the extended
manifold, originates with electromagnetic fields. Finally, in
Sect. 6 we present some final remarks.
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2 Boundary conditions in the geometrical action

In a previous paper we have studied the dynamics obtained
from a variational principle over the Einstein–Hilbert (EH)
action, where non-metricity [16] is considered. In this work,
we shall deal with an extended geometry, by considering only
the geometric part of the EH action,

S = 1

2κ

∫
V

d4x
√−gR, (1)

in which R is the scalar curvature of the complete (non-
Riemannian) connection. The variational principle is
expressed as δS = 0, with

δS = 1

2κ

∫
V

d4x
√−g

(
δ gαβ Gαβ

+ gαβ δ R̄αβ + gαβ δ�Rαβ

)
, (2)

in which

Rαβ = R̄αβ + � Rαβ, (3)

R̄ being the Riemannian scalar curvature and �R being the
part of R which is exclusively non-Riemannian. The inter-
esting point is that new physics is obtained from the last two
terms of the r.h.s. of Eq. (2). We shall refer to this issue below.

Now we consider Eq. (2) in the presence of non-metricity.
The variation of the action (1) is

δS =
∫
V

d4x
√−g Gαβδgαβ +

∫
V

d4x
√−g Nμαβ Wβμα,

(4)

in which the auxiliary tensor Wμ
αβ is defined through the vari-

ation of the connections �
μ
αβ by

Wμ
αβ = δ�

μ
αβ − δ�σ

σβ δμ
α . (5)

An extra term must be introduced in Eq. (4), in order to
take into account the torsion effects. However, in this work
those contributions will not be considered. Furthermore, we
shall neglect the surface term in Eq. (4). This could be inter-
preted as a source of the cosmological parameter in a gaus-
sian hypersurface. The surface term is obtained in virtue of
the Stokes theorem. When the condition of integrability is
fulfilled, the boundary terms in (4) take the form∫
V

d4x
√−g

(
Wμ

)
|μ =

∫
∂V

d3x
√−g Wμnμ, (6)

where nμ is a vector field which is normal to the 3D hyper-
surface ∂V , involving the manifold of the 4D volume V , and
“|” denotes the covariant derivatives with respect to the Rie-
mann manifold defined by the Levi-Civita connections {μαβ}
and Wα = ˆδ�ε

βεg
βα − ˆδ�α

βγ g
βγ . It is quite usual in the

literature, in the framework of the two cosmological astro-
physical scenarios, to assume that the surface integral must
be neglected because the distance from any matter to ∂V can

be considered large enough to say that Wμ → 0 in such a
limit. However, the 3D hypersurface term could be a source
for the cosmological parameter [17,18].

To describe the idea in terms of the geodesic dynamics,
we can consider the geodesic equations in the presence of an
external force on a Riemann manifold. The equations take
the form

∂2 xμ

∂ S2 + {μαβ}UαUβ = f μ, (7)

in which f μ are the components of the external force, which
we consider as related with some interaction. In this work
we shall deal only with electromagnetic interactions. The
geodesics of Eq. (7) give us the path of a test particle over
a gravitational background and describes the influence of an
external and non-gravitational force.

Our purpose is to extend the theory in order to obtain
a more general geometrical frame in an extended manifold
where the new connection dynamics would be absent if the
external force is. The new extended geodesic is

∂2 xμ

∂ S2 + �
μ
αβ U

αUβ = 0, (8)

in which �
μ
αβ is a non-Riemannian connection. The Rieman-

nian and non-Riemannian connections are related through

�
μ
αβ = {μαβ} + Kμ

αβ, (9)

where Kμ
αβ ≡ δ�

μ
αβ are the components of the contortion

tensor, which are responsible for the displacement from the
Riemann manifold [defined by the Levi-Civita connections
{μαβ}], to the extended manifold defined by the connections

�
μ
αβ . Notice that δ�μ

αβ are not variations in the sense of a series
development, so that our formalism will be non-perturbative.
In general, the contortion contributions originate with the
torsion and non-metricity, which are defined by [14,15]

Kμ
αβ = −gνμ

2
{T ρ

βν gαρ

+ T ρ
αν gρβ − T ρ

βα gρν + Nανβ + Nνβα − Nαβν},
(10)

with

Tμ
αβ = �

μ
βα − �

μ
αβ, (11)

Nαβγ = gβγ ;α, (12)

for a coordinate basis. In order to obtain a path which is
coherent with the background source and the interaction, we
must choose non-Riemannian connections according to

Kμ
αβ U

αUβ = − f μ. (13)

We could suppose that we are dealing with observers such
that |U |2 = 1, so that

Kμ
αβ = − f μ UαUβ. (14)
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We must remark that Eq. (14) is not the more general pre-
scription, but the simplest one in which the new connection
is torsion-free, and all the non-Riemannian contributions are
related to the non-metricity. The non-metricity takes the form

gνπ ;ρ = gνπ |ρ − Kμ
νρ gμπ − Kμ

πρ gνμ

= ( fπUν + fνUπ )Uρ, (15)

where we have used Eq. (14). The presence of non-metricity
is very important, because it might be the reason why the
theory is not integrable [see Appendix A].

3 Einstein equations from a non-Riemannian geometry

In this work we shall study the possible origin of the cos-
mological parameter due exclusively to the non-metricity of
the extended variety. The study of surface terms in the action
with the use of the specific geometry that we develop in the
present paper could be the object of further work. Under pre-
vious considerations we make the action extreme, δS = 0,
and we obtain

Rαβ − 1

2
R gαβ + �1(x) gαβ = 0. (16)

Notice that all tensors are defined with respect to the non-
Riemannian complete connections. The extended Einstein
equations (16) are obtained in the absence of matter in the
frame of the non-Riemannian geometry, but they could be
re-interpreted as the effective Einstein equations in the Rie-
mannian manifold, in the presence of matter,

R̄αβ − 1

2
R̄ gαβ + �1(x) gαβ = k T̄αβ. (17)

Here we must remark that T̄αβ is geometrically induced by the
non-Riemannian characteristics of the manifold which has
no geometric explanation in the Riemannian frame: those
observers who build physics with the Levy-Civita connec-
tions of the Riemannian manifold will interpret T̄αβ as the
source of the physical fields. Therefore T̄αβ can be viewed
as a geometrically induced energy-momentum tensor that is
the source of matter. This is due exclusively to the contortion
terms, Kμ

αβ :

k T̄αβ = −Kμ
μβ|α + Kμ

αβ|μ − K σ
μβ Kμ

σα + K σ
αβ Kμ

σμ. (18)

The contribution of the cosmological parameter must be
taken into account:

�1(x) gαβ δgαβ = Nαβμ Wμαβ, (19)

where we can distinguish between Riemannian and non-
Riemannian parts of the tensor Wμαβ = W̄μαβ + �Wμαβ .
Then it is easy to see that Nαβμ �Wμαβ = 0, and the
Eq. (19) is reduced to �1(x) gαβ δgαβ = Nαβμ W̄μαβ . On
the other hand, we could identify another contribution to the

cosmological parameter provided by an extra contribution of
the terms that induce the effective energy-momentum tensor:

�2(x) = 1

2
gλγ

(
Kμ

μγ |λ − Kμ
λγ |μ + K σ

μγ Kμ
σλ − K σ

λγ Kμ
σμ

)

≡ −k

2
gλγ T̄λγ . (20)

The total cosmological parameter is �(x) = �1(x) +
�2(x). We can notice that both cosmological parameters,
�1 and �2, originate with the existence of a nonzero non-
metricity. Therefore, we find that the Einstein equations can
be re-written with a variable cosmological parameter �(x)
in the absence of physical sources,

R̄αβ − 1

2
R̄ gαβ + �(x) gαβ = 0, (21)

where the �2(x)-term, which originates with the contortion,
was absorbed into the cosmological parameter �(x).

4 Gravitational waves

In order to describe gravitational waves [19–26], we shall
use the fact that the Riemannian metric tensor is ḡαβ =
gαβ + δgαβ , to write

0 = ḡαβ |γ = gαβ |γ + δgαβ |γ , (22)

where the covariant derivatives are done with respect to the
Levi-Civita connections {αβγ } = �α

βγ −K α
βγ . Therefore, we

obtain

δgαβ |γ = 1

2
Gαβγ νσ δgνσ (23)

where we have used the fact that

Gαβγ νσ = gνβ

(
gασ ,γ + gγ σ ,α − gβγ ,σ

)
+ gνα

(
gβσ ,γ + gγ σ ,β − gβγ ,σ

)
. (24)

Therefore, we massive equation of motion for gravitational
waves is

�̄ δgαβ + �
μν
αβ δgμν = 0, (25)

with �
μν
αβ = gγρ

2

(
Gαβγ

μν
|ρ + 1

2 Gαβγ
πτ Gπτρ

μν
)

. In

order to obtain a Riemannian massless equation for gravita-
tional waves, we need the following condition to be fulfilled:

δgαβ ;γρ = −δgνβ |γ K ν
αρ − δgαν |γ K ν

βρ − δgαβ |ν K ν
γρ

−
(
δgνβ K ν

αγ + δgαν K
ν
βγ

)
;ρ . (26)

Once the condition (26) is fulfilled, we obtain a massless
gravitational wave equation in the absence of sources with
respect to the Riemannian geometry:

�̄δgαβ = 0. (27)
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We must remark that Eq. (27) is effective on the Rieman-
nian manifold and it is obtained from the distortion of an
inner product over a given extended manifold. Equation (26)
describes a very specific condition, which is not fulfilled in
most cases, and therefore the induced effective gravitational
wave equation on the Riemannian geometry might be mas-
sive in a more general case. It is important to notice that mas-
sive gravitons and the cosmological parameter are a possible
alternative to explain the origin of dark energy (see [27]).

5 Gravito-electrodynamics

An interesting case, where the source of the geodesic equa-
tions (7), is given by electromagnetic fields Aα . In this case
the geodesic equations on the Riemannian manifold are

∂2 xμ

∂ S2 + {μαβ}UαUβ = q Fμβ Uβ, (28)

where, in the absence of torsion Fμβ = Aβ|μ − Aμ|β is the
electromagnetic tensor. As we have seen before, this is the
same equation as those without external force, but with the
connections

�α
βγ = {αβγ } − q

2

(
Fα

β Uγ + Fα
γ Uβ

)
, (29)

in which K α
βγ = − q

2

(
Fα

β Uγ + Fα
γ Uβ

)
. We shall choose

the simplest contortion in order to obtain a connection with-
out torsion. In this case, the non-metricity is

gαβ ;γ = q Fν
γ

(
Uα gνβ + Uβ gνα

)
, (30)

where the integrability condition of Eq. (37) is fulfilled1:∮
d|v| =

∮
U · V V ν [d(A)]νγ dxγ = 0, (32)

1 We check the integrability for the connection of Eq. (29) by using
Eq. (38), and taking into account the fact that F = d(A) + A · T . Then
the condition of integrability must be checked by doing the following
integration:
∮

∂�

d|v| =
∮

∂�

U · V V ν [d(A)]νγ dxγ (31)

+
∮

∂�

U · V V ν Aμ Tμ
ζν dxζ ,

where ∂� is a “loop”, which is closed over the background geometry.
This loop represents the closed path over which we parallel transport
vector V , and � is the inner sub-manifold contained by ∂�. In the
present case the most simple option which guarantees integrability is
the choice Tμ

ζν = 0. Then by the use of the Stokes theorem we obtain
∮

∂�

d|v| =
∫

�

U · V [d(V )]νκ [d(A)]νζ dxζ ∧ dxκ =

=
∫

�

U · V (
V ν

,κ Fνζ − V ν
,ζ Fνκ

)
dxζ ⊗ dxκ = 0.

The first term in the r.h.s. of Eq. (31) as a result is found to be zero over
a closed path. Then, by choosing Tμ

ζν = 0, we adopt the simplest choice
that guarantees integrability.

in which F = d(A), as usual in the absence of torsion.
Using Eq. (3), the action (1) takes the form

S = 1

2κ

∫
V

d4x
√−g

(R̄ + �R)
. (33)

Under charge conservation, we obtain

�R = 1

4
FμνFμν

+
(

{μρψ } Fκμ Uρ+{μκψ } Fρμ Uρ − Fρκ ,ψ Uρ
)
gκψ .

(34)

The first term in (34) is interpreted as an effective electro-
magnetic Lagrangian of matter for the effective Rieman-
nian dynamics: L̄ = 1

4 F
μνFμν . The second one leads to

the �2(x) contribution in the cosmological parameter. An
observer which moves on a Riemannian manifold could not
explain the origin of the two terms. The geometrical action
originates with the connection of Eq. (29) describing a sce-
nario which induces the effective dynamics observed by a
Riemannian observer over a background metric with external
electromagnetic fields and nonzero cosmological parameter:

δS =
∫

d4x
√−g

(
Ḡμν + �1(x) gμν + k T̄μν

)
δgμν.

(35)

Here, kT̄μν = −2 δ L̄
δ gμν + gμν L̄ is an effective energy-

momentum tensor for electromagnetic fields. On the Rie-
mannian manifold the electromagnetic dynamics is given by
the equations:

d(∗F) = ∗J,
d(F) = 0. (36)

Notice that current terms originate with the non-Riemannian
part of the connections (9). This is an expected behavior
because such an extra part is related to electrodynamics by
the definition in Eq. (29). The second line of these equations
tells us that magnetic monopoles cannot be present, due to
the absence of torsion on the Riemann manifold.

6 Final comments

We have considered the variation of the geometrical contri-
bution of the EH action, taking into account the conditions
of integrability in the boundary conditions. It is interesting
that some physical phenomena can be described when we
consider a displacement from a background Riemann mani-
fold, such that the non-metricity on the extended manifold is
nonzero. In particular, in this work we have dealt with emer-
gent gravitational waves and electromagnetic interactions in
a classical description. In the second case the absence of
monopoles is compatible with the scenario studied by Ponce
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de León in [28]. Of course, we have not made any assump-
tion as regards the metric tensor. Our results remain valid
for both a spherically symmetric and a static metric, which
enables us to use the Ponce de León results in a charged
perfect fluid interpretation. Therefore, in a co-moving frame
we perceive a central massive and charged object, compati-
ble with an electric monopole surrounded by a perfect fluid
that can be obtained from the effective equation (36). In the
case in which our metric were not spherically symmetric
and static, we would describe the electromagnetic interac-
tion from a geometrical source in order to obtain effective
gravitational waves, according to Eq. (25). In the case of
gravitational waves the action of Eq. (1) is expressed over
a non-Riemannian geometry, implying that the equivalent
action over a Riemannian geometry must have extra terms.
This is equivalent to the one exposed by Visser in [29]. In
our case such terms are induced from the extended geome-
try, which originates with the non-metricity of the extended
manifold (i.e., the covariant derivative of the tensor met-
ric on the extended manifold is nonzero: gαβ;γ �= 0). This
means that the physical interpretation of phenomena is deter-
mined by the geometrical description of reality in which
the observer describes the physical system. This interpre-
tation of the physical phenomena could be very interesting
in a cosmological framework, For instance, the existence
of a cosmological parameter �(x) in the universe could
be interpreted as an empirical proof of a non-conservative
norm of vectors and tensors (originating with a nonzero
non-metricity), along with the expansion of the universe
without physical sources, described on a Riemannian man-
ifold, in agreement with Eq. (21). Another possible inter-
pretation is a universe with cosmological parameter �1(x),
such that the expansion is produced by a physical source
T̄αβ , in agreement with the Eq. (17), explained on a Rie-
mann manifold. However, this topic is beyond the scope of
this work, and it deserves a more rigorous study in future
work.
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Appendix A: Conditions of integrability in boundary
terms

The condition of integrability expresses the fact that we can
univocally assign a norm to any vector in a given point, which
can be written as∮

d|V | = 0. (37)

Non-integrability is due to the fact that, when we parallel
transport of a vector field along a closed path, the “norm”
could change in proportion to the non-metricity according to∮

d|V | = 1

2|V |
∮

gνπ ;ρ V ν V π dxρ

= 1

|V |
∮

f · V U · V Uρdxρ. (38)

It is easy to see that orthogonality between f and V , or
betweenU andV , grants the nullity of the integral in Eq. (38),
but V must be any vector field, and therefore we cannot say
that f · V = 0 or U · V = 0. We could think that Eq. (38)
is providing us with a sufficient condition over the possible
velocity of observers (the field of the four-velocityU could be
non-rotational), in order to obtain integrability. However, it
is not necessary, as we shall see later, when we analyze grav-
itomagnetic interactions. A non-intuitive fact is that torsion
plays a significant role in integrability. We are performing
a closed integral in order to show how the norm of a vec-
tor changes, but a closed path must be affected by torsion.
We could expect that a Burgers vector arises. This is a mea-
sure of how a given path, which is closed in a torsion-free
geometry, fails to be closed in the torsional one. Then an
extra term appears in Eq. (38), and such a term could com-
plete the integral in order to be really closed. We say that
torsion does not affect the geodesics, but it affects integra-
bility, so that the choice of an appropriate torsion could be
an ingredient which as a result is found to be appropriate to
make the theory integrable in the case that it is possible to
obtain a torsion that compensates the integral of the r.h.s. of
Eq. (38). In the example developed in Sect. (5), we show that
the most simple choice for a given connection (i.e., the null
torsion choice), is a good choice (but not the unique choice),
in which integrability is maintained [see footnote 1].
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