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We study the set D of differences

D = {A = P −Q : P,Q ∈ P},

where P denotes the set of orthogonal projections in H. We describe models and 
factorizations for elements in D, which are related to the geometry of P. The study 
of D throws new light on the geodesic structure of P (we show that two projections 
in generic position are joined by a unique minimal geodesic). The topology of D is 
examined, particularly its connected components are studied. Also we study the 
subsets Dc ⊂ DF , where Dc are the compact elements in D, and DF are the 
differences A = P − Q such that the pair (P, Q) is a Fredholm pair ((P, Q) is a 
Fredholm pair if QP |R(P ) : R(P ) → R(Q) is a Fredholm operator).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study bounded linear operators in a Hilbert space H which are the difference of two orthogonal 
projections:

A = P −Q.

Such operators A are apparently selfadjoint, and they are contractions. Indeed, by the Krein–Krasnoselski–
Milman formula (see for instance [1]),

‖P −Q‖ = max
{∥∥P (1 −Q)

∥∥, ∥∥Q(1 − P )
∥∥},

and clearly ‖P (1 −Q)‖ ≤ 1 and ‖Q(1 − P )‖ ≤ 1. Also, straightforward computations show that
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N(A) =
(
N(P ) ∩N(Q)

)
⊕

(
R(P ) ∩R(Q)

)
, N(A− 1) = R(P ) ∩N(Q)

and

N(A + 1) = N(P ) ∩R(Q).

Note that N(A), N(A − 1), N(A +1), and the orthogonal complement H0 of the sum of these, reduce P , Q
and A. These subspaces depend on A and not on the projections P and Q. The space H0 is usually called 
the generic part of P and Q. We shall call it, we guess more appropriately, the generic part of A = P −Q. 
It is the generic part that is of interest, as A acts trivially on the non-generic part. Namely, denote by 
A0 = A|H0 the generic part of A, acting in H0. Apparently, in the decomposition

H = N(A) ⊕N(A− 1) ⊕N(A + 1) ⊕H0

A is given by

A = 0 ⊕ 1 ⊕−1 ⊕A0.

There is an extensive bibliography on pairs of projections. There is also a very good survey paper on the 
subject by A. Böttcher and I.M. Spitkovsky [5], and we refer the reader to the references therein. We shall 
base our remarks on two classic papers on the subject, by P. Halmos [9] and C. Davis [7]. The first of these 
papers provides a simple 2 × 2 matrix model for a given pair of projections P , Q, which we describe below. 
One of the many consequences is that the generic parts P0 and Q0 acting in H0 are unitarily equivalent, with 
an explicitly constructed unitary operator implementing this equivalence. The second paper characterizes 
the operators A which are a difference of projections: their generic parts are selfadjoint contractions A0
which anticommute with a symmetry V (a symmetry is a selfadjoint unitary operator: V ∗ = V = V −1).

We regard the present paper as an incomplete comment on these two papers. Given our interest in the 
differential geometry of the space P of projections in H [6], we relate the results by Halmos and Davis to 
the question of the existence and uniqueness of geodesics in P.

The contents of the paper are the following. In Section 2 we recall the results by Halmos [9] and Davis [7], 
as well as certain facts from the geometry of P [6]. Section 3 contains consequences of Davis’ characterization 
of differences of projections A, particularly, that symmetries V which anticommute with A0 parametrize 
all pairs P , Q such that A = P − Q. In Section 4 we show how each geodesic of P joining P and Q
provides a factorization A = eiZσ, where A, Z = Z∗ and σ = σ∗ anticommute (in contrast to the polar 
decomposition A = sgn(A)|A|, where all data commute). In a previous work [3], it was shown that the 
projections P0 and Q0 in generic position can be joined by a (minimal) geodesic of P. Using the ideas 
here we show that such geodesic is unique. In Section 5 we obtain descriptions for operators A = P − Q

and anticommuting symmetries V , decomposing H in cyclic subspaces, as in the classic spectral theorem. 
In Section 6 we examine the topology of the space D of differences of projections. We study connected 
components and characterize the interior set of D: it consists of operators A such that A0 is non-trivial. In 
Section 7, using results from [4] (also [2]), we study operators A = P − Q such that (P, Q) is a Fredholm 
pair. From the results obtained in [4] it is apparent that the property of being a Fredholm pair depends on 
the difference A and not on the particular pair. Therefore, an index for such differences (hereafter referred 
to as Fredholm differences) is defined, which coincides with dim(N(A − 1)) −dim(N(A +1)). This allows us 
to characterize the connected components of the sets of the Fredholm differences and compact differences, 
as a consequence.

The main results of the paper are in Theorem 4.2 (factorization of elements in D), Theorem 4.3 and 
Corollary 4.4 (uniqueness of geodesics joining projections in generic position), Theorem 5.5 (multiplication 
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operator model for elements in D) and Theorem 7.3 (characterization of the components of the set of 
Fredholm differences).

The author wishes to thank Gustavo Corach, who introduced him to this subject, and asked him most 
of the questions considered here.

2. Preliminaries

In [7], Chandler Davis proved the following result. Let

A0 = A|H0 : H0 → H0.

Then (Theorem 6.1 of [7]) the following are necessary and sufficient conditions on a selfadjoint operator 
A in order that it be the difference of two orthogonal projections: −1 ≤ A ≤ 1 and there exists a unitary 
operator W of H0 such that A0W = −WA0.

Moreover, Davis noted that in this case, if one denotes by H+ the closure of the range of A+
0 , the positive 

part of A0, and by H− the closure of the range of the negative part, then W maps H+ onto H− and vice 
versa, so that V defined as

V = W in H+, and V = W ∗ in H−

is a symmetry (i.e. a selfadjoint unitary operator) in H0, which also satisfies

V A0 = −A0V.

Note that W uniquely determines V . In this case

PV = 1
2
(
1 + A0 + V

(
1 −A2

0
)1/2) and QV = 1

2
(
1 −A0 + V

(
1 −A2

0
)1/2)

are orthogonal projections in H0 such that A0 = PV −QV .
In [9] P. Halmos proved that if P and Q are orthogonal projections, in the generic part H0 there exists 

an isometric isomorphism between H0 and a product Hilbert space K × K, and positive contractions C, S
acting in K, with C2 + S2 = 1K, such that, via the isomorphism, the generic parts P0 and Q0 of P and Q
are carried to

P0 =
(

1K 0
0 0

)
and Q0 =

(
C2 CS

CS S2

)
,

respectively. An elementary use of the functional calculus for selfadjoint operators shows that there exists 
a positive operator X in K, ‖X‖ ≤ π/2, such that C = cos(X) and S = sin(X). See also [8] for related 
results.

We finish this section of preliminary facts, recalling the geometry of the space P of orthogonal projections 
in H. Specifically, we recall the linear connection introduced in [6,12], and the properties of the geodesics 
of this connection (for instance see [3]).

Remark 2.1. The space P is a differentiable (C∞) complemented submanifold of B(H). It carries a natural 
action of the unitary group U(H) of H (unitary conjugation). With this action, P becomes a homogeneous 
space with a natural reductive structure. Instead of going into the details of this construction (which can 
be found in [6]), let us recall the form of the geodesics of the linear connection induced by the reductive 
structure:
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1. (See [6].) The geodesics starting at P ∈ P are of the form

δ(t) = eitZPe−itZ ,

where Z∗ = Z is a codiagonal matrix in terms of P , i.e. PZP = (1 − P )Z(1 − P ) = 0.
2. (See [12].) These geodesics have a nice description in terms of symmetries. A projection P induces the 

symmetry (selfadjoint unitary) 2P − 1. The exponent Z is codiagonal with respect to P if and only if 
it anticommutes with 2P − 1. Thus the geodesic curve of symmetries has the form

2δ(t) − 1 = eiZ(2P − 1)e−iZ = e2iZ(2P − 1) = (2P − 1)e−2iZ .

3. (See [12].) If one measures tangent vectors (which are selfadjoint operators) using the usual norm of 
B(H), these geodesics have minimal length for time |t| ≤ π

2‖Z‖ .
4. (See [3].) Two projections P , Q can be joined by a geodesic (which can be chosen of minimal length) if 

and only if

dim
(
N(A− 1)

)
= dim

(
N(A + 1)

)
,

where A = P −Q. In particular, if they are in generic position, they are joined by a minimal geodesic.

3. Davis characterization

Remark 3.1. There is a one to one correspondence between pairs of projections P , Q such that A = P −Q

and symmetries V of H0 which anticommute with A0 (i.e. V A0 = −A0V ) such that P0 = PV and Q0 = QV

in the generic part H0 of A.
Indeed, let V, V ′ be two symmetries which anticommute with A0 such that PV = PV ′ . Then

V
(
1 −A2

0
)1/2 = V ′(1 −A2

0
)1/2

.

Note that N(1 − A2
0) = N(A0 − 1) ⊕ N(A0 + 1), therefore 1 − A2

0 (and therefore also (1 − A2
0)1/2) has 

trivial nullspace in H0. Thus R((1 − A2
0)1/2) is dense in H0 and then V = V ′. Conversely, note that any 

pair P , Q of orthogonal projections in H0 is of the form P = PV , Q = QV for V a symmetry in H0 which 
anticommutes with A0. In [7], Davis proves that if D = 1 −A2

0 (which has trivial nullspace), then

V = D−1/2(P + Q− 1)

is a (bounded) symmetry. A straightforward computation shows that PV = P and QV = Q.

Let us state the following applications of Davis’ characterization. The first is that any selfadjoint con-
traction in H can be dilated to a difference of orthogonal projections.

Proposition 3.2. Let B∗ = B ∈ B(H) with ‖B‖ ≤ 1. Then there exist orthogonal projections P , Q in H×H
such that H× 0 is invariant for P −Q, and P −Q regarded as an operator in H× 0 coincides with B.

Proof. Consider the selfadjoint contraction A : H×H → H×H given by

A(ξ, η) = (Bξ,−Bη).

Clearly H× 0 is invariant for A. Consider the symmetry V defined by
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V (ξ, η) = (η, ξ).

Then apparently V A = −AV . Thus A = P −Q, and P −Q restricted to H× 0 coincides with B. �
Also the compression of a difference of projections by a spectral projection corresponding to a subset of 

the spectrum which is symmetric with respect to the origin is itself a difference of projections:

Proposition 3.3. Let A = P −Q, and E = EΩ(A) a spectral projection of A, corresponding to a Borel subset 
Ω ⊂ σ(A) which is symmetric with respect to the origin (i.e. t ∈ Ω implies −t ∈ Ω). Then EA = P ′ −Q′, 
where P ′, Q′ are orthogonal projections.

Proof. Clearly EA = AE is a self-adjoint contraction. Let A0 be, as before, the restriction of A to its 
non-generic part H0. Clearly the restriction of E to H0 is also a spectral projection of A0, and corresponds 
to the symmetric set Ω0 = Ω − {−1, 0, 1}. By Davis’ result, there exists a symmetry V in H0 such that 
V A0 = −A0V . That is,

V A0V = V A0V
∗ = −A0.

Thus, for any bounded Borel function g in R, V g(A0)V = g(−A0). Consider g(t) = tχΩ0(t), where χΩ0 is 
the characteristic function of the set Ω0. Note that, since Ω0 is symmetric, g(−t) = −g(t). Then

V EA0V = V g(A0)V = g(−A0).

Note that, for any ξ, η ∈ H0,

〈
g(−A0)ξ, η

〉
=

∫
R

g(−t)duξ,η(t) = −
∫
R

g(t)duξ,η(t) = −
〈
g(A0)ξ, η

〉
,

where μξ,η denotes the scalar spectral measure of A0 corresponding to the vectors ξ, η. Then

V EA0V = −EA0,

i.e. V anticommutes with EA0. �
4. The codiagonal factorization

If T is a positive operator in the Hilbert space L with ‖T‖ ≤ 1, then the operator

σT =
(

0 T

T 0

)

acting in L × L is a difference of two projections. Indeed, the symmetry

V (ξ, η) = (ξ,−η)

anticommutes with σT . Let us see that any A = P −Q is of this form under a suitable change of coordinates.

Remark 4.1. Let A0 be the generic part of A = P − Q as above. Then, with the current notations (as in 
Halmos’ result cited above), there are two natural factorizations for A0, which can be described as 2 × 2
matrices in terms of P0:
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1. The polar decomposition:

A0 =
(
−S2 CS

CS S2

)
=

(
−S C

C S

)(
S 0
0 S

)
= sgn(A0)|A0|,

where sgn(A0) is the sign function at A0. Indeed, a straightforward matrix computation (using that C
and S commute, and that C2 + S2 = 1K) shows that

A2
0 =

(
S2 0
0 S2

)
,

and then, since S ≥ 0,

|A0| =
(
S 0
0 S

)
.

Since N(A0) is trivial, the partial isometry in the polar decomposition of A0 is a symmetry and is given 
by sgn(A0). Clearly it corresponds with the left hand matrix in the decomposition of A0 above. Note 
also that the polar factorization commutes.

2. Another factorization of A0 is given by

A0 =
(
C −S

S C

)(
0 S

S 0

)
= exp

(
i

(
0 iX

−iX 0

))(
0 sin(X)

sin(X) 0

)

= exp
(
i

2

(
0 iX

−iX 0

))(
0 sin(X)

sin(X) 0

)
exp

(
− i

2

(
0 iX

−iX 0

))

= eiZ/2σe−iZ/2 = eiZσ.

Note that
(a) Z is a selfadjoint operator which anticommutes with σ.
(b) Z is codiagonal with respect to both P0 and Q0. This is apparent in the case of P0, for Q0 it follows 

from general considerations considering geodesics in P, or by a direct computation:

ZQ0 =
(

0 iX

−iX 0

)(
C2 CS

CS S2

)
=

(
iXCS iXS2

−iXC2 −iXCS

)

=
(
−iXCS −iXC2

iXS2 −iXC

)
+

(
0 iX

−iX 0

)
= −Q0Z + Z = (1 −Q0)Z.

Thus Q0ZQ0 = (1 − Q0)Z(1 − Q0) = 0. These facts imply that A0 and Z anticommute. Indeed, 
that Z is codiagonal with respect to a given projection P0, means that it anticommutes with the 
symmetry 2P0 − 1:

A0Z = 1
2
(
2P0 − 1 − (2Q0 − 1)

)
Z = −1

2Z
(
2P0 − 1 − (2Q0 − 1)

)
= −ZA0.

We may regard this factorization as a codiagonal model σ for A0 (via the unitary change of coordinates 
eiZ/2).

It is known that two projections P0 and Q0 in generic position can be joined by a geodesic in P (see for 
instance [3]).
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Theorem 4.2. Let A = P −Q and A0 = P0−Q0 be its generic part. Then any geodesic δ in P with δ(0) = P0
and δ(1) = Q0 provides a factorization

A0 = eiZσ = eiZ/2σe−Z/2

as in the above remark:

1. Z∗ = Z, ‖Z‖ ≤ π/2, Z anticommutes with σ, and is codiagonal with respect both to P0 and Q0 (and 
thus also anticommutes with A0).

2. σ is codiagonal with respect to P0, and σ2 = A2
0.

Proof. Such a geodesic of P is given by a selfadjoint operator Z, which is codiagonal with respect to P0,

δ(t) = eitZP0e
−itZ .

Since δ(1) = eiZP0e
−iZ = Q0, it follows that Z is also codiagonal with respect to Q0. Indeed, γ(t) = δ(1 − t)

is also a geodesic of P, and

γ(t) = e−itZeiZQ0e
−iZeitZ = eit(−Z)Q0e

−it(−Z),

which implies that −Z is codiagonal with respect to Q0. Then (using the same trick as above, and the fact 
that Z(2P0 − 1) = −(2P0 − 1)Z),

A0 = P0 − eiZP0e
−iZ = 1

2
(
2P0 − 1 − eiZ(2P0 − 1)e−iZ

)
= 1

2e
iZ
(
e−iZ(2P0 − 1) − (2P0 − 1)e−iZ

)
= 1

2e
iZ
(
e−iZ/2(2P0 − 1)eiZ/2 − eiZ/2(2P0 − 1)e−iZ/2) = eiZ

(
e−iZ/2P0e

iZ/2 − eiZ/2P0e
−iZ/2) = eiZσ.

Note that Z and σ = e−iZ/2P0e
iZ/2 − eiZ/2P0e

−iZ/2 verify conditions 1 and 2. Z is codiagonal with respect 
to P0 and Q0. Also

Zσ = 1
2Z

(
e−iZ(2P0 − 1) − (2P0 − 1)e−iZ

)1
2
(
e−iZZ(2P0 − 1) − Z(2P0 − 1)e−iZ

)
= −1

2
(
e−iZ(2P0 − 1) − (2P0 − 1)e−iZ

)
Z = −σZ.

In particular, this implies that eiZσ = σe−iZ , and thus

A2
0 =

(
eiZσ

)2 =
(
σe−iZ

)(
eiZσ

)
= σ2.

Finally, using that (2P0 − 1)2 = 1,

σ(2P0 − 1) = 1
2
(
e−iZ/2(2P0 − 1)eiZ/2 − eiZ/2(2P0 − 1)e−iZ/2)(2P0 − 1) = 1

2
(
e−iZ − eiZ

)
,

and analogously

(2P0 − 1)σ = 1
2
(
eiZ − e−iZ

)
, (1)

i.e. σ(2P0 − 1) = −(2P0 − 1)σ. �
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Therefore a geodesic joining P0 and Q0 determines a codiagonal factorization for A0 = P0 − Q0. It is 
known that if ‖A0‖ < 1 such geodesic is unique. As a consequence of the above result, we will show that 
also if ‖P0 − Q0‖ = 1, there exists a unique geodesic joining them. Indeed, let us prove that the unitary 
operator eiZ is determined by P0 and Q0. That its square e2iZ is determined by P0 and Q0 is apparent: 
e2iZ(2P0 − 1) = (2Q0 − 1), and thus

e2iZ = (2Q0 − 1)(2P0 − 1).

Theorem 4.3. Let A0 = P0 −Q0 be the generic part of A and Z∗ = Z the velocity vector of a geodesic curve 
of P which joins P0 and Q0, with ‖Z‖ ≤ π/2. Then

V = eiZ(2P0 − 1)

is the symmetry which anticommutes with A0, and is induced by the decomposition A0 = P0 − Q0, i.e. in 
the notation of Davis [7] (as in Remark 3.1):

PV = P0, QV = Q0.

In particular, the unitary operator eiZ is determined by P0 and Q0.

Proof. Recall that Z anticommutes with 2P0 − 1 and with 2Q0 − 1, and that eiZP0 = Q0e
iZ . Note that

V 2 = eiZ(2P0 − 1)eiZ(2P0 − 1) = eiZ(2P0 − 1)(2P0 − 1)e−iZ = 1.

Also V ∗ = (2P0 − 1)e−iZ = eiZ(2P0 − 1) = V . Next, using the previous proposition,

V A0 = eiZ(2P0 − 1)eiZσ = (2P0 − 1)σ,

and (using that Z and σ anticommute),

A0V = eiZσeiZ(2P0 − 1) = σ(2P0 − 1).

Since σ is codiagonal with respect to P0, these operators also anticommute.
Finally, note that PV = P0. This assertion is equivalent to

A0 + V
(
1 −A2

0
)1/2 = 2P0 − 1.

Since σ2 = A2
0, multiplying by V = eiZ(2P0 − 1) = (2P0 − 1)e−iZ , this equality is equivalent to

(2P0 − 1)σ +
(
1 − σ2)1/2 = eiZ .

In the last part of the proof of the previous proposition, it was shown (1) that: (2P0 − 1)σ = 1
2 (eiZ − e−iZ). 

Then the above equation is equivalent to

(
1 − σ2)1/2 = 1

2
(
eiZ + e−iZ

)
= cos(Z).

Note that ‖Z‖ ≤ π/2, and thus cos(Z) ≥ 0. To prove our assertion, it suffices to show that σ2 = (sin(Z))2. 
Indeed, using again (1):
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σ2 = σ(2P0 − 1)(2P0 − 1)σ =
(
(2P0 − 1)σ

)∗(2P0 − 1)σ = 1
4
(
eiZ − e−iZ

)∗(
eiZ − e−iZ

)
= −1

4
(
eiZ − e−iZ

)2 =
(
sin(Z)

)2
.

It follows that also QV = Q0. �
Corollary 4.4. If P0 and Q0 are two projections in generic position, then there is a unique minimal geodesic 
in P joining them.

Proof. By the above proposition, P0 and Q0 determine a unique symmetry V such that V (P0 − Q0) =
−(P0 − Q0)V , P0 = PV and P0 = QV . If V = eiZ(2P0 − 1) as above, then eiZ = (2P0 − 1)V , and since 
‖Z‖ ≤ π/2 < π,

iZ = log
(
(2P0 − 1)V

)
,

the unique anti-hermitian logarithm of the unitary (2P0 − 1)V . �
Remark 4.5. In [3] it was shown that two projections are joined by a geodesic of P if and only if dim(N(P −
Q −1)) = dim(N(P−Q +1)). The above result shows that the non-injectivity of the exponential map of P (as 
well the non-surjectivity, as the cited result implies) depends on the (cardinal) numbers dim(N(P −Q − 1))
and dim(N(P −Q + 1)). One can show the existence of many geodesics joining PN(P−Q−1) and PN(P−Q+1)
(when the dimensions coincide). Indeed, pick W : N(P −Q −1) → N(P −Q +1) an isometric isomorphism. 
Let U be the unitary operator of H′ = N(P −Q − 1) ⊕N(P −A + 1) given by U(ξ, η) = (W ∗η, −Wξ), and 
put Z = −iπ2U . Then apparently

UPN(P−Q−1)U
∗ = PN(P−Q+1),

and U = eiZ . This fact follows readily noting that U2 = −1. Also it is clear that Z is selfadjoint, codiagonal 
in H′, with respect both to PN(P−Q−1) and PN(P−Q+1), and ‖Z‖ = π/2. Therefore the exponent Z induces a 
geodesic joining PN(P−Q−1) and PN(P−Q+1) in B(H′). Different isomorphisms W induce different geodesics 
(infinitely many). Thus one obtains infinitely many geodesics joining P and Q. Indeed, in the decomposition 
H = N(P −Q) ⊕H′ ⊕H0 the projections P and Q reduce to 0 ⊕PN(P−Q−1) ⊕P0 and 0 ⊕PN(P−Q+1) ⊕Q0
respectively.

Finally note any geodesic joining P and Q is reduced by this decomposition. The exponent Z of such a 
geodesic is codiagonal with respect to P and Q, i.e. Z(R(E)) ⊂ N(E) and Z(N(E)) ⊂ R(E) for E = P, Q. 
Therefore all geodesics between P and Q (always under the assumption dim(N(P −Q − 1)) = dim(N(P −
Q + 1))) are of the above form. The multiple geodesics coincide in the generic part H0 (as well as they do, 
trivially, in N(P −Q)).

Remark 4.6. The uniqueness property above, by no means implies the uniqueness of the codiagonal fac-
torization. As it will be shown in examples in the next section, an operator A0 which is a difference of 
two projections in generic position, may be decomposed in infinitely many ways as a difference of (generic) 
projections.

Next we show that the geodesic between P0 and Q0 allows one to construct another symmetry J , inter-
twining P0 and 1 − P0.

Proposition 4.7. Let J = sgn(A0)eiZ . Then J is a symmetry which satisfies

JP0J = 1 − P0.
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Proof. Since Z anticommutes with A0, it commutes with any odd power of A0, ZA2k+1
0 = −A2k+1

0 Z. It 
follows that Z anticommutes with any polynomial p(t) containing only monomials of odd degree. There are 
polynomials pn(t) of this type which converge uniformly to the function fk(t) = t1/(2k+1) uniformly in the 
interval [−1, 1]. Thus Z anticommutes with A1/(2k+1)

0 . If k → ∞, A(1/2k+1)
0 ξ → sgn(A0)ξ, for any ξ ∈ H0. 

Indeed, the functions fk converge pointwise to sgn(t), and are uniformly bounded in the interval [−1, 1]. 
This implies that sgn(A0)Z = −Z sgn(A0), and thus sgn(A0)eiZ = e−iZ sgn(A0). Then

J∗ = e−iZ sgn(A0) = J and J2 = e−iZ sgn(A0) sgn(A0)eiZ = 1.

In order to prove that J intertwines P0 and 1 − P0 we do the computations with 2 × 2 matrices in terms 
of P0 (identifying H0 with K ×K as in Halmos’ construction). Note from Remark 4.1 that

J = sgn(A0)eiZ =
(
−S C

C S

)(
C −S

S C

)
=

(
0 1K
1K 0

)
.

It is apparent then that J intertwines

P0 =
(

1K 0
0 0

)
with 1 − P0 =

(
0 0
0 1K

)
. �

Remark 4.8. By the same procedure as in Remark 4.5, the symmetry J above induces a particular geodesic 
between P0 and 1 − P0. Indeed, note that

Z = −i
π

2 (P0J − JP0)

is codiagonal with respect to P0, and satisfies

eiZ = eπ/2(P0J−JP0) = J,

and thus δ(t) = eitZP0e
−itZ is a minimal geodesic joining P0 and 1 − P0.

Remark 4.9. If A0 = P0 −Q0 and Z as above, then

‖A0‖ ≤
∥∥[Z,P0]

∥∥ = ‖Z‖.

Indeed, one can construct two paths inside Bh(H) (in fact, consisting of differences of projections) joining 
A0 and 0. Namely tA0 and P0 − eitZP0e

−itZ , for t ∈ [0, 1]. Clearly the first, being a straight line, is shorter. 
Its lengths are, respectively, ‖A0‖ and ‖[Z, P0]‖, which equals ‖Z‖ because Z is P0-codiagonal:

[Z,P0] = ZP0 − P0Z = 1
2
(
Z(2P0 − 1) − (2P0 − 1)Z

)
= Z(2P0 − 1),

and thus ‖[Z, P0]‖ = ‖Z(2P0 − 1)‖ = ‖Z‖.

5. Decompositions and cyclic vectors

One may obtain decompositions A = P − Q (and in some cases parametrize them) by means of Davis’ 
result, representing A0 as a sum of multiplication operators. In this section we assume the space H to be 
separable. The idea is based on the following example.
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Example 5.1. Let A = Mt act in L2(−1, 1), i.e. Mtf(t) = tf(t) for f ∈ L2(−1, 1). Since A has no eigenvalues, 
H0 = L2(−1, 1) and A = A0. A symmetry which anticommutes with A is V0f(t) = f(−t). Note that if V
is another symmetry which anticommutes with A, then V0V commutes with A. Since the commutant of A
consists of multiplication operators, it follows that

V = V0Mϕ,

where ϕ is a measurable function with |ϕ(t)| = 1 a.e. Indeed, V0V is a multiplication unitary operator. 
Moreover, since V 2 = 1, for any f ∈ L2(−1, 1)

f(t) = V 2f(t) = V0Mϕϕ(−t)f(−t) = ϕ(−t)ϕ(t)f(t) a.e.

which implies that ϕ(−t) = ϕ̄(t) a.e. That is, ϕ(t) = eig(t) with g an odd real function (g(−t) = −g(t) ∈ R

a.e.). Then V0Mg = −MgV0, and thus

V ∗ = Me−igV0 = V0Meig = V.

Therefore all possible decompositions A = P −Q are parametrized in this particular example.
Let us denote by Vg the symmetry given by the a.e.-odd real function g:

Vg = V0Meig = Me−igV0.

A straightforward computation shows that the projections PVg
and QVg

are, respectively, the orthogonal 
projections onto the subspaces

R(PVg
) =

{
f ∈ L2(−1, 1) : e−ig(t)(1 − t)1/2f(t) is (a.e.) even

}
and

R(QVg
) =

{
f ∈ L2(−1, 1) : e−ig(t)(1 + t)1/2f(t) is (a.e.) even

}
.

The factorization A = A0 = eiZgσg given in Theorem 4.2, arising from the decomposition A = PVg
−QVg

is

eiZgf(t) = −teig(t)f(−t) +
(
1 − t2

)1/2
f(t), f ∈ L2(−1, 1),

and

σf(t) = e−iZgA = −t2e−ig(t)f(−t) + t
(
1 − t2

)1/2
f(t).

Indeed, recall from the preceding section that eiZg = Vg(2PVg
− 1) = VgMt + M(1−t2)1/2 .

In particular, the codiagonal factorization is non-unique.
For g = 0 (i.e. V = V0), one has eiZ0f(t) = −tf(−t) + (1 − t2)1/2f(t). This unitary operator has a nice 

description in the even-odd decomposition of L2(−1, 1) = L2
e⊕L2

o where L2
e (resp. L2

o) denotes the subspace 
of a.e. even (resp. odd) functions in L2(−1, 1). In matrix form

eiZ0 =
(
M(1−t2)1/2 Mt

−Mt M(1−t2)1/2

)
L2
e

L2
o

,

and thus
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Z0 =
(

0 −iMarcsin(t)
iMarcsin(t) 0

)
L2
e

L2
o

.

The above example motivates the following result:

Lemma 5.2. Suppose that A0 is a cyclic operator in H0, and let V be a symmetry which anticommutes 
with A0. Then there exists a cyclic vector ξ0 for A0 in H0, such that V ξ0 = ξ0. If p(t) is a polynomial, then

V p(A0)ξ0 = p(−A0)ξ0.

Proof. Let ξ be a cyclic vector for A0. As above, let A+ and A− be the positive and negative parts of A0, 
H+ = R(A+), H− = R(A−). Recall that, since N(A0) = {0}, H+ ⊕H− = H0. Then

A+ −A− = A0 = −V A0V = −V A+V + V A−V.

Note that V A+V, V A−V are positive operators which commute with A0, such that

V A+V − V A−V = V A0V = −A0,

and whose product is zero. It follows that

V A+V = A− and V A−V = A+.

Denote by 1+ the orthogonal projection onto H+ (which can be regarded as the identity operator of H+ as 
well), and similarly for 1− and H−. Note that

V 1+ = 1−V,

because V maps H+ onto H− (and viceversa). Put ξ = ξ+ + ξ− in this decomposition. If p(t) =
∑k

j=0 ajt
j

is a polynomial, then

p(A0) = 1+ +
k∑

j=1
aj
(
A+)j + 1− +

k∑
j=1

aj
(
A−)k,

so that

p(A0)ξ = p
(
A+)ξ+ + p

(
A−)ξ−.

It follows that ξ+ is a cyclic vector for A+ in H+. Also since V A+ = A−V and V 1+ = 1−V ,

V p
(
A+)ξ+ = p

(
A−)V ξ+.

This implies that V ξ+ is a cyclic vector for A− in H−. Thus

ξ0 = ξ+ + V ξ+

is a cyclic vector for A0, which verifies that V ξ0 = ξ0. Then for any polynomial p, since V A0V = −A0, 
clearly V p(A0)V = p(−A0)

V p(A0)ξ0 = V p(A0)V ξ0 = p(−A0)ξ0. �
With the notations of the above lemma, we have the following:
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Lemma 5.3. Let μ = μξ0,ξ0 be the scalar spectral measure of A0 associated to the cyclic vector ξ0, and V a 
symmetry which anticommutes with A0, such that V ξ0 = ξ0. Consider the unitary transformation given in 
the Spectral Theorem of A0,

U : H0 → L2(σ(A0), dμ
)
, Up(A)ξ0 = [p],

for p a polynomial and [p] the class of p in L2(σ(A0), dμ), which transforms A0 in Mt (= multiplication by 
the variable). Then U transforms V in the operator

V0f(t) = f(−t), f ∈ L2(σ(A0), dμ
)
.

Proof. Let p be a polynomial. Then
∫

σ(A0)

p(t)dμ(t) =
〈
p(A0)ξ0, ξ0

〉
=

〈
p(A0)V ξ0, V ξ0

〉
=

〈
V p(A0)V ξ0, ξ0

〉
=

〈
p(−A0)ξ0, ξ0

〉

=
∫

σ(A0)

p(−t)dμ(t),

i.e. μ is invariant under the change of variables t �→ −t. It follows that, if we set U as in the Spectral 
Theorem for cyclic selfadjoint operators (as above), then V transforms to

V0p(t) = UV U−1p(t) = UV p(A0)ξ0 = UV p(A0)V ξ0 = Up(−A0)ξ0 = p(−t). �
Proposition 5.4. Let V be a symmetry which anticommutes with A0. Then there exist a countable set I, 
subspaces Hn, n ∈ I, and vectors ξn ∈ Hn such that

1.
⊕

n∈I
Hn = H0.

2. Hn is invariant for A0 and for V , and A0|Hn
is a difference of projections in Hn.

3. ξn is cyclic for A0|Hn
, and V ξn = ξn.

Proof. Pick a non-zero vector ξ ∈ H0 such that V ξ = ξ, and consider H′ = {p(A0)ξ : p a polynomial}. 
Clearly H′ is invariant for A0, and ξ is a cyclic vector for A0|H′ . Note that

V p(A0)ξ = p(−A0)V ξ = p(−A0)ξ ∈ H′.

Thus H′ is invariant for V . V |H′ is a symmetry which anticommutes with A0|H′ , thus A0|H′ is a difference 
of projections in H′.

Consider

F =
{{

(Jj , ξj)
}
j∈J

: A0(Jj) ⊂ Jj , V (Jj) ⊂ Jj , V ξj = ξj , ξj is cyclic for A0|Jj

}
.

Consider the following order in F : {(Jj, ξj)}j∈J ≤ {(Jk, ξk)}k∈K if every Jj coincides with some Jk(j) and 
for such j, ξj = ξk(j). By the above lines, F is non-empty. Apparently, one can apply Zorn’s Lemma to 
this ordered set. Let {(Jm, ξm)}m∈M is a maximal element in F . Then J0 :=

⊕
m∈M Jm = H0. Suppose 

that J⊥
0 �= 0. Let 0 �= η ∈ J⊥

0 . Clearly J⊥
0 is invariant both for A0 and V . As above, one can construct 

a non-trivial subspace, invariant both for A0 and V , with η as cyclic vector. Then using Lemma 5.2, one 
can find in this subspace another cyclic vector η0 such that V η0 = η0. This contradicts the maximality of 
{(Jm, ξm)}m∈M . �
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Using the usual construction of the multiplication operator model of a selfadjoint operator, one obtains 
the following:

Theorem 5.5. Let A0 be the generic part of A = P − Q, V a symmetry which anticommutes with A0, and 
I the index set of the above decomposition of H in cyclic subspaces Hn, n ∈ I, with cyclic vectors ξn such 
that V ξn = ξn. There exists a finite Borel measure μ on the set

M =
⋃
n∈I

σ(A0) × {n}

and a the unitary isomorphism

U : H =
⊕
n∈I

Hn → L2(M,μ), U

(∑
n∈I

pn(A|Hn
)ξn

)
=

∑
n∈I

pn,

where pn : σ(A0) × {n} → C is the function given by pn(t, n) = [pn](t), for any polynomial pn, which 
satisfies

UA0U
∗f(t, n) = tf(t, n) and UV U∗f(t, n) = f(−t, n).

Proof. Recall that σ(A0) ⊂ R is symmetric with respect to the origin. The proof follows as in the classical 
spectral theorem, summing the cyclic subspaces Hn [13]. �

With these results one can show the non-uniqueness of the decomposition A0 = P0 − Q0 of the generic 
part of A:

Proposition 5.6. Let A be a difference of projections, with non-trivial generic part A0. Then there exist 
infinitely many pairs P0, Q0 of projections such that A0 = P0 −Q0.

Proof. Fix a decomposition A0 = P0 − Q0, which induces the isometry V0 which anticommutes with A0. 
Let ξ0 ∈ H0 be a unit vector in the generic part H0 of H, such that V ξ0 = ξ0. Let

Hξ0 =
{
p(A0)ξ0 : p a polynomial

}
.

Then B = A0|Hξ0
is also a difference of projections in generic position, with cyclic vector ξ0 (note that 

Hξ0 is non-trivial because N(A0) = {0}). Apparently, different decompositions of B produce different 
decompositions of A0. Thus it suffices to consider the case when A0 has a cyclic vector which is a fixed 
point for V0, as in Lemmas 5.2 and 5.3. Then, via the unitary transformation of the Spectral Theorem, we 
may suppose A0 = Mt in L2(σ(A0)), and V0f(t) = f(−t). Note that there are at least two points λ and −λ

in σ(A0) (otherwise, since the spectrum is symmetric with respect to the origin, it would be trivial). Then, 
as in Example 5.1, any operator

Vg = V0Meig

for g a real bounded Borel odd function in σ(A0), is a symmetry which anticommutes with A0. Since there 
are at least two points in σ(A0), there are infinitely many different Vg. �

The non-generic part A′ of A also has many decompositions, though it has a distinguished one, A′ =
PN(A−1) − PN(A+1).
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6. Connected components

In this section we examine the connected components of the set D of differences of projections:

D = {P −Q : P,Q ∈ P}.

By means of the following elementary lemmas, we show that any operator A ∈ D is connected (inside D) 
to 0 or to plus or minus a projection of finite codimension.

Lemma 6.1. Given A ∈ D, there exists a continuous path A(t), t ∈ [0, 1], A(t) ∈ D, such that A(1) = A, 
A(0) = E+1 −E−1, where E+1, E−1 are mutually orthogonal selfadjoint projections.

Proof. Consider the decomposition of A in its generic and non-generic parts,

A = 0 ⊕ E+1 ⊕−E−1 ⊕A0 in H = N(A) ⊕N(A− 1) ⊕N(A + 1) ⊕H0.

By Davis’s [7] characterization of operators in D, there exists a self-adjoint symmetry V in H0 such that 
V A0 = −A0V . Note that for |t| ≤ 1, tA0 is a selfadjoint contraction which also anticommutes with V . 
Therefore

A(t) = 0 ⊕ E+1 ⊕−E−1 ⊕ tA0

is a path in D, which is apparently continuous. Clearly A(1) = A and A(0) = E+1 − E−1 is a difference of 
mutually orthogonal projections. �
Lemma 6.2. Suppose that dimH = ∞ and let E, F be mutually orthogonal projections in H. Then there 
exists a continuous path B(t) ∈ D, t ∈ [0, 1], such that B(1) = E − F and B(0) is either 0, P0 or −P0, 
where P0 is a projection with finite codimension.

Proof. Suppose first that E + F has infinite codimension. Let P = 1 − (E + F ), and P = P1 + P2 with 
P1, P2 mutually orthogonal of infinite rank. It follows that E + P1 and F + P1 are orthogonal projections 
(no longer mutually orthogonal), with infinite rank and co-rank. It is well known that infinite (rank and 
co-rank) projections are homotopic, i.e. there exists a continuous path P (t) ∈ P such that P (0) = E + P1, 
P (1) = F + P1. Then B(t) = E + P1 − P (t) is a continuous path in D such that P (0) = 0 and P (1) =
E + P1 − (F + P1) = E − F .

Suppose now that E+F has finite codimension. This implies that either E or F has infinite rank. If both 
E and F have infinite rank, since their are mutually orthogonal, this would imply that they have infinite 
co-rank. Thus they would be homotopical: in that case, let E(t) be a continuous path in P with E(0) = E, 
E(1) = F . Then B(t) = E − E(t) is a continuous path in D such that B(0) = 0 and B(1) = E − F .

Thus we are left in the case where either E or F has finite rank (and the other has infinite rank). If E
has finite rank, then there exists a unitary operator U in H such that F0 = UEU∗ ≤ F . Let U(t) be a 
continuous path of unitaries such that U(0) = 1 and U(1) = U (since that the unitary group is connected), 
and put B(t) = U(t)EU(t)∗ − F . Then B(0) = E − F and B(1) = F0 − F = −P0. Since F0 ≤ F , P0 is a 
projection. Moreover, it is apparent that it has finite codimension.

If F has finite rank, a similar argument shows that E −F can be joined to a sub-projection of E (which 
necessarily has finite co-rank). �
Proposition 6.3. Suppose that dim(H) = ∞. Let A1, A2 ∈ D be two compact operators. Then they lie in the 
component of 0 in D.
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Proof. As in the beginning of the first lemma above, each Ai can be connected to Ei − Fi, where Ei and 
Fi are the projections onto the eigenspaces corresponding to +1 and −1, respectively. By the argument in 
the first paragraph of the proof of Lemma 6.2, since Ei and Fi have finite rank, Ei − Fi can be connected 
to 0. �

Let Dc = D ∩ K(H), the subset of compact differences of projections. The result above states that two 
elements in Dc can be connected with a curve inside D. In the next section we examine the internal structure 
of the set Dc. Below, consider the particular case of D1 = D ∩ B1(H), the elements of D which are nuclear. 
Denote by Tr the usual trace. The following fact is well known, we include an elementary proof.

Lemma 6.4. If A ∈ D1, then Tr(A) is an integer.

Proof. In the decomposition N(A) ⊕N(A − 1) ⊕N(A + 1) ⊕H0, A is given by

0 ⊕ E+1 ⊕−E−1 ⊕A0.

By Davis’ characterization, the spectral decomposition of the generic part A0 can be written

A0 =
∑
i≥1

λi

(
P+
i − P−

i

)
,

with P+
i , P−

j mutually orthogonal projections of finite rank, dim(R(P+
i )) = dim(R(P−

i )), and the sequence 
λi > 0 summable. Indeed, by Davis’ result there exists a unitary operator V in H0 which anticommutes 
with A0. As seen in the previous section, this unitary operator intertwines the positive part A+ and the 
negative part A− of A0: V A+V ∗ = A−. Therefore the spectrum of A0 is symmetric with respect to the 
origin, and the multiplicity of each λi equals that of −λi. Clearly A0 ∈ B1(H0). Then Tr(A0) = 0. Thus 
Tr(A) = Tr(E+1) − Tr(E−1) ∈ Z. �
Proposition 6.5. The connected components of D1 are parametrized by the integers. Namely, the connected 
components of D1, in the topology of the norm ‖ ‖1 of B1(H), are

D1,m =
{
A ∈ D1 : Tr(A) = m

}
.

Moreover,

D1,k =
{
A ∈ D1 : A can be connected in D1 with E,dim

(
R(E)

)
= k

}
,

D1,0 = {A ∈ D1 : A can be connected in D1 with 0}

and

D1,−k =
{
A ∈ D1 : A can be connected in D1 with − F,dim

(
R(F )

)
= k

}
.

Proof. Let A ∈ D1. As above, A is given by

0 ⊕ E+1 ⊕−E−1 ⊕A0.

As noted above,

A(t) = 0 ⊕ E+1 ⊕−E−1 ⊕ tA0 ∈ D.
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Moreover, apparently A(t) ∈ B1(H) is a continuous path joining A with E+1 − E−1. Suppose first that 
dim(R(E+1)) > dim(R(E−1)), and put k = dim(R(E+1)) − dim(R(E−1)). The projection E−1 is unitarily 
equivalent to a subprojection of E+1,

UE−1U
∗ ≤ E+1.

Let U(t) be a continuous path of unitaries joining U and 1. Then E+1 −U(t)E−1U(t)∗ is a continuous path 
in D1. Thus A is joined in D1 with the projection E = E+1 −UE−1U

∗ of rank k. The cases dim(R(E+1)) =
dim(R(E−1)) and dim(R(E+1)) < dim(R(E−1)) are dealt similarly, and correspond to the situations A ∈
D1,0 or A ∈ D1,−k.

We need to show that a projection cannot be connected neither to a projection of different rank, nor to 
minus a projection. Let A(t) be a curve in D1 starting at E. Then Tr(A(t)) is a continuous map, which by 
the above lemma, has integer values. It follows that it is constant, and the proof follows. �
Remark 6.6. If H is finite dimensional, the connected components of D are parametrized by the integers be-
tween − dimH and dimH. Namely A ∈ D determines a unique integer d, such that there exists a continuous 
path in D linking A to an operator D, which is 0 or plus or minus a projection, with dimR(D) = |d|.

We end this section noting that elements of D which are differences of mutually orthogonal projections, 
lie at the border of D. In other words, that if one regards D with the relative topology given by the norm 
of B(H), then the interior points of D are the elements A which have non-trivial generic part. These facts 
follow from the next elementary lemma:

Lemma 6.7. If Pn − Qn is a sequence of mutually orthogonal projections converging to A ∈ D, then A =
PN(A−1) − PN(A+1) is also a difference of mutually orthogonal projections.

Proof. Indeed, if Pn − Qn is norm convergent, then (Pn − Qn)2 = Pn + Qn is also norm convergent. It 
follows that both sequences Pn and Qn are convergent. Clearly the space P of orthogonal projection is 
closed. Therefore Pn → P and Qn → Q, with P , Q mutually orthogonal projections. �
Corollary 6.8. The interior of D consists of elements A ∈ D such that the generic part A0 is non-trivial. 
The border of D consists of differences of mutually orthogonal projections.

Proof. Let A ∈ D such that A0 �= 0. Then there exists r > 0 such that if B ∈ D with ‖B − A‖ < r, then 
the generic part of B is non-trivial. Otherwise, there would be a sequence Bn → A, such that Bn ∈ D have 
trivial generic parts. This means that Bn = PN(Bn−1) − PN(Bn+1). Thus, by the above lemma, B would be 
a difference of orthogonal projections, a contradiction. �
7. Differences of projections with a Fredholm index

Recall from [4] or [2] the notion of Fredholm pair (P, Q) of projections. A pair (P, Q) is called a Fredholm 
pair if the operator

QP |R(P ) : R(P ) → R(Q)

is a Fredholm operator, and in this case the index i(P, Q) of the pair is the index of the above operator. In 
this section we shall study operators A = P −Q such that (P, Q) is a Fredholm pair. As we have seen, there 
are many possible pairs whose difference is A. However the property of being a Fredholm pair is shared by 
all this pairs, and they have the same index. Thus the index of the pair should be more appropriately called 
the index of the difference.
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Remark 7.1. In [4], Avron, Seiler and Simon proved the following fact (Proposition 3.1): (P, Q) is a Fredholm 
pair if and only if

1. 1 and −1 are isolated points of σ(P −Q), and
2. N(P −Q − 1) and N(P −Q + 1) are finite dimensional.

In this case, i(P, Q) = dimN(P −Q − 1) − dimN(P −Q + 1).

Thus, if A = P −Q, we define

i(A) = i(P,Q).

A special case of Fredholm pair occurs when A = P −Q is compact. If furthermore A ∈ D1, then apparently 
i(A) = Tr(A).

Let us denote by

DF =
{
A = P −Q ∈ D : (P,Q) is a Fredholm pair

}
.

It is known that the index of Fredholm pairs is locally constant (see for instance [3]).

Proposition 7.2. The index is continuous in DF , i.e. it is locally constant.

Proof. Consider the (closed) complemented linear subspace of B(H) ×B(H),

Δ =
{
(T, T ) : T ∈ B(H)

}
.

Apparently, the difference map d : B(H) × B(H) → B(H), d(S, T ) = S − T induces a linear isomorphism

d̄ :
(
B(H) × B(H)

)
/Δ → B(H), d̄

([
(S, T )

])
= S − T.

This isomorphism maps the set

{[
(P,Q)

]
: P,Q projections such that (P,Q) is a Fredholm pair

}
onto DF . Note that the former set is indeed a subset of classes in (B(H) ×B(H))/Δ, because the condition 
that (P, Q) be a Fredholm pair depends only on the difference (i.e. on the class of (P, Q)). On the other 
hand, the index map

i :
{
(P,Q) : P,Q projections such that (P,Q) is a Fredholm pair

}
→ Z

is continuous (see [4,2]), and induces a continuous map on the classes. Thus the index, as a map defined 
in DF , is continuous. �
Theorem 7.3. The connected components of DF are parametrized by the index: two elements A1, A2 ∈ DF

can be joined by a continuous curve inside DF if and only if

i(A1) = dimN(A1 − 1) − dimN(A1 + 1) = dimN(A2 − 1) − dimN(A2 + 1) = i(A2).
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Proof. By the above proposition, two elements in the same connected component have the same index. 
Conversely, using the elementary techniques of Section 6, an element A of index m ∈ Z can be joined to 
sgn(m)P , where P is a projection of rank |m|. Note that the curve constructed remains inside DF . Indeed, 
the curve joining A to sgn(m)P is obtained by shrinking the generic part A0: if

A = 0 ⊕E+1 ⊕ E−1 ⊕A0,

put

A(t) = 0 ⊕E+1 ⊕ E−1 ⊕ tA0.

Thus σ(A(t)) = {0, −1, 1} ∪ tσ(A0), which implies that 1 and −1 are isolated points of the spectrum of A(t), 
i.e. A(t) ∈ DF . Moreover, N(A(t) − 1) = N(A − 1) and N(A(t) + 1) = N(A + 1) are finite dimensional. 
Therefore A(t) ∈ DF . �

As remarked above, a particular (and proper, [3]) case of Fredholm pair (P, Q) occurs when A = P −Q

is compact. In other words, Dc ⊂ DF .

Corollary 7.4. The connected components of Dc are parametrized by the index: two elements A1, A2 ∈ Dc

can be joined by a continuous curve inside Dc if and only if

i(A1) = dimN(A1 − 1) − dimN(A1 + 1) = dimN(A2 − 1) − dimN(A2 + 1) = i(A2).

Proof. Note that the curve A(t) remains inside Dc, a fact which is apparent. �
In Proposition 6.3 it was shown that two elements in Dc can be joined by a continuous path in D. The 

above corollary states that if their index is different, this path necessarily wanders outside Dc.
Another consequence of the characterization of Fredholm pairs in terms of the spectrum of their difference, 

is the following.

Proposition 7.5. DF is open in D: if A ∈ DF there exists r = r(A) > 0 such that if B ∈ D and ‖B−A‖ < r, 
then B ∈ DF and i(B) = i(A).

Proof. Since 1 is isolated in σ(A), there exists δ > 0 such that σ(A) ∩ (1 − 3δ, 1 + 3δ) = {1}. By the 
semi-continuity of the spectrum [10], the set

{
T ∈ B(H) : T ∗ = T, σ(T ) ⊂ (−2, 1 − 3δ) ∪ (1 − δ, 1 + δ)

}
is open in Bh(H) := {S ∈ B(H) : S∗ = S}, and clearly contains A. Thus there exists r1 such that if B ∈ D
and ‖B−A‖ < r1, then σ(B) ⊂ (−2, 1 −3δ) ∪(1 −δ, 1 +δ). Consider the (well defined) selfadjoint projection 
Eδ(B) given by the Riesz integral

Eδ(B) = 1
2πi

∫
|z−1|=2δ

(B − z.1)−1dz.

As a map in B, defined in {B ∈ D : ‖B−A‖ < r1}, Eδ(B) is apparently continuous. Thus we may eventually 
further shrink r1, in order that if ‖B −A‖ < r1 also implies

∥∥Eδ(B) − Eδ(A)
∥∥ =

∥∥Eδ(B) − E+1
∥∥ < 1,
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where, as above, E+1 is the orthogonal projection onto the eigenspace of A corresponding to +1. It follows 
that Eδ(B) is unitarily equivalent to E+1, therefore Eδ(B) also has finite rank, and σ(B) ∩ (1 − δ, 1 + δ) is 
finite. Thus 1 is isolated in σ(B) (in the event that 1 ∈ σ(B)) and the projection E+1(B) onto N(B − 1)
verifies

E+1(B) ≤ Eδ(B)

and therefore has finite rank.
Analogously there exists r2 > 0 such that, −1 is isolated in σ(B) if ‖B − A‖ < r2, and E−1 has finite 

rank. Thus B ∈ DF . By the local continuity of the index in DF , it follows that i(B) = i(A). �
Operators in DF should not be confused with operators in D which are themselves Fredholm operators. 

The latter class consists of A ∈ D such that dim(N(A)) < ∞ and R(A) is closed. This class was characterized 
in [11]. Note that they have index zero. On the other hand, any value of the index can happen in the sense 
above (i.e. index of the pair of projections). Any A = A0, equal to its generic part, belongs to DF , but need 
not be a Fredholm operator, for instance A = Mt in L2(−1, 1).
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