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Abstract
Background: Fosfomycin (FOS) is a broad-spectrum antibiotic that inhibits cell wall synthesis. It 
has bactericidal activity against both gram-positive and gram-negative bacteria. FOS also promotes 
phagocytosis, has immunomodulatory effects, and protects against the toxicity caused by other drugs. 
On the contrary, deoxynivalenol (DON) causes cytotoxicity on tissues of rapid growth and fast turnover. 
Objectives: The aim of this study was to determine the percentage of nuclear changes indicative of DON-
induced apoptosis on intestinal cell cultures (Caco-2) and to evaluate the protective effect of FOS on 
mycotoxin-exposed cells. Materials and Methods: Cell cultures were treated as follows: (1) DON: 2.8 
µg/mL, (2) calcium FOS: 580 µg/mL, (3) DON 2.8 µg/mL + calcium FOS 580 µg/mL, and (4) negative 
control. Nuclear morphology was evaluated in fixed cells stained with 4′,6-diamino-2-phenylindol and 
then visualized under an immunofluorescence microscope. Results: Percentages of cells with nuclear 
changes were significantly higher in cells treated with DON (31.53% ± 4.17%) compared to those 
incubated with the antibiotic in conjunction with the mycotoxin (5.63% ± 4.23%). On the contrary, there 
were no significant differences between cells incubated with DON + FOS and cells incubated only with 
the antibiotic (1.10% ± 1.55%) when compared to the negative control (3.50% ± 0.09%). Conclusion: 
The results from this study showed that DON induces nuclear changes suggestive of apoptosis in intestinal 
cells and that FOS can protect cells from DNA damage. Further studies are needed to determine whether 
DON induces apoptosis only on cells of epithelial origin and to understand the implications of FOS 
protective effect under in vivo conditions.
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Introduction

Deoxynivalenol (DON) is a mycotoxin with 
cytotoxic activity on rapidly growing tissues.[1] 
This mycotoxin results from the secondary 
metabolism of different strains of filamentous 
fungi, mainly Fusarium graminearum 
and Fusarium sporotrichioides. DON is a 
trichothecene (TCT) and due to its emetic 
effect, it is also known as “vomitoxin.”[2] 
DON is a contaminant of crops used in food 
production for both human and animal use.[3]

Mycotoxins are regarded as an important 
risk factor for human and animal health. The 
gastrointestinal tract is the first physiological 
barrier against food contaminants, as well 
as the first target for these toxicants. An 
increasing number of studies suggest that 
intestinal epithelial cells are targets for DON 
and other Type B TCT. In humans, various 
adverse digestive symptoms are observed 
on acute exposure, and in animals, these 
toxins induce pathological lesions, including 

necrosis of the intestinal epithelium. They 
affect the integrity of the intestinal epithelium 
by inducing alterations in cell morphology 
and differentiation and in the barrier function. 
Moreover, DON and Type B TCT modulate the 
activity of intestinal epithelium in its role in 
immune responsiveness.[4]

Besides the cytotoxicity on tissues of rapid 
growth and fast turnover, the main mechanism 
involved in the toxic action of DON is the 
inhibition of protein synthesis.[1,5] Particularly, 
the intestinal tract and immune cells are highly 
sensitive to DON.[6] It has been shown that in 
these cell types DON induces DNA damage 
and apoptosis.[7,8] Because ribosomes are the 
primary molecular target for TCT, including 
DON, translational inhibition is an obvious 
mechanism of toxicity.[9] DON and other 
translational ribosome-binding inhibitors can 
rapidly activate mitogen-activated kinases 
(mitogen-activated protein kinases [MAPKs]), 
which are crucial for signal transduction in 
the immune response[10] and they modulate 
numerous physiological processes including 
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growth, differentiation, and apoptosis.[11] The process by 
which TCT activates MAPK p38 is called the “ribotoxic 
stress response.”[12-14] However, the exact mechanism by which 
DON damages DNA and promotes cellular toxicity is not yet 
well established.[15] These kinases exert a regulatory effect on 
the activity of cellular proteins, and therefore emerge as an 
important target for the design of therapeutic drugs.[16]

The most important pathways used for DON detoxification 
is cytochrome P450, which serves to catalyze the oxidation 
of organic substances. This is the natural way that human 
and animal bodies use to metabolize the toxin. However, 
activation of this pathway may lead to the cleavage of free 
hydroxyl groups of DON resulting in the more dangerous 
DON radicals. DON radicals can be scavenged by enzymatic 
(glutathione peroxidase, catalase, superoxide dismutase) 
or nonenzymatic (reduced glutathione, metallothionein, 
and vitamins) mechanisms.[17] In this regard, several natural 
components of the diet such as tocopherol, carotenoids, and 
ascorbic acid show antioxidant properties and may counteract 
mycotoxin cytotoxicity by blocking mycotoxin-induced free 
radical damage.[18] Nevertheless, the results obtained with the 
use of natural antioxidants added to diets are contradictory.[19,20]

DON is a contaminant of wheat, corn, rice, barley, oats, 
and other cereal grains used in food production for human 
and animal use. However, people are not only exposed to 
mycotoxins by directly consuming grains and their derived 
products but also indirectly through foods of animal origin 
(kidney, liver, milk, and eggs).[17]

In this regard, this mycotoxin is among the antinutritional 
components present in the diets of production animals that 
negatively affect their productive performance. On the contrary, a 
very common practice in intensive animal production is the use of 
antibiotics, either as growth-promoting additives (incorporated 
into food or drinking water at subtherapeutic doses) or as 
therapeutic/metaphylactic agents with the aim of improving 
performance and reducing mortality. Even though, since 2006, 
the countries of the European Union decided to definitively ban 
the use of antibiotics in subtherapeutic doses in animal feed and 
considerably limit therapeutic indications,[21] in other countries, 
it is still a very common practice. This is because its withdrawal 
is not possible yet due to the characteristics of some production 
systems and by hygiene and/or handling problems in the farms. 
Considering this, it is common in animal feed to find the 
combined presence of antibiotic additives that promote animal 
performance and subtoxic concentrations of antinutritional 
compounds such as mycotoxins. Once ingested, the intestine 
can be exposed to the interaction of both compounds.

Precisely, fosfomycin (FOS) is among these antibiotics 
incorporated in subtherapeutic doses in the diets of intensively 
produced animals in many countries of Asia and America. 
It is widely used in animal production due to its rapid 
effect, good tolerance, and lack of side effects.[22,23] FOS 
is a broad-spectrum antibiotic[24] with bactericidal activity 
against both gram-positive and gram-negative bacteria.[25,26] 

When compared with other antibiotics, it has a broader in 
vitro spectrum of action than penicillins and semisynthetic 
cephalosporins.[25] FOS (cis-1,2-epoxyphosphonic acid) 
is structurally unrelated to other classes of antimicrobial 
agents. FOS acts in proliferating bacteria by inhibition of cell 
wall and early murein/peptidoglycan synthesis.[27] Its unique 
mechanism of action makes it useful for the treatment of human 
complicated urinary tract infections.[28] It penetrates bacteria 
by two systems of permeases, one that transports l-α-glycerol 
phosphate and other, which is inducible and takes d-glucose-
6-phosphate inside the bacterial cytoplasm.[24] It inhibits an 
initial step in peptidoglycan synthesis,[29] which is triggered 
by an analog of FOS,[24,27] uridine diphosphate N-acetyl-
glucosamine-enol-pyruvyl-transferase, and its co-enzyme, 
phosphoenolpyruvate (PEP). FOS acts on bacteria in the 
growth phase without interfering with the reactions requiring 
PEP in animal cells. This is because, in animals, an enzymatic 
attack occurs at a different place in PEP and the enzyme does 
not recognize FOS as a substrate. FOS inhibits the binding of 
PEP to N-acetylglucosamine. For cell wall synthesis, the group 
−O-PO

3
H

2
 of PEP is separated, binding the pyruvate C

2
 to the 

oxygen of N-acetylglucosamine. However, in eukaryotic cells, 
oxygen remains attached to C

2
, separating only the phosphate 

PO
3
H

2
. FOS has in its molecule the −OCP− sequence, which is 

different from the −OCP sequence of PEP. This fact explains the 
high selectivity of FOS, which inhibits the use of PEP during 
cell wall synthesis (where the enzyme cleaves OL binding) 
but does not affect the metabolism of eukaryotic cells (where 
enzymes break the OP bond).[30]

The acidic nature of FOS allows the rapid formation of salts. 
Calcium FOS salt is used orally, whereas the more water-soluble 
disodium salt can be administered intravenously.[7,13,14] Other 
properties of this drug include inhibition of bacterial adhesion 
to epithelial cells, exopolysaccharide biofilm penetration, 
immunomodulatory effect, phagocytosis promotion, and 
protection against the nephrotoxicity caused by other drugs.[10] 
It is not known how FOS exhibits these activities.

We have shown on previous researches that DON induces 
apoptosis in respiratory (Human Epidermoid carcinoma strain 
2 (HEp-2) and Bovine Turbinate (BT)) and renal Madin-Darby 
bovine kidney (MDBK) cell lines and that FOS is able to 
prevent these damages.[31] We hypothesize that FOS might 
have action on the MAPK p38 pathway, protecting cells from 
apoptosis induced by DON.

The aim of this work was to determine the presence and extent 
of nuclear alterations indicative of DON-induced apoptosis on 
intestinal cell cultures (Caco-2) and to evaluate the protective 
effect of FOS on mycotoxin-exposed cells.

Materials and Methods

DON and FOS doses used for the experimental study

As mycotoxin source, a pure standard of DON with a 
molecular weight of 296.32 g/mol (C

15
H

20
O

6
) (Sigma-Aldrich, 

St Louis,  MO, USA) was used. An 80-μg/mL DON stock 
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solution was prepared in methanol. A 2.8 μg/mL dose of DON, 
previously determined by us[31] was used. In that study, we have 
determined that doses of 1.4 and 2.8 μg/mL of DON produce 
toxic effects on HEp-2 cells. Nevertheless, cells treated with 
the higher dose of the mycotoxin revealed a more evident 
presence of globoid cells and cytoplasmic membrane changes.

Calcium FOS salt (Fosbac, Bedson Lab., Argentina) was used for 
protection studies. In previous assays with other cells lines (HEp-
2, MDBK, BT, and Baby Hamster Kidney fibroblasts (BHK)), 
increasing doses of FOS (75, 100, 150, 200, 300, 400, and 580 μg/
mL) were evaluated whereas a 2.8 μg/mL dose of DON was used, 
as described previously. Complete protection against the effects 
of DON was achieved when all cell lines were incubated with 
the higher dose of FOS. Furthermore, we have determined that 
increasing doses of FOS protect respiratory and renal cells against 
a toxic dose of DON.[31] According to these previous studies, a 
580 μg/mL stock solution of calcium FOS was prepared in saline 
solution for protection studies on intestinal cells.

Cell cultures

For these experiments, Caco-2 (human epithelial colorectal 
adenocarcinoma) cells were used. This cell line was chosen 
as a target cell type since oral exposure is the common route 
of intoxication by DON. Moreover, the intestinal epithelium 
is characterized by rapid cell renewal and it is known to be 
one of the main target tissues for TCT toxicity. Derived from 
a colon carcinoma, the Caco-2 cell line is widely used as a 
model system for the study of enterocytic functions,[32] and 
several studies on apoptosis have been conducted in this cell 
line using different apoptotic stimuli.[33-36]

Cells were grown in 75-cm2 flasks with Eagle’s minimal 
essential medium (E-MEM) and 20% of fetal bovine serum 
(FBS). At 24 h, the medium was replaced (MEM and 10% FBS) 
to allow cell division to continue up to a complete confluent 
monolayer. The medium was removed and cells were washed 
with phosphate buffer saline (PBS). Trypsin was added for 
10 min at 37°C. Detached cells were resuspended in PBS and 
centrifuged for 5 min at 1500 rpm. Cell pellet was resuspended 
in MEM with 10% FBS and transferred to new flasks. Cells 
were maintained in an incubator at 37°C and 5% CO

2
 and 

seeded (0.2 × 106 cells/mL) in 24-well plates with coverslips 
for cell adhesion, as indicated below. After 24 h they were dosed 
according to the following treatments: (1) DON: 2.8 µg/mL, 
(2) calcium FOS: 580 µg/mL, (3) DON 2.8 µg/mL + calcium 
FOS 580 µg/mL, and (4) negative control: cells with culture 
medium. Cell cultures were incubated for 4 h because in 
previous studies we have determined that this was the earlier 
timepoint at which cell detachment was observed when cells 
were incubated only with the mycotoxin at a dose of 2.8 μg/
mL.[31] Thus, after 4 h, the medium was removed.

Determination of nuclear changes by DAPI

DAPI (4′,6-diamino-2-phenylindol) is a nuclear stain used to 
evaluate morphological changes that can be visualized during 
cell death.[37] After incubation (4 h), MEM was removed; cells 

were washed with PBS and fixed with 4% paraformaldehyde. 
To evaluate the presence of nuclear morphological changes 
representative of apoptosis, fixed cells were stained with DAPI 
and then visualized under an immunofluorescence microscope. 
The percentage of cells with altered nuclear morphology 
(nuclear condensation and chromatin fragmentation) was 
determined in duplicate for each experiment.

Statistical analysis

To determine differences in the number of apoptotic cells in 
each treatment group, an analysis of variance followed by 
the Tukey test was performed. Significant differences were 
observed when P ≤ 0.01.

Results

The percentages of cells with nuclear changes were significantly 
higher (P ≤ 0.01) in cells treated with DON (31.53% ± 4.17%) 
compared to those incubated with the antibiotic in conjunction 
with the mycotoxin (5.63% ± 4.23%). On the contrary, there 
were no significant differences between cells incubated with 
DON + FOS and cells incubated only with the antibiotic (1.10% 
± 1.55%) when compared to the negative control (3.50% ± 
0.09%) and low percentages of nuclear changes were observed 
in cells subjected to these treatments [Figure 1].

Figure 2 shows the immunofluorescence by DAPI staining 
of Caco-2 intestinal cells under the different treatments, 
magnification ×20.

Discussion

There are no previous studies concerning the protective effect 
of FOS on intestinal tissues or cells. Since the 1980s, several 
studies regarding this role of the antibiotic have been performed. 
Particularly, FOS has been evaluated coadministered with 
aminoglycosides and cisplatin, and the results showed that it 
protects from ototoxicity and nephrotoxicity. Inouye et al.[38] 
have shown in a murine model that FOS protects the proximal 
tubular lysosomes in the kidneys from the injury caused by 
aminoglycosides. This was evidenced in vivo by suppression 
of myeloid body formation and protection of the integrity 
of lysosomal membranes in the rats treated with dibekacin. 
Furthermore, they have shown that, in vitro, there is a dose-

Figure 1: Nuclear changes suggestive of apoptosis in Caco-2 intestinal 
cells in the presence or absence of calcium FOS
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dependent protection of the lysosomal membrane integrity of 
the kidney cells. A study of the structure-protective activity of 
FOS revealed that a phosphonate anion possessing an epoxy 
function was important for protection and that this mechanism 
was different from its antibacterial mechanism. The protective 
effect of FOS against aminoglycoside-induced ototoxicity was 
also studied in rats, and it was concluded that the mechanism 
of reduced ototoxicity was associated with the ability of FOS 
to inhibit the accumulation of dibekacin in the kidney and to 
reduce its concentration in the kidney and serum. Consequently, 
the amounts of dibekacin reaching the inner ear are decreased, 
and ototoxicity is reduced.[39] It has been shown that FOS also 
inhibits gentamicin-induced lipid peroxidation by depressing 
iron release from mitochondria. It is likely that this is one of 
the mechanisms of FOS to protect against gentamicin-induced 
nephrotoxicity.[40]

Schweitzer et al.[41] showed that FOS ameliorates acute renal 
tubular necrosis and interstitial nephritis and markedly inhibits 
the elevation of the auditory brain stem evoked response 
thresholds and outer hair cell loss that can result from cisplatin 
administration. They consider that FOS can be used as a potential 
antidote for the dose-limiting ototoxicity and nephrotoxicity of 
cisplatin. Tandy et al.[42] showed that FOS does not inhibit the 
tumoricidal activity of this chemotherapeutic agent and that 
FOS in combination with cisplatin may be useful in treating 
advanced, and possibly relatively chemoresistant, squamous 
cell carcinoma of head and neck. They also found that mice 
treated with FOS had longer survival, which is probably due 
to lessening of immediate cisplatin systemic toxicity. Yingjun 
et  al.[43] also suggested that FOS may have additional or 
indirect mechanisms of protection, such as that observed in 
the prevention of cisplatin-induced hepatotoxicity, when FOS 
is used in combination with other agents such as selenium, 
methionine, taurine, and zinc.

All these studies are coincident in that the exact mechanism of 
FOS protection is not clear. However, stabilization of lysosomal 
membranes, interference with cellular uptake, and blockage 
of reactive sites on cell membranes are possible actions.[44]

Martínez et  al.,[45,46] in 2011 and 2013, have studied FOS 
penetration on HEp-2 cells and pig intestinal cells (IPEC-J2), 
respectively. They demonstrated that, at no lethal doses, the 
mycotoxin DON does not alter the penetration of FOS into the 
cells. However, they found that the nontoxic concentration of 
DON on IPEC-J2 cells interferes with the pharmacokinetics of 
the antibiotic, which reaches lower intracellular concentrations. 
The authors suggested that DON modifies the sodium-ion-
dependent phosphate transport that FOS uses to enter the 
cells, especially considering that it has been shown that DON 
affects the activities of the sodium-dependent glucose/galactose 
transporter (SGLT1), an intestinal transporter.[47]

Our results showed that DON induces nuclear changes 
indicative of apoptosis in intestinal cells and FOS protects 
against cell DNA damage induced by DON. These findings 
are consistent with our previous studies on BT, MDBK, and 
HEp-2 cells,[31] in which cells incubated with DON (2.8 μg/
mL) and FOS (550  μg/mL) had none or minimal nuclear 
alterations similar to the negative control, indicating the 
absence of cytotoxicity. On the contrary, cells treated only with 
the mycotoxin had significantly higher rates of apoptosis (BT: 
51.66 ± 0.33, MDBK: 10 ± 0.00, and HEp-2: 5.64 ± 0.27), as 
observed in this study (31.53 ± 4.17).

DON has proven cytotoxicity on tissues of rapid growth and fast 
turnover,[1,3] as we have shown for intestinal cells. The findings 
of this work show that intestinal cells are prone to cell death in 
the presence of DON, as we have previously found for HEp-2, 
MDBK, BT, and BHK cells. These results are in agreement with 
other in vivo[7] and in vitro[48] experiments showing that some cells 
are particularly sensitive to DON. As the ribosome is the primary 
molecular target for TCT, included DON, translational inhibition 
is an obvious mechanism of toxicity.[9] DON and other ribosome-
binding translational inhibitors can rapidly activate MAPKs, which 
are crucial for signal transduction in the immune response[10] and 
modulate numerous physiological processes including cell growth, 
differentiation, and apoptosis.[11] The process by which TCT 
activates MAPKs is termed the “ribotoxic stress response.”[12,13] 
However, the exact mechanisms through which DON damages 
the DNA and promotes cellular toxicity are not yet well  
established.[15]

The precise pathway that leads to the protection achieved by 
FOS on DON-mediated cellular damage is still unknown. 
However, from this study and from our previous work on 
respiratory and renal cell lines, it is evident that the antibiotic 
is able to prevent the nuclear changes indicative of programmed 
cell death induced by DON. Our studies are initial steps in 
understanding these mechanisms and it reveals that the level 
of induction of apoptosis appears to be dependent on the cell 
type. Further studies are needed to understand the implications 
of this effect under in vivo conditions.

Figure  2: Immunofluorescence microscopy (DAPI staining) of Caco-2 
intestinal cells. (A) DON 2.8 µg/mL, (B) FOS 580 µg/mL, (C) FOS 580 µg/
mL + DON 2.8 µg/mL, and (D) negative control (red arrows = cells with 
nuclear changes representative of apoptosis, yellow arrows = cells with 
normal nuclei)



Pérez Gaudio, et al.: Fosfomycin protection on Caco-2 cells treated with deoxynivalenol

213Journal of Reports in Pharmaceutical Sciences  |  Volume 9  |  Issue 2  |  July-December 2020

Conclusion

The results from this study showed that DON induces nuclear 
changes suggestive of apoptosis in intestinal cells and that FOS 
can protect cells from DNA damage, as we have previously 
determined for other cell lines. Future investigations to determine 
the exact way in which FOS prevents DON-induced apoptosis 
may be of significance, especially when considering that the 
mycotoxin is responsible for ribotoxic stress response and that 
the antibiotic could be acting by preventing DON effects on 
MAPKs or other signaling pathways that trigger apoptotic death.
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