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Abstract

Incorporation of rigid fillers into polymer matrices represents a widely used technique to obtain
improved performance. The mechanical behavior finally obtained is closely related to a wide range of
involved factors (filler type and size, internal structure, filler-matrix interaction, among others) and to
activated dissipative mechanisms (debonding, plastic void growth, crazing, matrix yielding, etc). In
this work, a debonding strength approach was applied for rigid particles (spherical, elliptical and fiber)
surrounded by an interphase. The effect of interphase mechanical properties and thickness on the
debonding process was investigated. The obtained results suggested a significant influence of the
transition rigidity. In general, stiffer interphases promoted higher critical strength values. On the other
hand, particle surrounded by a softer transition region displayed higher dissipated energy for all
examined particle, except for spheres.

1. Introduction

The processing of polymer based composites reinforced with rigid particles represents a possible way to obtain
materials with enhanced performance. The mechanical properties finally observed has been related to the load
transfer capability (from the polymer matrix to the filler) and to the effective activation of dissipative energy
mechanisms [1-7]. The particle size effect has been widely discussed for which the most noticeable variations
were detected on the nano-scale. This kind of behavior was related to the large surface /volume ratio of the
incorporated fillers [8—10]. In addition, the composite performance is not exclusively determined by the filler
size and a large variety of particle characteristics are also involved as: shape, chemical composition, impurities,
surface energy, filler-matrix interaction, among others [1, 3, 8, 11]. Particularly, an interphase region could be
formed around the rigid particle by the restricted polymer chains mobility meaning that the matrix mechanical
properties are locally different to the bulk ones. This transition zone could be induced and/or affected by filler
surface treatments or coatings, incorporation of coupling agents or modified polymers, among others [11-13].
Although, the relevance of the interphase has been well established, the related data actually available are not
enough to clearly define its dimensions, mechanical properties and their law of variation across the thickness
[8, 14, 15]. For this reason, in mechanical properties modeling, the interphase is neglected or some arbitrary
definitions are required.

Theoretical models have been proposed to analyze damage and failure mechanisms of composite materials
[13, 16—18]. The analytical solutions are stress or energy based criteria which lead sometimes to contradictory or
unrealistic results. In a general way, Leguillon [19] analyzed both the energy and the stress conditions for crack
onset suggesting that both criteria are clearly required for accurate predictions. Based on the Finite Fracture
Mechanics (FFM) approach, debonding stress solutions have been proposed by Chen et al[20] and Zappalorto
etal[15] for spherical symmetric situations without and with a constant interphase region, respectively. Chen
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et alreported lower energy dissipation for nano-sized fillers while the opposite tendency can be expected for
debonding stress [20]. Zappalorto et al showed the relevant effect of the interphase/matrix elastic properties
ratio (from 0.25 to 4) where a soft transition displayed lower debonding values compared to stiffer ones. On the
other hand, the thickness displayed only a marginal influence with interphase/particle dimension ratio lower
than 2 [15]. In addition, a general approach was published for the debonding stress calculation which is not
limited to spherical fillers [21]. The proposed solution was applied for different particle shapes neglecting the
interphase. The most remarkable conclusion was that, cubic and prolate particles can be easily analyzed as
spherical situations [21]. It can be highlighted that, the reported expressions in [15] and [20] predicts a sharp
increase on the critical stress as the particle dimensions are reduced. These results suggest that, the debonding
process could be hardly achieved by incorporation of nano-fillers. But, this theoretical prediction lays in contrast
with reported experimental performance of polymer based nanocomposites [22—25]. On the other hand, the
proposed solution in [21] suggests that, debonding is close related to the displacement field of the polymer
matrix after debonding. Taking into account the elastic-plastic behavior of the matrix, it is possible to satisfy the
critical condition without stress increments. Unfortunately, none of the theoretical predictions could been
experimentally verified yet, due to that the development of some specific testing and/or characterization
procedures are still required. In general, the available experimental data represents an overview not easily related
with the theoretical models. Particularly, mechanical tests can be analyzed through experimental curves,
characteristic parameters and fracture surfaces allowing to describe the composites performance [25-28]. But,
they do not represent a detailed description of any single particle along the whole loading process until failure. In
this way, multi-scale mechanical tests performed under in situ observations (high resolution imaging, digital
image correlation, microscopy) alongside additional measurements (acoustic emission, x-ray tomography,
thermography, among others) and their correlations with modelling or numerical solutions look as promising
experimental-theoretical procedures [28-32].

Williams [6] analyzed the polymer composite toughening due to plastic void growth around debonded
particles. The composite toughness prediction is optimistic for small particles (lower than 10 nm), however not
yet experimentally checked. This discrepancy has been explained by the effective filler dispersion and by the large
plastic strain considered for modeling. Carraro et al [16] analyzed the relationship between damage mechanisms
(debonding and matrix failure) and fiber radius defining three different regions. Into the first stage for very small
radius, the matrix strength is the predominant factor. For the other two regions, particle debonding is the
prevalent mechanism but it is driven by a transition from interface fracture toughness (energy driven) to
interfacial strength (stress driven) as a function of the fiber radius. Salviato et al [8] analyzed the effect of the
interface and the elastic properties of an interphase on the debonding process of nano-spheres. The interphase
considered was 4 nm thick with an elastic modulus variation from 0.25 to 4 compared to the matrix. They
reported a significant effect of the interphase properties while the surface stresses can be neglected. Dastgerdi
etal[17] proposed a theoretical model for tensile behavior taking into account debonding of spherical
reinforcements without interphase into a elasto-plastic matrix. They compared analytical results with
experimental data and concluded that, the debonding damage should be considered to avoid theoretical
discrepancies. Quaresiminin ef al [ 14] proposed a multi-mechanism approach based on a multi-scale strategy.
The developed model considered different energetic contributions (matrix toughness, particle debonding and
plastic void growth) based on a nano-scale system composed by the polymer matrix, interphase and a spherical
particle. The authors also discussed the lack of data related to the interphase characteristics, thus due to
calculation requirements its properties (yield and strength equal to the matrix) and size were imposed. Based on
the published data briefly described it can be suggested that the debonding process should be investigated taking
into account different particle shapes (not exclusively spheres), interphase properties and thickness, interfacial
energy and loading conditions.

In the present work, the previously published general approach [21] for debonding strength was applied for
rigid particles (spherical, elliptical and fiber) surrounded by an interphase into the polymer matrix. In this way,
the influence of the different particle geometry and interphase characteristics (mechanical properties and
thickness) was directly compared. In addition, the debonding process was also analyzed in terms of strength,
stress concentration and energetic contribution. On the other hand, the size limit of the proposed criterion was
discussed.

2. Debonding strength approach

The general solution herein is derived for a single particle surrounded by the polymer matrix and considering the
FFM approach [21]. The equilibrium of the system was determined before and after debonding. For these
situations, it was assumed: (i) a constant hydrostatic stress remotely applied, (ii) particle perfectly bonded in the
initial condition, (iii) debonding is determined by the normal component to the filler-matrix interface and (iv)
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Figure 1. Description of the analyzed system: (a) particle, interphase and matrix under hydrostatic remote stress and (b) particle
geometries (b.1 sphere and FEA mesh, b.2 ellipsoids, b.3 fibers).

fully particle debonding occurs when the critical condition is achieved. Under these assumptions and
simplifications the following general solution was proposed [21]:

(1

O =

where: o, is the critical normal strength, 7 is the interfacial fracture energy, u;(, , is the matrix displacement at
the particle surface after debonding and A is the debonded surface. In the following, due to the incorporation of
the interphase (figure 1(a)) the required displacement value after debonding should be determined at the filler-
interphase boundary.

2.1.Interphase and particle geometry considerations

In the previously published work, the transition region between matrix and particle was neglected, as a first
simplified analyzing step. In the following sections an interphase is considered and its influence is discussed. The
interphase thickness is assumed to be 0.25 and 0.5 of the particle shortest dimension while the elastic modulus
was 0.25 and 4 compared to the polymer matrix. Similar characteristics were also used by other authors and
these values were adopted for comparison [8, 15]. The materials of the components were considered as isotropic
and linear elastic:

1. matrix: E,, = 1.6 GPa;v,, = 0.4

2.interphase:y = 0.01 Jm % E; = (0.25;4) Ep; v, = 0.4
3. particle: E, = 16 GPa; v, = 0.2
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The general solution was applied for the following particle shapes (figure 1(b)) and semi-axis relationships:
(i) sphere (a = b = ¢), (ii) ellipsoid (a = b,¢/b = 10and b/a = 4,¢/b = 10) and (iii) fiber (a = b square
cross-section, ¢/b = 10anda = b circular cross-section, ¢/b = 10) in the size range 0of 0.01-100 pm for the
inclusion shortest dimension. The filler geometries were defined based on the previously reported work for
which the largest differences, compared to the spherical situation without interphase, were observed. The
displacement fields required to apply the general solution were obtained by Finite Element Analysis (FEA)
performed with a commercial software (ABAQUS 6.13—4). The modeled system consists of a single particle
surrounded by the interphase within a polymer region under hydrostatic loading applied on the boundary. The
mesh was built by 10-node elements and refined in the transition zone.

2.2. Analytical solution for spherical particles

The debonding stress equation for spherical inclusion embedded in an interphase has been already published by

Zappalortoetal [15]:
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where:K;, = E;/(3(1 — 2v;)) and G = E;/(2(1 + 2w;)) are the bulk and shear modulus, respectively. While,
E} and vy are the elastic modulus and Poisson’s ratio of the components.

3. Debonding process analysis

3.1. Debonding strength with interphase

The aim of this section is to analyze the relevance of the interphase on the debonding process. The definition of
the particle dimensions and shapes was based on the previously reported work [21]. For all of the analyzed
geometries, the critical stresses were normalized with the determined strength for the largest filler size (100 pm)
without interphase and plotted as a function of the particle shortest semi-axis.

Figure 2 shows the normalized critical values for spherical particles surrounded by the interphase with the
different thicknesses and elastic properties considered. First, a good agreement between analytical and simulated
results can be observed for all of the different situations. Taking into account the transition region, a noticeable
effect of the elastic properties was detected while on the contrary, the interphase thickness displayed only a
marginal influence on the determined critical stresses. Stiffer transitions led to higher critical values while the
opposite trend was observed with softer ones. The obtained results for spheres without interphase lay
equidistant to these extreme situations. In addition, the observed effect of the transition characteristics is in

agreement with already reported data [8, 15].

Normalized debonding stresses for elliptical particles are shown in figure 3. In a similar way as previously
described, a more significant influence of the interphase elastic modulus was observed. For small sizes, prolate
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Figure 3. Normalized debonding stress values for ellipsoids: (a) prolate and (b) tri-axial.

spheroids (figure 3(a)) exhibited lower stresses compared to tri-axial ellipsoids (figure 3(b)). The calculated
values for fibers (figure 4), with square or circular cross-section, also confirmed the predominant effect of the
interphase elastic properties independently of the particle geometry considered.

3.2. Debonding strength comparison

The determined strengths for the different geometries and transition characteristics were directly compared
with the no interphase situation. The largest variations (figure 5(a)) can be observed for the spheres. In this case,
the thicker interphase promoted some additional influence on the debonding process. Relative values remained
almost constant for all of the other analyzed geometries. It was previously discussed that, energetic and stress
criteria are clearly required for accurate predictions [6, 16, 19]. For this reason, the stress concentration factor
(K,) before debonding and the energetic change during this process were also determined for each investigated
situation. In one hand, the different combination of particle geometries and interphase characteristics can
promote large variable stress concentrations around the filler-matrix boundary. On the other hand, debonding
process can trigger additional energy consumption mechanisms as plastic void growth or matrix shear

yielding [6, 14].

The corresponding K; values for each filler were normalized with the no interphase system. The relative K,
values (figure 5(b)) with softer transitions were almost constant and lower than the no interphase systems. On
the contrary, stiffer transitions exhibited some variations between geometries with a maximal value for fibers
(square cross-section). Some particular situations can be analyzed, as for example spherical particles surrounded
by stiffer interphase. The K, values (similar to the no interphase system) in relation with the critical strengths (1.6
higher to the no interphase situation) suggest that, debonding should be achieved at relative higher stress
remotely applied. On the contrary, for fiber (square cross-section) the combination of weaker critical strengths
with the largest relative K, values promoted debonding processes at lower applied load.
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Figure 4. Normalized debonding stress values for fibers with different cross-section: (a) square and (b) circular.

The energy variations (figure 5(c)) during debonding of spheres were quite independent of the interphase
characteristics. These results clearly differ to the determined critical stress values suggesting an almost constant,
ata defined filler size, dissipated energy. On the other hand, prolate spheroids (figure 5(d)) exhibited higher
energetic variations with softer transitions compared to the no interphase situation. This performance and the
critical stress values suggests that, softer interphase promoted higher energy dissipations at weaker strengths.
Similar results were obtained with tri-axial ellipsoids and fibers (not shown here). In addition, it can be remarked
that spheres exhibited the lowest dissipated energy, independently of the interphase presence, during the
debonding process.

3.3. Debonding stress predictions analysis

The size range applicability of the proposed solution should be exhaustively analyzed in order to avoid
unrealistic predictions. In this way, a lower limit is clearly required due to the equation could tend to infinity for
nano-sized fillers. The strength values have not been experimentally confirmed and this topic can be really
helpful for a direct comparison with theoretical predictions. In addition, based on the obtained results above
described, the spherical situation showed as the most sensitive. For nano-spheres, the debonding stress was
largely increased, particularly with stiff interphase, compared to the other filler geometries. It can be highlighted
that, the calculated critical values did not take into account the elasto-plastic matrix behavior. Localized matrix
yielding could be a relevant involved factor, directly related to the displacement field around rigid filler.

On the other hand, Carraro et al[16] considered the possible transition of the main damage process (matrix
failure to debonding) and the trigger parameter of debonding (toughness to strength). They related the slope
(critical strength /fiber radius) values close to —0.5 with debonding controlled by fracture toughness. Figure 6
shows a linear regression for spherical particles, as example for the different analyzed situations. The determined
characteristic slopes (table 1) for each analyzed situation suggest the predominant effect of the interface fracture
toughness.




I0OP Publishing Mater. Res. Express 6 (2019) 085341 E Pérez and B Lauke

a) 4. = b)  20- -
No interphase No interphase
12 " 1=0.25 E=025 Y9 = =025, E=025
= i B 1=0.25, E=4 o 4] 1=0.25, E=4
é L7 ® 1=05,E=0.25 5 179 e 1=05E=0.25 -
2 16 1=0.5, E=4 B 164 0 1=0.5,E=4
= 1.5 = 15
< 2
-?:u 1.4 I ; : 5 & 1.4
5 13 I g 134
7 124 g 1.2 4
ERRE o Tid
=} 7
5 10+ 2 10
2 094 5 09 . "
N n - L] = 0 i ° §
B 08+ £ . . : s - [ I
07 d . * 2 07
.
0.6 0.6
0.5 T T T T T 0.5 T T T T T
Sphere Prolate Tri-axial Square Circular Sphere Prolate Tri-axial Square Circular
Ellipsoid Fiber Ellipsoid Fiber
c) d)
1E-8 ) 1E-8
— No interphase No interphase
1E9 1=0.25, E=0.25 B9 ] ——1=0.25, E=0.25
L - 12025 E=4 - - -1=0.25,
1E.10] ——1=0.5, E=0.25 110 1505, E=0.25
= = -1=0.5,E=4 = - -1=0.5, E=4
g e S 1En
2 <)
g 1E-12 g 1E-12
2 g
2 1E-13 5 1E-13
3 5
= g4 = IE-14
1E-15 1E-15
rd
1E-16 1E-16
T T T T ¥ T T T T
0.1 1 10 100 01 1 10 100
Particle radius (um) Shortest axis (a) (um)
Figure 5. Comparison between filler geometries: (a) relative critical strength, (b) relative stress concentration factor (K,) and
debonding energy for (c) spheres and (d) prolate ellipsoids.

100
E Q
i .\[J .
18 Mt )
= | 798
o =\
% EU—E 1 ~
£
% 1
2 ]
E 4
7 |
R
:f;’_ ~ — -No interphase (equation 2
S 1 o Simulation (FEA)
3r—®—No interphase
1| = 1=0.25,E=0.25 s
! 1=0.25, E=4
1 & 1=0.5 E=025
O 1=0.5,E=4
o —rr—rr————rrr
0.1 1 10 100
Particle radius (um)
Figure 6. Critical strength values for spheres.

4. Conclusions

The previously developed equation to determine the particle debonding strength was applied for different fillers
surrounded by an interphase. The influence of the transition zone characteristics on the debonding process of
rigid fillers was analyzed. The obtained results indicated:
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Table 1. Slopes for the different particle shapes.

Thickness = 0.25%a Thickness = 0.5"a

No interphase 0.25"E,, 4", 0.25"Ep, 4"E,,
Sphere
a=b=c —0.50 —0.50 —0.50 —0.49 —0.49
Ellipsoid
a=Db,¢c/b=10 —0.52 —0.50 —0.51 —0.50 —0.49
b/a = 4,¢/b = 10 —0.51 —0.52 —0.52 ~0.49 —0.51
Fiber
a = b,c/b = 10 (square) —0.49 —0.51 —0.50 —0.50 —0.48
a = b, ¢/b = 10 (circular) —0.50 —0.49 —0.50 —0.50 —0.50

Note: 1?2 0.99 for all of the slopes.

+ Softer interphases promoted weaker strengths while the opposite trend was observed for stiffer ones. These
performances were detected independently of the filler shape. On the other hand, interphase thickness
displayed only a marginal influence.

+ The spherical situation whit the different transition zones, displayed the largest variations for the determined
strengths. While, on the contrary, this system exhibited the lowest dissipated energy and it was quite
independent of the interphase characteristics.

+ The critical values for the other geometries remained almost constant, particularly with a softer transition.
While, the dissipated energy was enhanced with this soft interphase compared to stiffer ones.
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