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ABSTRACT. In this paper we propose a process of lagrangian reduction and
reconstruction for nonholonomic discrete mechanical systems where the action
of a continuous symmetry group makes the configuration space a principal
bundle. The result of the reduction process is a discrete dynamical system that
we call the discrete reduced system. We illustrate the techniques by analyzing
two types of discrete symmetric systems where it is possible to go further and
obtain (forced) discrete mechanical systems that determine the dynamics of
the discrete reduced system.

1. Introduction. The elimination of degrees of freedom of a symmetric mechani-
cal system, the basic goal of reduction theory, is an old subject that dates back to
the mid-nineteen century. The work of Routh in the context of abelian symmetries
of classical mechanical systems was extended by many others in an effort to explore
different aspects of the reduction process. Currently, there are well developed theo-
ries of reduction in the Hamiltonian setting, where the emphasis is in the reduction
of the symplectic and Poisson structures, and the lagrangian setting, mostly focused
on the reduction of variational principles. The literature in this area is vast; modern
references are, for instance, [18, 2, 22, 8].

Discrete time mechanical systems have been considered in the literature since
the 1960s, mostly as a way to approximate and model the behavior of (continuous)
mechanical systems (see [21] and the references therein). The dynamics of nonholo-
nomic discrete mechanical systems has been introduced by J. Cortés and S. Martinez
in [10]. Many characteristics of mechanical systems have a discrete analogue. One
important feature whose discrete analogue has been exposed only partially in the
literature is the reduction of symmetries. The purpose of the present work is to de-
scribe a reduction and reconstruction process for discrete time mechanical systems
with nonholonomic constraints, in the lagrangian setting.
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There are many reasons for being interested in the reduction of a symmetric
system, be it continuous or discrete. On the one hand, the reduced system has less
degrees of freedom, which may be an advantage when trying to solve the equations
of motion. On the other, in many cases, the reduced system encodes the core
dynamics of the system of interest. A good example of the advantage of working
on the reduced system in the discrete case is presented by S. Jalnapurkar et al.
in [16] where they show how the reduced system is free from geometric phases’
effects allowing them to observe interesting dynamical structures, which were hard
to separate in the unreduced system.

There are already several results on the reduction and reconstruction of sym-
metric nonholonomic discrete mechanical systems available in the literature. The
case where the configuration space of the system (@ is a Lie group has been studied
by Y. Fedorov and D. Zenkov in [13, 12] and by R. McLachlan and M. Perlmutter
in [23]. They obtain reduced equations of motion on the Lie algebra of the Lie
group of symmetries which coincide, in the unconstrained case, with those obtained
by A. Bobenko and Y. Suris in [4]. The case of Chaplygin systems, that is, when
the symmetry group acts in such a way that no symmetry direction is compati-
ble with the given constraints is analyzed by J. Cortés in [11] and, in context of
groupoids, by D. Iglesias et al. in [15]. Also, the unconstrained case has been
treated by S. Jalnapurkar et al. in [16] and, using discrete connections, by M. Leok
et al. in [19]. A different approach using groupoids is given in [15]; in this case,
the abstract reduction theory of groupoids produces a general reduced system on a
groupoid; our approach differs from theirs, ours being more elementary —we stay
in the “pair groupoid” case— and, at the same time, more explicit because we
incorporate additional information (connections) to our models.

The reduction results that we present here are modeled on the results of H. Cen-
dra et al. in [8] for continuous systems. They consider the action of a Lie group G
on a configuration manifold @ so that the quotient map 7 : Q — @Q/G is a principal
bundle and the other data is G-invariant. They relate the variational principle that
determines the dynamics of the original system with a reduced variational principle,
that determines the dynamics of the reduced system. Eventually, equations of mo-
tion are derived from both variational principles. The introduction of a connection
on the principal bundle 7 serves them to, first, construct an isomorphic model for
the natural reduced space T'Q) /G and, also, to split the reduced variational principle
and equations of motion into horizontal and vertical parts. Appropriate choice of a
connection can lead to a simplified analysis of a specific mechanical system.

At a philosophical level, a common approach to discrete mechanics consists of
replacing the tangent bundle T'Q by @ x @, with the idea that infinitesimal dis-
placement —velocities— are replaced by finite displacement —pairs of points. Even
though this is a powerful idea, there are some very important differences between
TQ and Q x @Q, that make it difficult to transfer techniques developed for continuous
systems to discrete systems, as we will see later. The construction of the reduced
space in [8] relies on an isomorphism defined using a connection on the principal
bundle @ — @Q/G, which is seen as a G-invariant splitting of T'Q), that descends to a
splitting of T'Q/G. In the discrete case, we follow the same path, but using what we
call an affine discrete connection, a minor generalization of the discrete connections
introduced by M. Leok et al. in [19] which allows us to split (@ x Q)/G. Using, in
addition, a connection, we are able to derive a reduced variational principle as well
as reduced equations of motion that split in horizontal and vertical parts.
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The vertical part of the variational principle and equations turn out to be equiv-
alent to what is known as the discrete nonholonomic momentum evolution equa-
tion [10] that determines how the discrete nonholonomic momentum mapping, de-
fined in terms of the symmetry directions that are compatible with the constraints,
evolves for discrete mechanical system. The so called horizontal symmetries have
the property of preserving the discrete nonholonomic momentum.

We specialize the general reduction process in two different settings: the Chap-
lygin and horizontal systems, where we can go further to obtain reduced systems
that can be described easily. The first case is already present in the literature and
we derive the known results from our approach. The other hasn’t been considered
before in the discrete setting to our knowledge; horizontal systems have been con-
sidered in the continuous setting by Cortés in [11]. Our approach can also be used
in the case where the configuration space is a Lie Group to re derive the results
of [23] mentioned above.

Constraints in a mechanical system on a configuration space @ are usually given
by two distributions: D that describes the allowed variations and Cx that limits
the allowed trajectories. The D’Alembert Principle used to determine the dynamics
of such systems requires that D = Cx. More general situations, called generalized
nonholonomic systems, where no connection is made between D and Cy, have been
considered in [20, 7, 5] . Discrete mechanical systems as introduced in [10] should be
called generalized in the same sense as above, since the setup for constrained discrete
mechanical systems consists of D, with the same meaning as in the continuous case,
and a submanifold Dy C @ x @ which restricts the allowable discrete trajectories,
and no relation between the two is assumed.

The layout of the paper is as follows. In Section 2, we sketch very roughly the
lagrangian reduction of classical mechanical systems, which serves the dual purpose
of introducing the results in the continuous case as well as the variational approach
that serves as motivation for our work in the discrete case. Section 3 introduces
discrete mechanical systems and their symmetries. In Section 4 we introduce some
tools, including the affine discrete connections, that will be useful in the analysis of
the reduction process to be carried out in Section 5 and condensed as Theorem 5.11.
The statement of this result is written in terms that are not obviously defined on
the reduced system; the purpose of Section 6 is to give an intrinsic version of that
result, which we achieve with Corollary 6.5. The reconstruction of the original dy-
namics starting from that of the reduced system is explored in Section 7. Finally, in
Section 8 we study the discrete nonholonomic momentum mapping, showing that
the vertical part of the reduced variational principle is equivalent to the discrete
nonholonomic momentum equation. The rest of the paper deals with the special-
ization of the general theory developed so far to particular situations. In Section 9
we obtain the equations of motion for systems where @Q — Q/G is a trivial princi-
pal bundle. In Sections 10 and 11 we study systems with Chaplygin and horizontal
symmetries respectively; in the Chaplygin case we obtain intrinsic versions that spe-
cialize to the results of [11], while in the horizontal case we find the discrete version
of a type of symmetry whose continuous counterpart had been studied in [11].

Last, we wish to thank Herndn Cendra for his interest and valuable comments
on this work.
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2. Reduction of classical mechanical systems. In this section we recall some
basic facts of the lagrangian reduction theory of (generalized) nonholonomic me-
chanical systems in the presence of symmetry. We refer to [3] and [6] for further
details.

2.1. Generalized nonholonomic mechanical systems.

Definition 2.1. A generalized nonholonomic mechanical system is a quadruple
(Q,L,D,Ck) where Q is a differentiable manifold, the configuration space, L :
TQ — R is a smooth function on the tangent bundle of @, the lagrangian, D
is a subbundle of T'Q, the wariational constraints or wvirtual displacements, and
Ck C TQ is a submanifold, the kinematic constraints.

For every such system, the action functional is defined by

S(q) = / " Lig(t), (),

to
where ¢ : [to,t1] — @ is a smooth curve in @ and ¢ : [to,t1] — T'Q is its velocity. An
infinitesimal variation of ¢ is a smooth curve dq : [to,t1] — T'Q . An infinitesimal
variation is said to have vanishing end points if dg(t9) = 0 and dq(t1) = 0.
The dynamics of a generalized nonholonomic mechanical system is determined
by the following Principle.

Definition 2.2 (Lagrange-D’Alembert Principle). A trajectory of (Q, L, D, Ck) is
a curve q : [tg,t1] — @ which
e satisfies the kinematic constraints: (¢q(t),¢(t)) € Ck for all ¢ € [to, t1] and
e is a critical point of S for the admissible variations: dS(q)(dq) = 0 for all
infinitesimal variations dq of ¢ with vanishing end points and such that dq(t) €
Dy for all t € [to, t1].

As usual, the Lagrange-D’Alembert Principle gives rise to a set of equations
called the generalized Lagrange-D’Alembert equations for (Q,L,D,Ck). These
equations of motion can be written in a coordinate-free way if an affine connection
V on @ is chosen. Assuming this additional datum, [6] proves the following result.

Theorem 2.3. A smooth curve q in Q is a trajectory of (Q,L,D,Ck) if and only
if (q(t),q(t)) € Ck for all t € [to,t1] and
D . . o
— 1 FL(a(t), (1) + BL(q(t),4(2)) € (Pywy)®  for all  t€[to,ta], (1)
where FL and BL denote the fiber and base derivatives of L, as defined in [6, Defi-
nition 3] and (Dy))° C T;(t)Q is the annihilator of Dyyy C Ty Q-

Condition (1) is known as the (generalized) Lagange-D’Alembert equation.

2.2. Symmetric generalized nonholonomic mechanical systems. In what
follows, we assume that G is a Lie group that acts (on the left) on @ freely and
properly, so that the quotient 7 : Q@ — /G is a principal bundle with structure
group G. This action will be denoted by ng (¢) for all g € G and ¢ € Q; there is
an induced action of G on T'Q) given by ng(vq) = dl?(q)(vq) for all g € G' and
vg € T,Q), that is called the lifted action.

Definition 2.4. G is a symmetry group of (Q,L,D,Ck) if, in addition to the
general assumptions stated above, L, D and C'x are G-invariant, that is, if LOZ;;FQ =
L, 1T?(D) ¢ D and IT9(Ck) C Ck for all g € G.
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The wvertical bundle V& over @ is a subbundle of T'Q) with fibers VqG =

Tq(lg({q})). We assume that the distribution S with fibers S, := VqG N Dy has
locally constant rank, so that it is a subbundle of T'Q). This condition, which ap-
plies to many interesting examples, is verified when, for instance, 7,,Q) = D, +V, for
all ¢ € @ —the “dimension assumption”— holds, as is usually considered in much
of the literature.

Assume that G-invariant subbundles of T'Q), H, U and W can be chosen in such
a way that H and U are direct complements of S in D and V¢ respectively, and W
is a direct complement of D + V& in TQ. All together, we have the decomposition

TQ=WaoUdS®H, (2)

where D = S @ H and V¢ = S @U. One way to construct the complementary
bundles ‘H, U and W is as orthogonal complements for some G-invariant inner
product on 7T'Q. This type of inner product is usually available as the kinetic
energy of symmetric mechanical systems.

Following [3] and [6], we associate a connection to the decomposition (2).

Definition 2.5. The unique connection .4 on the principal bundle 7 : Q@ — Q/G
whose horizontal space is Hor4 = W @ 'H is called the generalized nonholonomic
connection associated to the system (Q, L, D, Cx) and the splitting (2).

2.3. Reduction of symmetry. When G is a symmetry group of (Q, L, D, Ck) we
define the reduced lagrangian ¢ : TQ/G — R by £([(q,¢)]c) := L(q, §)-

In order to establish a reduced variational principle and study the reduced equa-
tions of motion [9] and [8] find it more convenient to work on a diffeomorphic model
of TQ/G as follows. Given a principal connection A on 7 : Q — Q/G there is an
isomorphism of vector bundles over Q/G

ax:TQ/G—T(@Q/G) D,
where g is the Lie algebra of G, g is the adjoint vector bundle (see [17]) of = and
aallg, dla) == dr(q,q) ® [(g,A(g,4))]c. The connection of choice used to define
a4 is the generalized nonholonomic connection A introduced above. The reduced

lagrangian ¢ can be transported to this new model space as L : T(Q/G)®g— R,
defined by
E(I, T, T)) = f((aA)_l(x, x, ’D)) = L(Qa Q)a
where (z, &) = dr(q, ¢) and v = [(¢, A(g; 4))]c-
The reduced dynamics of the system is defined in [6] by the following principle.

Definition 2.6 (Generalized Lagrange-D’Alembert—Poincaré Principle). A trajec-
tory of the reduced system determined by the symmetry group G of (@, L, D, Ck)
is a curve p = (x,2) ® v : [to, t1] — T(Q/G) ® g which
e satisfies the reduced kinematic constraints: u(t) € Cx = ax(Ck/G) for all
t e [to, tl].
e is a critical point of the reduced action

/t ' L(x(t), &(t), v(t))dt

for some infinitesimal variations dp = 0z @ 620 of u such that, if ¢ is a lift
of # to @, 6x(t) € Dl = dr(q(t))(Dycr)) and 645(t) € D* = aa(S/G)
with all variations vanishing at the end points. The precise description of the
set of infinitesimal variations where the criticality condition applies requires
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a special form for the 6o involving the curvature of A (we refer to [6] for
further details).

The dynamics generated by this principle can be described using equations of
motion, called the reduced generalized Lagrange-D’Alembert—Poincaré equations,
which are equivalent to the generalized nonholonomic Lagrange-D’Alembert equa-
tions of the system (@, L, D, Ck), as shown by Theorem 9 of [6].

Theorem 2.7. Let G be a symmetry group of (Q,L,D,Ck), A be the generalized
nonholonomic connection on 7 : Q — Q/G associated to a splitting of TQ and
q: [to,t1] — @Q a curve on Q. Then the following statements are equivalent.

o The curve q satisfies (q(t),(t)) € Cx for all t € [to,t1] and (1) holds.
o The curve p : [tg,tl] - T(Q/G) @ g given by p = (x,2) v = aa([(¢,9)]c)
satisfies p(t) € Cx and
D a.i/ *a-i/ NU o
—E%(M(f)) + a%%(ﬂ(f)) € (Dy)
D 0L oL OL . o en o
Dy + Loy - (2L B) € By

for all t € [to, t1], where B is the reduced curvature of A.

3. Discrete mechanical systems and symmetries. In this section we review
the notion of discrete mechanical system with nonholonomic constraints, that is
the discrete time analogue of the (generalized) nonholonomic mechanical systems
considered in Section 2. We also consider symmetries of such systems.

3.1. Discrete mechanical systems.

Definition 3.1. A nonholonomic discrete mechanical system consists of a quadru-
ple (Q, L4, D, Dy) where Q and D are as in Definition 2.1, Ly : @ x Q@ — R is a
smooth map, the discrete lagrangian, and Dy C @ % @ is a submanifold, the discrete
kinematic constraints.

Remark 3.2. The discrete mechanical systems defined above are slightly more
general than those considered in [10] because we are not requiring that the diagonal
of @ x @ be contained in Dy. Still, in order to construct a dynamical system, we
will assume that D, contains the graph of a smooth map @ — @, with the case
of [10] corresponding to the identity.

Following [10], discrete mechanical systems define discrete dynamical systems
using a discrete Lagrange-D’Alembert Principle, roughly saying that trajectories of
the dynamical system are critical points of the discrete action functional

N-1
Salq.) = Z La(qw, qr+1)
k=0

that satisfy the constraints. The following definition makes this notion precise.

Definition 3.3 (Discrete Lagrange-D’Alembert Principle). A discrete curve in Q
isamap q :{0,1,...,N} — @ and a variation of a discrete curve ¢. consists of a
map d¢g. : {0,1,... N} — T'Q such that g, € T,,Q for all k. A variation is said to
have vanishing end points if 6go = 0 and dgny = 0. A trajectory of (Q, Lq, D, Dy) is
a discrete curve ¢. which
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e satisfies the kinematic constraints (gg, qx+1) € Dq for all k and
e is a critical point of Sy for all admissible variations dq. of ¢.: dS4(q.)(dq.) =0
for all infinitesimal variations with vanishing end points dq; € D, for all k.

The discrete Lagrange—-D’Alembert Principle leads to a set of equations. Indeed,
if D; denotes differentiation with respect to the j-th component of a Cartesian
product,

1
o dLa(qr, qk+1)(0qk, 6qr+1)
N-1
= Zk:l (D1La(qr, 1) + DaLa(ar—1.qx)) (5qr)
+ D1La(q0,q1)(0q0) + D2La(gn—1,qn)(0gn),
so that ¢. is a trajectory of (Q, Lq, D, Dy) if and only if, for all k,

aSa(a)(60) =3

D1La(qk, qk—1) + D2La(qr-1,qx) € Dy, and (g, qk+1) € Dy (3)

or, if X«(qk,qk+1) = 0 are local equations defining Dy,

M
D1La(qrk, qr—1) + DaLa(qr—1,qr) = Za:l Aakew(qr) and  Xx(qr, qre1) =0,

for some constants Ao x € R and DY = (w'(qx), ..., 0™ (qr)).

It can be shown that under sufficient regularity of the data, equation (3) has
solutions, that are unique given sufficiently closely spaced initial data (see [23,
Proposition 3] and [10]).

Sometimes it is necessary to consider systems that are forced. Such will be the
case below when we consider reduced systems, even when the unreduced one is not
forced. Thus, it is convenient to add the following notion.

Definition 3.4. A forced discrete mechanical system consists of a discrete mechan-
ical system (Q, L4, D, Dy) together with a 1-form f; on @ x Q. We often write

fa(q0,41)(890,0q1) := [y (90, 91)(390) + f3 (90, 1) (6qn) were f : p5(TQ) — R and
f; :pi(TQ) — R, where p; : Q@ x Q@ — @ denotes the projection on the j-th
component and p}(T'Q) is the pullback vector bundle (see [1]) over Q x @ .

The dynamics of a forced discrete mechanical system is given by the appropriately
modified discrete Lagrange—-D’Alembert principle as follows.

Definition 3.5. A discrete curve q. is a trajectory of the forced discrete lagrangian
mechanical system (Q, Lq, D, Dy, fa) if

e the curve satisfies the kinematic constraints: (qx, qx+1) € Dq for all k and
o for all variations dq. of ¢. that have vanishing end points and dq; € Dy, ,

N—-1

dSa(q.)(dq.) + Z fa(ar, ar+1)(qr, 6qr+1) = 0.

k=0

Just as we found a characterization in terms of equations in the unforced situa-
tion, q. is a trajectory of a forced system if and only if, for all &,

D1 La(qk qrr1) + DaLa(ar—1, ) + f3 (ar qe1) + f3 (ar-1,ax) € D5,
(qx; qr+1) € Da.
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3.2. Symmetric discrete mechanical systems. The main subject of this paper
is the analysis of discrete mechanical systems with continuous symmetry groups.
Here we continue under the assumption that the Lie group G acts on @ by [9
making the quotient map 7 : Q — Q/G a principal bundle. In addition, we consider
the diagonal action of G on @ x @ defined by I9*%(qo,q1) := (I2(q0), 1% (q1))-

Definition 3.6. G is a symmetry group of (Q, L4, D,Dy) if, in addition to what
was stated in the previous paragraph, Ly and Dy are invariant by [9*?, and D is
G-invariant by [T%. If the system is forced, we also require that the discrete force
fa be G-equivariant.

Several structures introduced in Section 2.2 remain useful in the current context.
In particular, we have the subbundles S, V¢, H,U, W C T'Q and the decomposition
of TQ given by (2). We also have a nonholonomic connection A associated to that
decomposition. We denote the horizontal lift associated with A by h : Q x¢g/a
T(Q/G) — TQ, that is hi(wx(q)) = vq if vy € Hor 4(q) and dr(q)(ve) = wr(q). The
following result is straightforward.

Lemma 3.7. Considering the G-actions given by the lifted action 179 and by
l?XQ/GT(Q/G)(q,tW(q)) = (ng(q),t,r(q)), the map h is G-equivariant.

For each g € @, the elements ¢ € g such that £o(¢) € D, form a subspace in g,
which may depend on ¢. For that reason, it is convenient to define the space

a” = {(0,) € @ x g:&(q) € Dy}

Using the projection on the first variable, g? is a vector bundle on Q. It is easy to
see that the differential in the group direction of [¢ establishes an isomorphism of
vector bundles g? ~ S.

4. Some discrete tools. An important step in the reduction process for classical
systems is the passage from T'Q /G to a model space T'(Q/G)Pg, as seen in Section 2.
This is achieved using the nonholonomic connection. In the discrete case, we follow
the same philosophy but connections are not the right tool for the task. In this
Section we introduce the notion of affine discrete connection and use it to construct
an isomorphism that, eventually, will play the role that a4 played in Section 2.3.

4.1. Affine discrete connections.

Definition 4.1. The discrete vertical bundle for the {9 action of G is the subman-
ifold

Vi ={(0,19(q) €QxQ:q€Q,g€G}.
For g € Q we define V¥ (¢) := V5 N ({¢} x Q) C Q x Q.

Definition 4.2. The composition of vertical and arbitrary elements of @ x @ with
the same first element is defined by - : V¥ x¢g (Q x Q) — @ x Q with

(QOJ?(QO)) (g0, q1) == (qoalf}?(‘h))-

We denote by ¢ the conjugation action of G' on itself, that is, lf(h) = ghg™!
for all g,h € G.

Definition 4.3. Let v : @ — G be a smooth G-equivariant map with respect
to 19 and 1€, T := {(q,lg(q)(q)) :q € Q} and Hor C Q x Q be a G-invariant
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submanifold such that I' C Hor. For each g € Q let Hor(q) := Hor N ({¢} x Q)
and Hor?(q) := pa(Hor(q)).

We say that Hor defines the affine discrete connection A,z on the principal bundle
m:Q — Q/G if, for each ¢ € Q and all ¢; € lg({q}) N Hor?(q),

Hor?(q) C Q is a submanifold and 7,,Q =T, (Zg({q})) © T, Hor*(q) (4)
(see Figure 1(a)). We denote Hor by Hor 4,, and call vy (or even I') the level of Ay.

Remark 4.4. Recalling the notion of transversality of submanifolds (see [14]),
condition (4) is equivalent to requiring that for each ¢ € @,

dim(Hor?(q)) = dimQ — dim G and lg({q}) m Hor?(q).

Remark 4.5. The notion of discrete connection introduced in [19], coincides with
that of an affine discrete connection where the level I' is the diagonal of @ x Q.
Since the diagonal of @ x @ plays the role of a “null element” for composition,
affine discrete connections need not contain the “null element” in their horizontal
space, just like affine spaces need not contain the null element of a vector space.

Remark 4.6. The idea behind the introduction of the previous definitions is that
Q@ x @ should be a discrete version of T'QQ. Even though this is a powerful idea,
there are several important differences between those spaces. Using the projection
on the first factor and the standard projection, both spaces are fibered over @, but
TQ is a vector bundle, while @ x @ is usually not one. In particular, tangent vectors
at the same base point can be added, whereas there is nothing similar for elements
of @ x Q. A partial fix for this problem is the composition operation introduced
in Definition 4.2: it provides a way of combining vertical elements of @ x @ with
arbitrary elements of QQ x @ based at the same point (that is, with the same first
component). Even though this is not a complete analogue of addition, it is enough
to handle discrete connections.

Connections are an important tool in differential geometry. Essentially, for prin-
cipal bundles 7 : Q@ — Q/G, they provide compatible splittings

T,Q = VqG ® Hor(q) forall ¢qeQ@. (5)

In the discrete setting, we want to be able to split {¢} x @ in vertical and (some)
complementary space. Not having an addition operation we choose a more geometric
view of the problem and define affine discrete connections in terms of spaces that
are complementary to V(? in the precise sense of Definition 4.3. Furthermore, this
definition is equivalent to being able to decompose {¢} x Q = V¥ (q) - Hor(q) (at
least in a neighborhood of T"), which is the composition-analogue of (5).

Proposition 4.7. Let Ay be an affine discrete connection of level ~y. Then, there
exists U, a G-invariant open neighborhood of T in Q x @, such that, for all (qo,q1) €
Q x Q with w(q1) sufficiently close to w(qo), there is a unique g € G such that

(40, 91) = (90,1 (0)) - (q0, 1"+ (1)), (6)

with (q07l§271(q1)) € Hora,(q) NU.

Proof. Since l,?(qo)(qo) € 12({g0}) N Hor? (qo), the condition I&({go}) M Hor? (qo)

implies that H ori‘d (qo) intersects all orbits of G that are close to the one through
go (see Figure 1(b)). Therefore, for any ¢; with 7(qy) sufficiently close to m(q),
there are ¢ € G such that qu,l(ql) € Hor% (qo). Furthermore, again by the
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transversality condition, there is an open set V;, C @ where the intersection
lg({ql}) N Hor? (go) N Vg, consists of a single point. Hence, there is a unique
g € G such that l?,l(ql) € Hor% (q) N Vg Finally, taking into account the
smoothness of Hor, U is constructed by gluing the sets V. O

12({a0}) 12({q0})

Hor?(qo) Hor?(qo)

AN
© 1 EQI)
/
a y
q0
q1
m2(U N {q0} x Q)
(a) G orbit (lg(qo)) and (b) G orbit through go and
Hori\d (q0) nearby orbits

FIGURE 1. G orbit and Hor? (qo) in Q

Remark 4.8. The existence of a level function as a datum for an affine discrete
connection may seem a bit strange at first. However, if a decomposition like (6) is
expected, by taking ¢1 = qo, we see that (qo, l?,l (q0)) € Hor4,(qo), so y(qo) := g~ *

is a level function for Ay.

Definition 4.9. Given an affine discrete connection A, we define its discrete con-
nection 1-form Agq : Q x Q@ — G by Aq(qo,q1) := g where g is the element of G that
appears in decomposition (6).

Remark 4.10. Notice that we will use the same letter to name both the connection
Ag and its discrete connection 1-form. Also, calling A4 a 1-form can be misleading
since it is not a 1-form in the usual sense but, rather, a function. Still, the name is
coming from the fact that when Leok et al. introduced it in [19] they also introduce
the notion of “discrete k-form”, and Ay is a discrete 1-form in that sense.

Remark 4.11. Due to Proposition 4.7, Ay is only defined in a G-invariant open
set U C @ x Q. In what follows, we will abuse the notation and pretend that Ay is
defined everywhere not to make the notation too cumbersome.

Proposition 4.12. Let Ay be an affine discrete connection on the principal bundle
m:Q — Q/G. Then, for all (qo,q1) € Q X Q and go, g1 € G,

Aa(l$ (90), 13 (1)) = g1 Aa(q0, 41)95 (7)
as long as both sides are defined. Conversely, given a smooth function A : Q x Q —
G such that (7) holds (with Aq replaced by A), then Hor := {(qo,q1) € Q@ X Q :
Alqo,q1) = e} defines an affine discrete connection Aq with level v(q) :== A(q,q)~!
and whose discrete connection 1-form is A.
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Proof. Writing A4(qo,q1) = g and A4(I% (q0),18 (q1)) = g, by definition,

(90, 91) = (90,13 (q0)) - (0,121 (q1))
— —
EHora, (qo)

(ngU ((Jo)al;}Ql (1)) = (ngU (qo)J?(l% (90))) - (ngU (qo),lg{l(lﬁ (q1)))-

€Hora, (13 (q0))

By the G-invariance of Hory4,, since (qo,lf];),l(ql)) € Hora,(qo), it follows that

(19(q0),12 - (1)) € Hora,(I$ (go)). We can write

(1 (20,13, (a1)) = (I (20), 17 | 115 (20))) - (13 (q0). I 41 (1)) -

€Hora, (15, (40))

Identity (7) follows, then, from the uniqueness of the decomposition (6).

The converse result is, mostly, routine checking and we will omit the details.
That Hor is a submanifold follows from the easily proved fact that e € G is a
regular value of A. The same proof shows that pa(Hor(qo)) is a submanifold of @
of the right dimension. The G-equivariance of A shows that Hor is G-invariant.
An application of (7) leads to establishing the transversality condition for Hor.
Finally, taking v(q) := A(g,q) ', one concludes that Hor defines an affine discrete
connection of level ~. O

Affine discrete connections have discrete horizontal lifts, just as regular connec-
tions do.

Definition 4.13. Let A be an affine discrete connection on the principal bundle
7 Q — Q/G. The discrete horizontal lift h, : Q x Q/G — @Q x Q is given by

h% (r1) :== (g0.q1) © (q0,q1) € Hora, and 7(q1) =r1.
We define h_g“ := py o K.
Remark 4.14. The map h¥ (rq) is well defined, provided that rq is sufficiently
close to 7(qo), since for any ¢ € m*(r1),

hgo(ﬁ) = (QO7l§d(q07ql)—1(Q1))' (8)

Lemma 4.15. Let Ay be an affine discrete connection on 7 : Q — Q/G and
consider the natural actions of G on Q x (Q/G) (extending 1% trivially on the
second factor) and the diagonal action on @Q x Q. Then, h, is G-equivariant.

Proof. Tt is a direct computation using (8). O

For completeness we mention that having a smooth and G-equivariant map 7 :
Q x (Q/G) — Q x Q such that 7o py on? = id|g,¢ for all ¢ € Q is equivalent to
having an affine discrete connection whose discrete horizontal lift is 7.

Remark 4.16. Discrete connection forms A, and discrete horizontal lifts may not
be defined everywhere. Indeed, if h; : @ X (Q/G) — @ x @ is defined everywhere,
then for any ¢ € @, the map r — h_g(r) is a global section of the principal bundle
m:Q — Q/G, so that the bundle is trivial. Hence, for nontrivial principal bundles
h, and, consequently, Aq can only be defined in some open set of the total space.
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On the other hand, if @ has a G-invariant riemannian metric —as it usually
happens for mechanical systems— the following construction provides a discrete
affine connection. Let v be a level function and define

Hor := {(qo, exp5(4)(v1)) € @ x Q@  for some vy € (V;?(qo))J‘ C T5(q0) @},
where exp and L are those of the riemannian metric and ¥(qo) := lg(qo) (qo). Tt can
be checked that Hor defines a discrete affine connection of level 7. Notice that the
domain of the associated discrete affine connection form and discrete horizontal lifts

are limited by the domain of the exponential mapping.

Example 4.17. Consider Q := R? with the action of G := R given by qu(q) =
(z,y + g), where ¢ = (z,y). Clearly, p, = 7 : Q — Q/G is a (trivial) principal
bundle with structure group G. In order to define an affine discrete connection on
this bundle we need to find a G-invariant manifold Hor that is “complementary” to
V¢ = {(q0,q1) €EQ*xQ: 29 =11} in Q x Q. We consider complements to Zg({qo})
for go € Q. A G-invariant family of curves that is complementary to the orbits is
Hor®(qo) = {q1 € Q : y1 — yo = b(x1 + x0)(x1 — 20)/2} for a parameter b € R.
Since Zg({qo}) N Hor® (qo) = {qo}, the only thing we have to prove in order to see
that Hor = {(qo0,q1) € Q X Q : y1 — yo = b(x1 + z0)(x1 — x0)/2} defines an affine
discrete connection is that Ty, Q = Tyl ({g0}) ® Ty Hor® (qo), which is evident
because qulg({qo}) = <8y‘q0> and T,, Hor® (qo) = <8m’q0 + bxoay]%). We denote

the discrete connection defined by Hor with AY.

Since
1
(90:91) = (90,13 (0)) - (90,12 (1)) for g =1 —yo— 5@+ 20)(z1 — o),
—_———
GHOTAZ
we have

Ab(q0, 1) = 1 — yo — b(z1 + 20) (21 — 30) /2
R (r1) = (o (11, Yo + b(r1 + x0)(r1 — x0)/2)).

The fact that A% and h% are defined everywhere is compatible with Q@ — Q/G
being a trivial principal bundle.

9)

4.2. Isomorphisms associated to an affine discrete connection. When work-
ing with symmetric discrete mechanical systems, one is led to consider the space
(Q x Q)/G. Tt is convenient to have a different model for this space. In this section
we construct such a model associated to an affine discrete connection Ag.

We start with a special case of a general construction called the associated bundle
of a principal bundle (see Chap. 1, Sect. 5 of [17]).

Definition 4.18. Let 7 : ) — @Q/G be a principal bundle and consider the action of
G on Q x G defined by 19%%(q, w) = (19(q), 15 (w)), with IS (w) := gwg™". Being 7
a principal bundle, the quotient G := (Q x G)/G by this action is a manifold, called
the conjugate associated bundle. The quotient map is denoted by p: Q x G — G.
The projections onto each of the two components of ) x G induce smooth maps

pQ/¢ . G - Q/G and p©/% : G — G/G. The first, p?/¢, turns G into a bundle
over /G with fiber G.

It is convenient to define
Fl QXGX(Q/G)—)Q with Fl(qO,’LUQ,Tl)Z: lgo(h_g”(rl))
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Extending the G action 19%¢ to Q x G x (Q/G) trivially on the last component
and considering the G action on @), a simple computation using the G-equivariance
of h, shows that F; is G-equivariant.

]E’roposition 4.19. Given an affine fliscrete connection Ag on 7 : Q — Q/G, let
Dy, QXQ—=QxGx(Q/G) and V4, : Q X G X (Q/G) = Q x Q be defined by
®4,(q0, q1) == (90, Aa(0, 01), 7(q1))
@Ad(%vwo,ﬁ) = (QO,E(QO,U}O,H))-
Then, ‘i)Ad and \iJAd are smooth and mutually inverses (when restricted to the do-
main of Ag). Furthermore, considering the diagonal action of G on @ X Q and
Z?XGX(Q/G)(qQ, wo, 1) = (19(q0), 1§ (wo), 1), both maps are G-equivariant, so that
they induce diffeomorphisms ® 4, : (QxQ)/G — Gx(Q/G) and ¥ 4, : Gx(Q/G) —
(@ xQ)/G.

Proof. That ® 4, and ¥4, are smooth is clear from the definition. Checking that
they are inverses and the G-equivariance is done by direct computation. |

Remark 4.20. In fact, when 4, and h_d are not globally defined the maps ® 4,
and W4, are diffecomorphisms between open neighborhoods of of I'/G and (Q x

{e})/G x(Q/G).

The commutative diagram (10), where 7 is the quotient map and T := ® 4, o 7,
shows some of the spaces and maps we have introduced and that will be used later,
when analyzing the behavior of symmetric discrete mechanical systems.

QxQ—20 Q% G x (Q/G) (10)

I

(@ x Q)/Gé—:;é x (Q/@G)

Lemma 4.21. Let (qo,q1) € Q X Q and (qo,0q1) € T(gy,q,)(Q x Q). Then,
dY (g0, q1)(6g0,6q1) = (dp(qo,Aa(q0,q1)) (90, dAa(qo, q1)(q0,6q1)), dm(q1)(0q1))-
Proof. Compute dY, using T = (p x id) o  4,. O

Example 4.22. In the context of Example 4.17, we have that @ = (Q/G) x G with
the G-action on @ corresponding to left multiplication on G. Then G ~ (Q/G) x G
with p((ro, ho),wo) — (ro,wp). The map p has a section s(rg,wp) := ((r9,0),wo)
(where we are using implicitly the isomorphism just defined). The isomorphisms
that appear in Proposition 4.19 are

(i)Ag (90, 1) = (%0, 90), y1 — Yo — b(z1 + o) (1 — 20)/2, 71)
&);é((ro, ho),’wo,T‘l) = ((’f‘o, ho), (7‘1, ho + b(T‘l + 7'0)(7“1 — 7‘0)/2 + ’wo))

Remark 4.23. The model spaces Q x G x (Q/G) and G x (Q/G) are by no means
unique. In fact, given an affine discrete connection Ay it is possible to consider the
isomorphism a4, : (@ x Q)/G — (Q/G x Q/G) xg a G defined by

a4, (7(q0,q1)) = ((m(q0),7(q1)), p(q0, Ad(q0, G1)))-
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This isomorphism and the corresponding model space are very close to the data
used in the analysis of the continuous case in Section 2.3 and is introduced by [19]
in their proposed reduction of discrete unconstrained systems. Still, the presence
of the fibered product in the model space makes it harder to work with compared
to the simpler Cartesian product that appears in G' x (Q/Q).

5. Variations and reduced variations. In this section we analyze the relation-
ship between the dynamics of a symmetric discrete mechanical system on @ x @,
which induces a dynamics on (an open neighborhood of @ x {e} x (Q/G) in)
(@ xQ)/G and the dynamics on (an open neighborhood of (Q x {e})/G x (Q/G) in)
the isomorphic model G' x (Q/G) of (Q x Q)/G. In order to describe the dynamics
on this last space we start by introducing some relevant notions.

5.1. Reduced lagrangians. Given (Q, Ly, D, D,) with a symmetry group G and
an affine discrete connection Ay we construct a dynamical system on Q x G x (Q/G)
using the isomorphism P4 .- In particular, the dynamics will be determined using
the function Ly := Lgo W A,- Since Lg is G-invariant and, taking into account the
symmetry properties of the system, Lq is G-invariant, Ly and Lg induce maps on
the corresponding quotient spaces. We denote the map induced by Lg on G x (Q/G)
by Lg. Therefore,

La(qo,wo,71) = La(qo, F1(q0,w0,71)) and  La(p(qo, wo),m1) = Lalgo,wo,71).
The following diagram shows all the relevant maps introduced so far.

R

Lg -
Ly

QxQ———=QxGx(Q/G)

Da,
7t Xid,
wl \ lp

@xQ)/G

La

DA,

@ssociaﬁted to the reducgd discrete lagrangian Lg we define a reduced discrete action
Sa by Sa(v.,r.) == >, La(vk, Tkt1)-
Example 5.1. Consider the discrete mechanical system (@, Lq, D, Dy), where
Q:=R? with points ¢ = (z,y),
La(qo0,q1) == m((z1 — 20)* + (1 — %0)°) /2,
Dy = {@0:|, +99,|, € T,Q : § = wi} = (0|, — 29, ) C T,0Q,
Dy :={(q,q1) € Q x Q :y1 —yo = (1 + z0)(z1 — 70)/2},

that originates as a discretization of a free particle in R? subject to a nonholo-
nomic constraint. This system can be readily solved using the discrete Lagrange—
D’Alembert equations (3). Rather than following that path we will make a detailed
study of its reduction in the following sections in order to illustrate some of the
techniques developed so far.

The group G := R acts on @ as considered in Example 4.17, turning G into
a symmetry group of (Q, Lq, D,D4). Furthermore, for arbitrary b € R, AZ de-
fines isomorphisms ® Ab and @ Ab that can be used to study the system. Since, by
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Example 4.22, G x (Q/G) ~ (Q/G) x G x (Q/G), the relevant lagrangians are

Ld((f‘o, ho), wo, 7‘1) = m((rl - 7‘0)2 + (’wo + b(Tl + 7‘0)(7‘1 - 7‘0)/2)2)/2
La(ro, wo, 1) = La((r0,0), wo, 1)
Back in the general setting, we notice that, since Lq is G-invariant and Q x

G x (Q/@G) is a Cartesian product (so that differentials on that space decompose in
terms of differentials on each of the spaces),

dLa(vo, m1)(6v0, 6r1) =dLa(p(go, wo), 1)(dp(q0, wo)(g0, 6wp), 671)
=dLq(qo,wo, ) (8q0, dwo, 671)
=D1La(qo, wo,71)(6g0) + D2La(qo, wo,1)(Swo)
+ D3L4(qo, wo,71)(071).

(11)

In Section 5.2, we study more carefully the second term in this last equality.

Lemma 5.2. Considering the G actions [2*XG*(Q/CG) 1Q 1C and their lifted actions
to the corresponding tangent spaces, the following morphisms of vector bundles over

QxGx(Q/G)
DiLy:piTQ —R and DolLg:piTG — R

are G-equivariant, where p1 and pa are the projections of @ x G x (Q/G) onto the
corresponding factors.

Proof. The G-invariance of Lg leads to the G-equivariance of dLgq : T(Q x G x
(Q/G)) — R. The statement follows by decomposing T(Q x G x (Q/G)) = piTQ &
PTG & psT(Q/G). O

5.2. Mixed curvature and reduced forces. Given a principal bundle 7 : Q —
Q/G, a connection A and an affine discrete connection Ay we construct an ob-
ject that, somehow, compares the notions of continuous and discrete horizontality
introduced by A and Ay.

Definition 5.3. The mized curvature B, of A and Ay is the morphism of vector
bundles over Q x Q, By, : T(Q X Q) — Ag*(TG) defined by

Bm(QOv Q1)(5QO7 5‘]1) = dAd(QOv fh)(HOTA (5(]0)5 HOTA(5Q1))7

where Hor4(dq) denotes the A-horizontal part of dg. Taking into account the
isomorphism 7(Q x Q) ~ pj(TQ) @ p5(T'Q), the mixed curvature decomposes as
B, = B}, + B,,, where B}, : p3TQ — A" (TG) and B,, : piTQ — A" (TG) are

B! (g0, ¢1)(6q1) =B (q0,91)(0,6g1) = D2 Aa(qo, q1)(Hora(dq1))
B, (90,q1)(0q0) :=Bm(q0,q1)(690,0) = D1.Aa(qo, q1)(Hora(dqo)).

Remark 5.4. An obvious difference between the mixed curvature and the curvature
of a connection is that the former can be represented as a 1-form, while the latter
is represented as a 2-form.

Remark 5.5. The mixed curvature measures how A-horizontal deformations at
(o, q1) depart from the level manifolds of A,.
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Example 5.6. We continue in the context of Example 5.1. In order to compute the
mixed curvature (and continue analyzing the reduction of the system) we introduce a
connection on the principal bundle 7 : @ — @/G. For that purpose, the splitting (2)
is

7,Q = {0} @ <ay‘q> ® {0} @ <6:E‘q +$8y‘q>'
- L =~

~—_——
=Wq =U, =Sq =Hq

The connection A with horizontal space Hor 4 = W ® H has connection 1-form and
horizontal lift given by

A(@0 |, +90y| ) =9 —dz and  hUD,| ) = 0|, +79,],-
We can now compute the mixed curvature B,, associated to A and AY:

By (g0, 41) (80, 6q1) =dAb(qo, q1)(Hor a(5qo), Hor.4(5q1))
:61“0’-/‘3((10411) ® (dylylh - dyo’qo - bxldwl ’tn + bl‘odx()’qo)
(Co(aﬂﬁo} o + I08y0| ) + Cl(azl| | + xlayl }ql))

q 0 q
:(1 — b)(clxl - Coxo)aw[) ‘Ag(qoylh)'
Notice that depending on the “relative slopes” 1 and b of A and A%, the mixed
curvature vanishes or not.

Just as regular curvature, the mixed curvature can be seen as a “reduced object”
defined on (Q x Q)/G or, using the isomorphism ®4,, on G x (Q/G). We study
this object next.

Since Ay : Q x Q — G is G-equivariant for [9*? and/\lf , considering the lifted
actions on T(Q x Q) and TG, dA, induces a morphism d.A,; on the quotient vector
bundles:

T(Q x Q)/G -4 16/

L

@*xQ)/G——G/G

Let o : Gx(Q/G) — (Q/G)x(Q/G) be a(vg, 1) := (p®/(vp),1); then, we have
the vector bundles 0*T(Q/G x Q/G) over G x (Q/G) and (p xid)*c*T(Q/Gx Q/G)
over @ X G x (Q/G). We define x : (p x id)*c*T(Q/G x Q/G) — T(Q x Q) by
X(q0, wo, 1) (070, 671) := (R (d1¢), h9* (071)) for g1 := F (qo,wo,71). As Fy and the
horizontal lift are G-equivariant, ¥ descends to a morphism of vector bundles y:

T T(Q/G x Q/G) ——=T(Q x Q)/G

.

G % (Q/G) —=— (Q x Q)/G

It will be convenient to consider the _composition cm o x as a morphism of the
vector bundles 0*T(Q/G x Q/G) — (Ago U 4,)*(TG/G) over the same base space

G x (Q/G). Even better, since Ago W 4, = p&/% o p; we have the following notion.
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Definition 5.7. T ll?/reduced mized curvature By, is the morphism of bundles over
G x(Q/G) By, :=dAgox:0*T(Q/G x Q/G) — (p©/% o p1)*(TG/G). Explicitly,

B (vo, 1) (6710, 071) :=[Bm (0, q1) (R (6r9), h? (d11))]
=[dAa(go, q1)(h® (0r0), h* (d71))],

where v = p(qo,wo), q1 = Fi(qo,wp, 1) and [] denotes the equivalence class in

TG/G. Associated to the decomposition By, = B}, + B, there is a decomposition

B = B + B, where B : p3T(Q/G) — (p©/C 0 p1)*(T'G/G) and B, : (p?/C o
p1)*T(Q/G) — (p&/F o p1)* (TG/G) are defined by

Byt (vo, m1)(671) :=[Bf (g0, q1) (W (571))] = [Da2Aalqo, q1) (b (571))]
B,,,(vo,1)(070) :=[B;, (g0, q1)(h* (570))] = [D1Ad(go, q1) (A% (d70))].

Now we return to the discrete lagrangians introduced in section 5.1. In particular,
we associate a new notion to the second term in the last equality of (11).

By Lemma 5.2, DyLg : p5T'G — Ris a G-equivariant morphism of vector bundles
over @ X G x (Q/G). Thus, it induces a morphism of the corresponding quotient

vector bundles Do Lg:

(p3TG)/G 2

|

7 x (Q/G)
Notice that (p5TG)/G ~ (p©/% o p1)*TG/G. Then, DaLg o B, is a well defined
morphism of vector bundles.

Definition 5.8. The reduced discrete force is the morphism of vector bundles over

e~

G x (Q/G) defined by Fy:=DyLgoB,, : 0*(T(Q/G x Q/G)) — R (essentially a
1-form over G x (Q/G)). Concretely,

Ey(vo,71)(870,671) := DaLa(qo, wo,m1)dAa(qo, ¢1)(h® (870), k7 (571)) (12)

where vy = p(qo, wo) and q; == F) (qo,wo,rl) Once again, using T( /G xQ/G) ~

p’{T(Q/G) EBpgT(Q/G) we define Ff := DyLgoB;; and Fy := DyLgo0B;,, so that
By = F + F . Explicitly,

F;_ (’UQ, 7‘1)(57‘1) = Dng(qo, wo, Tl)DgAd(QQ, ql)(hql (67‘1)) (13)
Fd_ (’UQ, 7‘1)(57‘0) = Dng(qo, wo, Tl)DlAd(QQ, ql)(hqo (57‘0)).

Example 5.9. Continuing the analysis of the discrete mechanical system intro-
duced in Example 5.1, we compute its reduced discrete force with respect to A and
Ab T (vo, 1) = (ro,wo,rl) (Q/G) x G x (Q/G) we can take g := (r9,0) and
g1 =19, (RY (r1)) = (r1,wo 4+ b(r} — r§)/2) in the computation. Since

Do L4((r0,0),wo,71) = m(wo + b(ri — 7”3)/2)‘11”0’%7
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using the results of Example 5.6, we have
Fy(ro, wo,rl)(co(f?m’m, c10p, ‘h) = (m(wo +b(r? — r%)/2)dw0’w0)
(1 =b)(crry — coro)awolwo)
=m(1—b)(crr1 — coro) (wo + b(ry —13)/2).
Equivalently,
Fd(ro,wo,rl) =m(1—0) (wo + b(r% - T%)/2) (ridry — rodrg).

5.3. Reduced dynamics. In this section we relate the dynamics of a symmetric
discrete mechanical system to the dynamics of a “reduced” system, defined using a
variational principle.

Remark 5.10. The analysis of the symmetric system leads us to consider some
objects defined on the symmetry group G, that is a Lie group. We review very
briefly a notation that is convenient and used in this subject. When wo,w; € G
and dwg € Ty,,G we define

w10wg := dLy, (wo)(0wp) € Tuwyw,G and  dwowy := dRy, (wo)(0wp) € Twow, G,

where L,,, and R,,, denote the multiplication by w; on the left and right, respec-
tively. Analogously, when ag € T;; G,

wy Qg ::(del—l(UJ1w0))*(OéO) eTr .G and

wiwo
QWi ::(del—l (wowl))*(()&o) S T:}Ole.
Last, we notice that if ag € T} G and dwg € Ty, G, the following identities hold
ao(&wo) = (wlao)(wléwo) = (aowl)(éwowl).

Theorem 5.11. Let q. be a discrete curve in Q, ri := 7(qx), wg := Aa(qk, qk+1)
and vy, := p(qr, wi) be the corresponding discrete curves in Q/G, G and G. Then,
given a discrete mechanical system (Q, Lq, D, Dg) with symmetry group G, the fol-
lowing statements are equivalent.
1. (qk,qk+1) € Dy for all k and q. satisfies the variational principle dSq(q.)(dq.) =
0 for all vanishing end points variations dq. such that éq;, € Dy, for all k.
2. q. satisfies the Lagrange—D’Alembert equations (3) for all k.
3. (g, Trs1) € Dy = ®4,(Dg/G) for all k and dSy(r.,v.)(6r.,6v.) = 0 for
all variations (8v.,d0r.) with vanishing end points such that ory, € D,, =
dn(q)(Dy,) and

vy, := dp(gqr, wr) (W% (0r1), dAa(qr, g4 1) (BT (671), KT+ (671 41)))
+ dp(qi wi) ((€e) @ (ar), dAa(qr, ars1) (e (ar)s (Ek+1)@(dg+1)))

where (qx, &) € gP.
4. (vg,7r41) € Dy for all k and (v.,r.) satisfies the following conditions for each
ﬁIed (kalv Tk, Uk, Tk+1)~
e p €T (Q/G) defined by
¢ :=D1La(qr, wr, Trt1) © b + D3La(qe—1, we—1,7%)

+ Fy (vg, 7g1) + EF (vi—1, 1)

(14)

vanishes on ’ﬁrk, ie.,
p €Dy, (16)
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e ) € g* defined by
¢ :=DaLa(qx—1,ws—1,7%)wy ", — DaLa(qr, wk, re41)wy, " (17)

vanishes on gﬁ, ie.,

¥ € (gh)°. (18)

Proof. First we study the equivalence of conditions (qx, qx+1) € Dg and (v, Tr11) €
Da. If (qr,qr+1) € Da, it follows that 7(qx,qrr1) € Da/G and (vg,Tky1) =

Py (7(qr ar+1)) € Py (Pa/G). Conversely, if (v, Th41) = Pa, (T(qr: qet1)) € Do,
we have that 7(qx, gx+1) € Da/G, so that (gk, qx+1) € Da.

Next we tackle the equivalence between the variational principles and equations.

1 & 2. Is a standard computation using calculus of variations.

3 = 1. Given a variation dq. as in the statement, we let o7y := dm(qr)(dgr) and
dvi, using (14) for & = A(qr)(0qx), so that dgi = h%(0r%) + (€x)g(gr). Using
Lemma 4.21 to compute d7,

N—-1
dSa(a.)(0¢) = dLa(qk, qu+1)(8qk, 0qs41)
N—-1 .
:Zk o dLa(Y gk, q+1))dY (Oqr, Oqr+1) (19)

= Z de (Ui, Tkt1) (OVK, OT11) = de(r v.)(dr., 0v.) =

where the last equality holds because (7., v.) satisfies condition 3. Hence, ¢. satisfies
condition 1.

1 = 3. Given a variation (dr.,0v.) as in the statement, let dqi := h% (dry) +
(&k)o(qx). Then, using Lemma 4.21 and the explicit form of (14), we have that
(6vg, 0rk41) = dY(qk, qr+1)(0qr, 0qr+1). A computation similar to (19) shows that

dSq(v.,r.)(0v.,6r.) = dS4(q.)(6¢.) =0

since the variation dq. satisfies condition 1. Hence, condition 3 holds.
3 & 4. For variations (dv.,or.), writing dvr, = dp(qk, wi)(0qk, dwy),

dSy(v.,r.)(6v., 5r.) = Zk: dLa(vg, 1) (O0k, Orpg1)
—Z AL whs i) (O, Sy, O

—Z DlLd (1, Wi, T41) (0qx) + DoLa(qr, wi, rr1) (Swy)
+ DsLd(Qk,UJk,Tk+1)(57’k+1))-
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Using A to decompose dqx = h%(071) + (k) (gr) and rearranging indexes, for
vanishing end point variations, we obtain
X N-1
dSa(v.,r.)(dv.,67.) = Y (DlLd(Qkawka Tkt1) © h® + D3 La(qr—1, wk—1,7k)
k=0
+ Dy La(qr, wk, 741) D1 Aa(gr, grs) © %

+ Dy La(qe—1, we—1,7k) DaAa(qr—1, qr) © hqk) (67%) (20)
N-1
+ ) (D1La(gr, wr, rrr1) (k)@ (ar))
k=0
+ Do La(qr, wi, rk41)dAa (e, @r1) ((Ex) (k) (1) (arr1)))-

Since the variations dr. are independent from those generated by the &., we conclude
that condition dSq(r.,v.)(dr.,6v.) = 0 from point 3 in the statement is equivalent
to the vanishing of the first and second summations in (20) independently, for all
vanishing end points variations dr. with or, € ZA)T,C for all k£ and for all & with
(qr, &x) € gP for all k and & = &, = 0.

Recalling that the variations dr. are independent and (13), it is clear that the
vanishing of the first summation in (20) is equivalent to the fact that ¢, defined
n (15), satisfies condition (16).

Before we prove the equivalence of condition (18) and the vanishing of the second
summation in (20) we need two auxiliary computations. On the one hand,

dAa (e @e+1) ((Er) @ (ar ) (Ek+1) @ (qr+1))

== (exp(t&xt1)Aa(ar, 1) exp(—tx))
t=0

= 1wy — Wk,

where the notation used in the last equality is the one introduced in Remark 5.10.
On the other hand, since Ld(ng(qk),wk, Tk+1) = La(qr, ?,1(wk), Thtl)s

D La(ge, we i) (€6)a(ae)) = 2

dt Ld(lexp(tgk) (Qk)u Wi, Tk-l—l)

t=0

(exp(—t&k)wy exp(t&))
t=0

= Dzid(Qk,wk,THl)E

= DoLa(qi, i, Tri1 ) (—Epwr + wipy).-

Using the previous computations we see that the vanishing of the second summation
in (20) is equivalent to

0= Z D2Ld (@, W, Th1) (Er1wk — Epwic))

—Z D2Ld (qh—1, We—1, k)W, — DaLa(qr, wi, res1)wy ') (&)

for all £ with (qk,fk) € gP. It follows immediately that this last condition is
equivalent to the fact that v, defined in (17), meets condition (18). O

From the proof of Theorem 5.11 we isolate the following partial result.

Lemma 5.12. With the notation of Theorem 5.11, the following assertions are
equivalent.
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1. The discrete curve q. satisfies dSq(q.)(6q¢%) = O for all vanishing end points
variations such that dq, € Sy, for all k.
2. The curve (v.,r.) satisfies condition (18) for v defined by (17).

Remark 5.13. We notice that the horizontal equations that appear in item 4
of Theorem 5.11 contain force terms that, because of (12) are a composition of
derivatives of the reduced lagrangian and a term involving A and Ay. Since in the
continuous setting, the forces that appear in the analogous equation involve the re-
duced curvature of the nonholonomic connection, we chose to call the corresponding
term in the discrete setting the reduced mixed curvature. In this case, we recover
the standard result that the vanishing of the mixed curvature implies the vanishing
of the discrete forces in the reduced system. Other than that, we do not have a
good reason to call B, or Bm “curvatures”.

Remark 5.14. For classical mechanical systems, the Lagrange-D’Alembert equa-
tions (1) are second order differential equations, while their reduced counterparts
that appear in Theorem 2.7 are second order in the Q)/G variables but only first
order in the g ones. Analogously, for discrete mechanical systems, the discrete
Lagrange-D’Alembert equations (3) are recurrence equations of second order while
the reduced equations obtained in item 4 of Theorem 5.11 are second order in the
/G variables but only first order in the G ones.

Remark 5.15. Theorem 5.11 is similar in spirit to the reduction theorems for
classical mechanical systems, like Theorem 2.7. Still there is a noticeable technical
difference between both types of results. In the continuous case, even in the gen-
eralized context, the choice of a connection on the principal bundle 7 serves the
dual purpose of constructing a model for the reduced space via the diffeomorphism
a4 and determines a horizontal / vertical splitting of the variational principle and
equations of motion. In the discrete context a continuous connection serves the
same splitting purpose but a discrete connection A, is used to construct the model
reduced space. It would be interesting to see if there is any advantage in using two
different connections in the reduction of continuous mechanical systems.

Example 5.16. Continuing the analysis of the discrete mechanical system intro-
duced in Example 5.1, we apply Theorem 5.11 to find the equations of motion of
the reduced system. The reduced variational constraint is

257% :dw((rkv 0))(D(m,0)) = dﬂ—((rkv O))(<aﬂﬂ’(m70) - rkay‘(rho)»
:<8T‘rk> - Trk (Q/G)a
and, since
(ro, wo,m1) € Dy & &);é((ro,O),wo,rl) €Dy wo = (1-0)(r} —13)/2,
the reduced kinematic constraints are
Dy = {(ro,wo, 1) € (Q/G) x G x (Q/G) : wo = (1 —b)(r? —r2)/2}.

Next we compute the reduced equations of motion. Notice that S = {0} for this

system, so that g¥ = {0} and condition (18) is trivially satisfied, that is, there are

no vertical equations.
In order to find the horizontal equations we compute

Dlid((Tk, hk), Wik, TkJrl) = —m((rkJrl - Tk) + (’LUk + b(TiJrl - Tz)/2>brk)dxk‘(rk,hk)
DsLa((ri—1, hi—1), wp—1,76) = m((rk — 1) + (wp—1 + b(r} — T;%_l)/Q)ka)di‘rk,
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recall from Example 5.6 that
i) = (a””‘m,hk) + Tkay’(rk,hk)) ® drk‘w
and, from Example 5.9 the expression of the reduced forces.
7 (reywpy tiet1) = — m(1 = b) (wy + b(r,q — T%)/2)7”kd7"k’m
Ef (re—1,we—1,7%) = m(1 — b) (wp—1 + b(rg — 7’1%—1)/2)derk‘rk.
Then, ¢ = mderk’Tk for

U :=— ((rker — %) — (re — 7%—1))
=i (wp — wp—1 +b((rf g —17) = (i} = 1721))/2),

and, since D = T(Q/G), condition (16) says that Uy = 0, which is the horizontal
equation of motion for the reduced system. Thus, the reduced evolution is deter-
mined by the system of equations

U,=0 and wp=(1-b)(riy —17)/2. (21)

Using the second equation to eliminate the w dependence in the first expression we
obtain

0= ((rig1 = 7k) = (rk = 7k=1)) +rr((rRgy —73%) — (7 = 7%1))/2- (22)
From this equation of degree two in 7,41 the evolution of this variable is obtained
and, using the second equation of (21) the dynamics of wy, is determined.

Remark 5.17. Notice that, depending on the value of the parameter b, the reduced
system constructed in Example 5.16 is forced or not. Besides making the reduced
system unforced, the value b = 1 also gives a very simple dynamics to the w.
variables. This will be a characteristic that we explore in more detail in Section 10
when we consider systems of Chaplygin type.

Back in the general setting, conditions (16) and (18) in Theorem 5.11 establish
the equations of motion of the reduced system. However, they are explicitly written
in terms of q.. We will see in Section 6 that, in fact, they can be defined in an
intrinsic manner, in terms of objects defined on the reduced space.

6. Intrinsic version of the reduced equations of motion. In this section we
write the horizontal and vertical equations in terms of the reduced system. In
fact, the equations of motion will be given as conditions on morphisms of vector

bundles on the second order reduced manifold Q(Gz) =G x(Q/G) XQ/a Gx(Q/G),
where the fibered product is taken over the maps p; : G x (Q/G) — Q/G and
p¥%op1: G x (Q/G) = Q/G. ) )

It is convenient to consider the space Q(c?) = QxGEx(Q/G)xg/aGX(Q/G) with

5(2) .

the G-action ngG (go,wo,r1,v1,12) := (l?(qo),l_f(wo),rl,vl,rg), so that Q(G?)/G =

(G2). Additionally, we define the maps

Fy: Qg) —Q by Fi(qo,wo,71,v1,72) := Fi(qo,wo,71),

and Fy : V(Gz) — G by

Fa(a0,0,71,01.72) = 1y o (00) 1= (0, 0),
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where 7 : Q Xg,q Q — G is defined by 7(q,¢') = g if l?(q’) = q. It is easy to check
that F; and F, are G-equivariant.

1. Horizontal equations. In order to give an intrinsic meaning to (16), we
consider the following commutative diagram,

/ R~ piT(Q/C) T(Q/G) (23)
/ e

where ¢ is defined by
é(qoa wo, T1,01,72, 67"1) ::(DlLd(qla wy, 7'2) oh®t + DSLd(q07 wo, 7‘1)
+ Fy (v1,72) + Ef (p(go, wo), 1)) (671)

for q1 := Fl(qo,wo,rl) and w; := Fy(qo, wo,r1,v1,72). Also, G acts on p;T(Q/G)
by ZS;T(Q/G)(

R.

o, wo,71,v1,72,071) := (19(q0),15 (wo), 71, v1, 72, 0r1) and trivially on

Lemma 6.1. The map ¢ is a G-equivariant morphism of vector bundles.

Proof. From the explicit definition, ¢ is a morphism of vector bundles.
In order to check the G-equivariance, for (go, wo,r1,v1,72) € Qg), we let q1 =
Fi(qo,wo,m1) and wy := Fy(qo, wo, r1,v1,72). Then, writing

¢1(q0, w0, 71,v1,72,671) := (D1La(q1,w1,72) 0 k™ + D3La(qo, wo,71))(571)
b2(qo, wo, 1, V1,79, 071) = (Fd_('UhTQ) +F;(P((J0,wo),ﬁ))(5ﬁ)7

we have ¢ = ¢ + ¢. From the definition, it is immediate that ¢o is G-equivariant,
so we concentrate on ¢1.

S (15T (go, w0, 71, 01,72, 671)) = (19(q0), 15 (wo), 1, v1, 72, 671) (24)
= D1La(19(q1), 15 (w1),72) 0 RS @) (57) + D3La(12(q0), 15 (wo),m1)(671),

where we used the G—equivarviance of F 1 and Fy in the first term of the last identity.
By Lemma 5.2, we have DlLd(l;;’(ql), ZG(wl), TQ)ZTQ = D1 L4(q1,w1,72), so that
Q
D1 La(1g (@), 1 (wn),r2) 0 h's () = Dy La(I (q1), 1 (w1),m2) 0 159 0 b
= D1La(q1,w1,72) 0 h'.

Also, from Ld(ng(qo), lg(wo), r1) = La(qo, wo, 1), we obtain

D3La(1$(q0), 15 (wo), 1) = DsLa(go, wo,71).
Replacing the last two identities back in (24), the G-equivariance of &1 follows. O

By Lemma 6.1, ¢ defines a morphism of vector bundles ¢ : (piT(Q/G))/G — R.
Since (p3T(Q/G))/G = p5sT(Q/G), where ps : Q(c?) — @Q/G is the projection, we
have ¢ : p3T(Q/G) — R. Concretely, if (go, wo) € p~*(vo),

é(vo,71,v1,72,071) = (g0, Wo, 71, V1,72, 671).
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We extend diagram (23) to the following commutative diagram, where D C
T(Q/G) is the subbundle introduced in Theorem 5.11.

5 g a/c

R~ pzT (Q/G) =—psD

S

(2)

Proposition 6.2. Condition (16) in Theorem 5.11 is equivalent to
0. (25)

p5(D)

Proof. For vy, and 7, defined as in Theorem 5.11, the explicit form of ¢ coincides with
that of ¢ defined in (15) and the vanishing condition (16) coincides with (25). O

6.2. Vertical equations. Consider the commutative diagram

R~ F}(Qxg) ~—Fg®  gP—=Qxg (26)
vg) - Q

where
¥(qo, wo, 71, v1,72,€1) == (DaLa(go, wo,m1)wy ' — DaLa(qr, w1, m2)wi ) (&)

for q1 := F1(qo,wo,m1) and wi := F(qo, wo, 11, v1,72).
Notice that F;'(Q x g) = Qg) x g. In addition, G acts on R trivially and on

- *5(2)
Q(C?) X g by ngG Xg(QO,wo,Tl,vl,Tz,fl) = (lf;?(%)al?(wo),Tl,vl,Tz,l;FG(gl))-
Lemma 6.3. The map ) is a G-equivariant morphism of vector bundles.

Proof. From the explicit definition, ¢ is a morphism of vector bundles
In order to check the G-equivariance, for (qo, wo,r1,v1,72) € Q , we let g1 :=
Fl(qo,wo,rl) and wy := F5(qo,wo,71,v1,72). Since

P(go, wo,1,v1,72,&1) = DaLa(go, wo, r1)(§wo) — DaLa(q, wy,r2)(&1wy),
using the G-equivariance of F; and Fy, we have
@) :
¢(1Q (g0, wo, r1,01,72,61)) =02 (q0), 15 (wo), 1, v1, 72, 119 (&1))
=D5La(1$(90), 15 (wo), 71) (15 € (€)15 (wo)) (27)
— DaLq(19(q1), 15 (wi),72) (I3 F (€015 (w1)).
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On one hand, recalling the notation of Remark 5.10, we have

176 (€18 (wo) = gérg™ ' gwog™" = gérwog™" = dIS (wo) (&1 wo). (28)
On the other, the G-equivariance of DyLg proved in Lemma 5.2 together with (28),
applied to (27) lead to the G-equivariance of 1. O

By Lemma 6.3, ¢/ defines a morphism of vector bundles 1 : ( Vg) xg)/G — R
over Qg). Explicitly, for any (go,wo) € p~t(vo) and & € g,

¥([(qo, wo, r1,v1,72,81)]) =1 (g0, wo,71,v1,72,&1)

:(DQLd(QOa wo, r)wy ' — Dzid(Q1,w1,T2)w1_1)(§1),
(29)

where ¢ := F1(qo,wo,r1) and wy := Fy(qo, wo, r1,v1,12).
A simple computation shows that, because D C T(Q is G-invariant, FygP C
Qg) x g is G-invariant. Therefore (FygP)/G C ( V(G2) x g)/G is a vector subbundle.
We collect the different objects in the following commutative diagram, which is
the quotient of (part of) (26)

R~ QY x g)/G <—(F;gP)/G

L

(2)
G

Proposition 6.4. Condition (18) in Theorem 5.11 is equivalent to
¥ lrpamysc = 0. (30)

Proof. For vy, and 7}, defined as in Theorem 5.11, the explicit form of 7 coincides
with that of ¢ defined in (17) and the vanishing condition (18) coincides with (30).
O

Corollary 6.5. Any one of the four equivalent conditions of Theorem 5.11 is equiv-
alent to (vg,rr+1) € Dg and conditions (25) and (30) are met for all k.

7. Reconstruction. Given a discrete curve ¢. in @ and its image (v.,r.) in G x
(Q/G), Theorem 5.11 establishes an equivalence between ¢. being a trajectory of the
original system (i.e., a solution of the original dynamics) and (v.,r.) being a solution
of the reduced dynamics. In this section we study the reconstruction problem, that
is, given a curve (v.,r.) in G x (Q/G) that satisfies adequate conditions (constraints
and equations of motion), is it possible to find a trajectory ¢. of the original system
that projects to (v.,7.)?

Consider the following construction. Given a discrete curve (v.,7.) € G x (Q/G)
and gx € Q (one value of k) such that 7(qx) = rx = p?/€ (vy), if vi = p(Gr, Wx) we
define

up = lf(qk,qk)(ﬁ’k) €eG and  qrg1 = Fi(gr, uk, The1)- (31)

Since lf(qk,l‘j(q}))(lg(uj’“)) = lf(qkﬁq%)g,l(l?(wk)) = lzqk7q~k)(u7k), the previous

construction is independent of the chosen representatives of vi. Therefore, given
go € Q with w(qp) = 70, applying the construction iteratively defines a unique
discrete curve ¢. in Q. The following result establishes the properties of q..
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Theorem 7.1. Consider (Go,q1) € Dy and (v.,7.) € G x (Q/G) such that () =

ro, ™(@1) = 1, vo = p(do, Ad(do,q1)). If (v.,r.) satisfies (vg,Tr4+1) € Dg and
conditions (25) and (30) for all k, then the discrete curve q. constructed by (31)
from o is a trajectory of the system on @ whose image by Y is the curve (v.,r.)
and satisfies qo = qo and q1 = ¢

Proof. The curve ¢. is a lifting of the curve (v.,r.) to Q; that is, r, = 7(qx)

and vp = p(qr, Ada(qr, qr+1)). Indeed, from (31), m(qx) = ﬂ-(l’gkil(h]gk_—l(rk>>) _
m(h% " (ry)) = r. On the other hand,

Aa(qr, arr1) = Aa(ar, 13, (W% (rk+1))) = unAa (qr, B (r111)) = us,
—— —

€Hora,
so that
(ks Adqrs ari1)) = plar, ur) = par, 1<, 50 (@)
= P12 oy (@) k) = plGs, Br) = v,

which completes the argument, that is Y (qx, gx+1) = (vk, 7k41) for all k.

The lifted curve satisfies the first initial condition because, by construction, rq is
lifted to go. Since vo = p(go,.Ada(Go,q1)), according to (31), ug = A4(do, q1) so that
rq is lifted to ¢ = lgd(qqul)(h_g"(rl)). Using (8), we conclude that ¢; = q;.

Next, we see that (i, qr+1) € Dg for all k. By the G-invariance of Dy,

(Gk, @rt1) € Da € T(qrs qet1) € Da/G < Pa, (T(qk, gry1)) € P, (Da/G)
& (vg, Tht1) € D,

which holds by hypothesis for all k.

The only thing left to do is to check that ¢. is a trajectory of the discrete me-
chanical system. By hypothesis, (v.,r.) satisfies conditions (25) and (30). Then, by
Corollary 6.5 conditions (16) and (18) hold. But, since the relationship among q.,
v., . and w. is precisely that of the statement of Theorem 5.11 and we proved that
condition 4 holds, we conclude that ¢. satisfies condition 1 in Theorem 5.11, hence
it is a trajectory of the system on Q. O

Example 7.2. The last step to complete our analysis of the system (Q, Lq, D, Dyg)
introduced in Example 5.1 is to consider the reconstruction of the evolution of the
original system given a trajectory (r.,w.) of the reduced system compatible with
some initial data (qo,q1) € Dy.

According to Theorem 7.1 we use (31) to construct the trajectory ¢.. Since
v = (r,wi) = p((ry, 0),wx) and 7((zk, yk), (T%,0)) = yr (remember that zj =
(T, Yk) = Tk),

uE = lyi (wi) = wy,
Ghr1 = (i1, Yesr) = 13, (W) (rian)) = (e, g + 0y — 23)/2 + wy)
that expresses ¢. in terms of the known data (r.,w.). Simplifying we obtain
(zr, ) = (ri, 5o + (ri —72)/2)  for all F,

with 7o = Zg, 1 = T1. Notice that the resulting trajectory is independent of the
parameter b chosen to do the reduction, as it should be.
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Remark 7.3. The reduction and reconstruction techniques developed so far can
be applied in the case where the configuration space is the symmetry group (acting
by left multiplication), a problem that has already been studied in [12, 13, 23]. In
this context, Theorems 5.11 and 7.1 allow us to re derive Theorem 3 and Corollary
4 of [23].

8. Nonholonomic discrete momentum. For discrete or continuous holonomic
mechanical systems the presence of continuous symmetries automatically leads to
the existence of conserved quantities (momenta), due to Noether’s Theorem. In
the nonholonomic case, this is no longer true, essentially due to the behavior of
constraint forces. Instead, in this case, one obtains an equation that describes the
evolution of momenta over the trajectory of the system. Below we discuss the
relationship of the discrete momentum evolution equation and the dynamics of a
discrete mechanical system with symmetries.

Definition 8.1. Given (Q, L4, D, Dy) with symmetry group G, the nonholonomic
discrete momentum map is the application Jg : Q x Q — (gP)* defined by

Ja(q0,91)(q0,€) := —D1La(qo0, q1)8q(q0)- (32)
for all (qo, ) € gP.

Given any section & € I'(gP), define the map (Ja)g : @ x @ — R by

(Ja)e(q0, a1) := Ja(qo, q1) (g0, &(q0))-

Straightforward computations give the following result.

Lemma 8.2. For £ € g and (qo,q1) € Q x Q,

D1Lq(q0,q1)(€q(q0)) = —D2La(qo,q1)($q(q1))- (33)
Also, if (qo,wo,71) = (i).Ad(QOaQI) = (qo, Aa(qo, 1), 7(q1)), then
— D1 La(q0, 1) (¢q(90)) = (D2La(go, wo, m1)wy ') (€). (34)

In particular, J4(qo,q1) = D2Ed(q07w05 Tl)wo_l~

Remark 8.3. By definition, when Q x @ and g? are seen as bundles over Q with
respect to the projection on the first variable, J; is a bundle mapping (that is, it
maps fibers to fibers). J. Cortés defines J7" in [11, pp. 154-5] in a slightly different
way: J7"(qo,q1)(q1,€) = Da2La(qo,q1)éq(q1), which is a bundle map when the
projection on the second variable is considered in @ x Q. In any case, due to (33),
both maps are, essentially, the same. Also (Jq)z = (Jgh)g, for all € € T(gP).

A trajectory of a discrete mechanical system is determined by the Discrete
Lagrange-D’Alembert Principle (Definition 3.3). When the variational constraints
are decomposed by D = S @ H, it is possible to decompose all admissible variations
into horizontal and vertical variations, in the sense that they belong to ‘H or S. It
is also possible to decompose the variational principle accordingly. The following
result, whose proof is obvious, makes a precise statement.

Proposition 8.4. Let q. be a discrete curve in Q). Then, the following conditions
are equivalent.

1. q. satisfies the variational part of the discrete Lagrange—D’Alembert principle
(Definition 3.3).
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2. q. satisfies
dSq(q)(6¢°) =0 and dSy(q)(6¢"*) =0

for all pairs of variations vanishing at the end points 6¢° and 6¢’* in S and
H respectively.

The next result relates the vertical variational principle, the evolution of the
nonholonomic discrete momentum and condition (30).

Theorem 8.5. In the context of the theorem 5.11, if q. is a discrete curve in Q, let
re = m(qk), wr = Aa(qk, qe+1) and vi, = p(qx,wy). Then, the following conditions
are equivalent.
1. q. satisfies the vertical variational principle. That is, dS4(q.)(6¢°) = 0 for all
vanishing end point variation 6q,‘f €Sy, for all k.
2. Condition (30) is satisfied.
3. For all sections € € T'(gP),

(Jd)g(Qk, Qr+1) — (Jd)é(Qkfla ar) = —D1La(qr-1, Qk)(g(qk) —5(%71))@(%—1)- (35)

Proof. e 1 < 2. This is Proposition 6.4 and Lemma 5.12.
e 2 & 3. For ¢ € T'(gP), using the definition of (Ja)g, equation (35) is equivalent
to

— D1La(qk, qr+1)(€(ar))@(ar) = —D1La(qr-1,ax)(€(qk))@(qk-1).  (36)

Using now (34) with ¢ = £(qx) and recalling the explicit formula (29) for v
we obtain (30).
O

Remark 8.6. During the proof of Theorem 8.5, we saw that the discrete nonholo-
nomic momentum evolution equation was equivalent to (36), that is simpler to use
in practice and, by the same Theorem is equivalent to any of the other conditions
in the statement.

Remark 8.7. The discrete nonholonomic evolution equation (35) was first obtained
by Cortés and Martinez in [10, Thm. 5.3], where they prove that any solution of the
discrete Lagrange-D’Alembert equation satisfies (35). In the context of groupoids,
Iglesias et al. obtain the evolution equation of the discrete nonholonomic momentum
map in [15, Thm. 3.20]

9. Reduced equations of motion: trivial bundle case. In this section we
consider the case where @) := R x G, for a manifold R and a Lie group G that acts
on @ by ng (r,h) := (r,gh). In this case, 7 : Q — Q/G is the trivial principal bundle
p1: Rx G — R. The goal is to give an explicit description of the reduced system
as well as the corresponding equations of motion.

Let a : G — R x G be given by a(p((ro, ho),wo)) := (7o, hg “woho), then « is
a diffeomorphism with inverse ((rg,v9) = p((ro,€),J9). We have the following
commutative diagram

QxGx(Q/G) XL RxGxGxR
l Bxid
pXxid ptxid
axid

Gx(Q/G)———=RxGxR
Bxid
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where p'(ro, ho,90) := (ro, hg 9oho), &((ro, ho), Vo) := (r0, ho,Jo) and § = a~1. In

addition, a useful ingredient is the section s : G — @ x G given by s(p((ro, ho),Jo))
= ((TQ, 6), ho_lﬁoho).

In the current context, by (7), Ag can be written as Aq((ro, ho), (11,h1)) =
hi Al (ro,m1)hg b, where AL (ro, 1) := Aa((ro, €), (11, €)).

Using « the reduced constraint manifold is ’ﬁfl = (a x id)(’ﬁd), so that the
reduced kinematic constraint condition becomes (rg,%o,71) € f)g if and only if
((ro,e), (r1,90A%(ro,m1)~")) € Dg. If Dy is described by equations ¢y (go, g1) = 0 for
all b, the reduced constraint condition becomes ¢ ((ro, €), (r1, 9o.A4(r0,71)71)) =0
for all b.

We also have the induced lagrangians LY, := Lgo (3 x id) and L}, := Lgo (8 x id),
so that LY(ro,%0,71) = La((ro, €), o,71).

Next we characterize the second order reduced manifolds Qg) and Qg ), that are
needed to set the equations of motion, according to Corollary 6.5. It is clear that

QY ~RxGxGxRxGxR,
with ((ro, ko), wo, 1, p((r1, k1), w1),72) = (r0, ho, wo, 71, hy "wih1,72), and
(G?)ZRXGXRXGXR,

with (p((T07 ho)’ w0)7 1, p((Tl, h1)7 w1)7 T2) = (TQ, ) h0_1w0h07 1, hl_lwlhla T2)' NeXtu
we have to characterize the bundles over Qg) where the morphisms ¢ and 1 are
defined. Instead, it is easier to notice that the section s provides a diffeomorphism

of Qg) with its image, so that we can view Qg) as Rx{e} x Gx RxGx R. The
advantage of this approach is that instead of having to work with quotient bundles

we have to work with the restriction of bundles on Qg) to the image of s.
We start by obtaining trivialized versions of the maps Fy, F} and Fs. They are

F{(ro, ho,90,m1) == F1((ro, ho),%0,71) = (r1,90ho(Al(ro,m1)) ™),
Flt(TOv h071905 T171917T2) = Fl((TOa hO)a 1905 Tlvp((Tla 8), 191)5 TQ)
= (r1,Yoho(Al(ro,m1)) "),

and

F;(TO; hOa 1905 Tlvﬁla TQ) = FQ((TOa hO)a 1905 Tlvp((Tla 8), 191)7T2)

= Joho(Ag(ro, 1))~ )1 AG(ro, 1) hg 105

Remark 9.1. The case when the symmetry group is abelian has some specially
nice features. For one thing, even when 7 : Q@ — Q/G is not trivial, there is a
diffeomorphism « : G — (Q/G) x G that is given by a(p(qo,wo)) := (7(qo), wo)-

When, in addition, 7 : Q — @Q/G is trivial, this diffeomorphism coincides with the
one introduced at the beginning of this section.

9.1. Horizontal equations. Here we write down the morphism ¢ : (Qg) X p5TR)
— R or, rather, its realization under the identification of Qg) with the image of the
section s in Qg) Let ¢' be the pullback of ¢ to R x G x G x R x G x R. Explicitly,

Qgt(TO;hOa’ﬂOaTlvﬁlaTQaarl) = (5((7”05hO)a1905Tlap((Tlve)vﬁl)aTQaarl)
= (D1La((r1, h1), w1, 72) © h® + DsLa((ro, ho), %0, 71)
+ () (101, m2) + (BF) (o, 90, m1)) (671),
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where hy = doho(AL(ro, 1)), @1 := (11, h1), w1 := Fi(ro, ho, Yo, 71,01,72), and

(F) (r1, 91, 72) == F (p((r1, €),91), 72).
From Definition 5.8, we see that Fé :piTR® piT R — R is a morphism of bundles.
Explicitly,
Et(ro,90,71) (870, 0r1) ==
DaLg((ro, ), 0o,m1)dAd((ro, €), (r1, h1)) (709 (r0), A1) (814)),
with hi as above. Even more, we can write

d.Ad((T‘(), ho), (7‘1, hl))(&”o, 6h0, 67‘1, 5h1) = thlAZ(To, 7‘1)(67“0)]161
— hlAZ(To, Tl)hal(ého)hal + thgAg(To, 7‘1)(57‘1)]7/61 + 5h1A3(7‘0, Tl)hal,
and we notice that this expression is written only in terms of A,
We can also write the horizontal lift explicitly. In order to do so, we view the

vector bundle W& 'H C T'Q) as the graph of a bundle map M : pi{TR — p3T'G over
@ = R x G. Therefore,

WM (6r) = (0, M(r,h)(07)) € T Q-
Finally, we have
o' (10, 90,71, 01,72, 0r1) = &' (10, €, 00,71, 1,72, 071)
= (DaLiyr, 91,72) + Ds Lo, do,m)

. (37)
+ DQLZ(T1,191, ’I”Q) ) (191M(’I”1, 6) — ]\4(’[‘17 6)’[91)

+ (Fd_)t(r1,191,7“2) + (F;‘)t(ro,ﬁo,ﬁ)) (6r1).

On the other hand, we have that the representation of pgf) over RxGX RXGXR

is the vector bundle D := p3D.
Finally, condition (25) becomes

¢ (ro, 9o, 71,91,72,671) =0 (38)

for all 6ry such that h(":€)(6r1) € Dy, ).
Alternatively, if (w1, ...,wx) = D°, condition (38) becomes

- K o
¢ (7'0,19077'1,’(91,7‘2,67"1) = Z 1 )\aw (T17e)(6r17M(r176)(6r1))

a=

for all §r1 € T,, R and where A, € R are unknown.

9.2. Vertical equations. Here we write down the morphism ) : (Qg) xg)/G—R

or, rather, its realization under the identification of Qg) with the image of the
section s in Qg) Let 4" be the pullback of ¥ to R x G x G x R x G x R. Explicitly,

&t(r07h071907r1719177.27§1) = ’JJ((T07h0)71907/r17p((rlae)aﬁl)u,r‘?ugl)
=(D2L4((r0,ho), Yo, m1)wy " — DaLa((r1, ha),wr, )wi ') (&),

where h; := 190]7,0(./43(7‘0,7‘1))_1 and wy := FQt(T‘(), h0,19077'1,191,7‘2).
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Since, ¥ 1= 0! | py (e} xGx RxGx B>
P (ro, Yo,r1, 91,72, 1) = ' (ro, €, 00,71, 01,72, &1)

= (Dng((ro,e),ﬂo,rl)ﬁal — Dng((rl,hl),wl,rg)wfl)(ﬁl) (39)

= (DLl (r0, V0, m1)0 " — hiDaLY(r1,91,72)97 Ay t) (&),

where
hy = 0o(Al(ro,71))"" and  wy := Fi(ro, e, Vo, 71,91,72). (40)
The other required ingredient is the pullback of FjgP, that is, (F})*gP. Then,
(F1)* g = {(ro, ho, 0o, 71,01, 72,€1) € QS x gz ((r1,h1), (0,€1h1)) € Dy iy }

= {(ro, ho, Do, 71, 91,72, 1) € QX x g = ((r1,€), (0,h7 *1h1)) € Diry )}

where h; is as in (40). Therefore, condition (30), becomes

¢! (ro, Yo, m1,91,72,&1) =0 (41)
for all & € g such that (0, hl_lﬁlhl) € g(DThe) where h; is defined by (40).
Alternatively, if (w1, ...,wx) = D°, condition (41) becomes

it K a —1
D (ro, 0,1, 01, 72,60) = D Aaw®(r1,€)(0,hy ) forall & €g, (42)
where h; is defined by (40) and A, € R are unknown.

9.3. Reconstruction. Given initial conditions on @ x @, the reconstruction pro-
cess in the current case goes as follows. Let gy = (7o, ho) and §; = (71, 1) with
(o, q1) € D4, and a discrete curve (r.,9.) € Rx G. If (r.,1.) satisfies the constraint
f)fi, the equations (38) and (41), and ro = 79, 1 = 71 and ¥y = BalﬁlAfi(Fo,fl),
by Theorem 7.1, the lifted curve ¢. constructed from gy using (31) is a trajectory of
the original mechanical system on @ x @ with go = go and ¢ = @1. In the trivial
bundle case, if g = (rg, hi),

Q41 = (TkJrl, hkﬁk.Atd(’l”k, ’I”k+1)71) for all k. (43)

9.4. An example of reduction in the trivial bundle case. In this section we
specialize the previous discussion to the discrete mechanical system (Q, L4, D, Dy)
where Q := R? x S' x S' with coordinates (z,v,6, $) —we consider S! := R/27Z,
and identify operations in S! with regular addition in R'—

M, . I J
La(ao, a1) := 5 (¢ — @)+ (af — b)) + 5((1? —q0)? + 5((1‘5’ — )%,
Dy :=(y, Dp + Acos(¢?)dx + Asin(¢®)d,) = (wi(q),wa(q))° C T,Q,

where w(q) := dx — r cos(q®)df and w(q) := dy — rsin(¢?)dh, and
Dy = {(q0,q1) € @ x Q x4 — g5 = Alaf — g0)(cos((g5 + 47)/2) and
af = af = Ald] — a)(sin((a) +a)/2)},

for m, A, I and J positive constants. This system can be obtained as a discretization
of the classical mechanical system formed by a vertical disk of radius A, mass m
with inertia momenta I and J, rolling without slipping on a horizontal plane.

We consider the Lie group G := R? x S! acting on Q by

12(q) = (" + 9", ¢" + ", 4" + ¢°. ¢°).
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The corresponding lifted action is I19(q,v) = (I%(¢),v). We are in the trivial
bundle case analyzed above because 7 : @ — @Q/G is the trivial principal bundle
pa 1 G x S — St with structure group G, which is a symmetry group of the system.

We consider various subbundles of T'Q): the vertical bundle VqG = (O, Oy, Dg), the
intersection bundle S, = (9p + Acos(¢?)d, + Asin(¢?)d,) and the corresponding
complements Hy 1= (Jy), Uy := (0, 0y) and W := {0}. Following Definition 2.5,
the previous bundles induce a nonholonomic connection A whose horizontal space
is Hory := H. The corresponding horizontal lift h? : T,.S* — H, C T,Q for
q € m(r) is h9(rd,) = 70y; notice that, in this case, the bundle map M that
describes the horizontal bundle as a graph is identically 0.

By Proposition 4.12, since

Adlao, q1) = (a7 ot a]) (a5, a6 40) ™" = (af — a5 af — af 0] —a0) € G
satisfies (7), there is a discrete connection with level y(q) = e whose discrete connec-
tion 1-form is A4. Notice that our choice of A4 has A%(rg,71) = e for all ro, 7 € S*.
The corresponding discrete horizontal lift is h% (r1) = (qo, (¢8, 45,45, 71))-

The reduced space in this case is G x (Q/G) ~ S' x G x S* and the reduced

second order manifold is Q(c?) ~ S x G x 8! x G x S'. The trivialized reduced
lagrangian is

I J
Lo, Bo,r1) = Z((05) + (@8)2) + S0 + (1 — 7o)

Next we describe the horizontal and vertical equations of the reduced system,
but first we notice that since A4 only depends on the group variables, it turns
out that dAy annihilates horizontal vectors and the mixed curvature ,, vanishes.
Consequently, there are no reduced discrete forces on the system.

From (37), we derive

" (re—1, k-1, 71, Ve, Trog1, 671) = (J((re — 7—1) — (Pg1 — 7)) drlr, ) (O7%),
and, noticing that W = {0} implies that D! = T'S', the horizontal equation is
(re —rk—1) — (rg41 — 1) = 0. (44)
From (39), we obtain
P (re—1, Ok, Ty Ok, Ty 1, &) = (M(9F_y — 9F)d|ee +m(9)_) — 9])dylev
+ 1051 —97)db)|eo ) (),

where e = (€%, e¥, €?) is the identity element in G. Since the right hand side of (42)
is A\p(dz|ee — Acos(rg)db|.e) + Ao(dyles — Asin(ry)db|.e), we obtain the following
vertical equations

m(P;_y — %) = A1,
m(ﬂi_l - 19%) = A2,
I(99_, —99) = — M\ Acos(ry) — AaAsin(ry).
On the other hand, the reduced kinematic constraint equations are
i = A9 cos((ry + rx41)/2),
99 = A9 sin((ry + r111)/2).
Next, we find the reduced dynamics by solving the reduced equations. From (44)
rk=(r1—ro)k+ro forall keNU{0}. (46)

(45)
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From the vertical equations we obtain
I(0h_y = 9%) = —m(9}_y — IF)Acos(ry) —m(9}_, — 9})Asin(ry).
Plugging (45) into this last equation (for & — 1 and k) and simplifying we get

o _ I+ mA? cos((rg — rr-1)/2) .o
P T4+ mA2cos((rp —rr)/2) PV

Using the horizontal equation (44) we conclude that 99 = 99 for all k. Thus,

¢ = AvY cos <(r1 —7ro)k+ n ; TO) and ¥} = A9 sin ((rl —ro)k+ it ;— TO) .
This last expression completes the description of the reduced system’s dynamics.
The reconstruction of the trajectories of the original system in @ x @ is done as
described in Section 9.3. By (43), the reconstructed trajectory q. is

7 4 1 0
qk+1 = ((qz+1uql3+17Qk+1)vqlf+1) = ((qzquvqwﬁkvrkﬁ-l)v (47)

k
so that (qf 1,01, q041) = (6§48, 4§) [T;—o ¥, or,

)sin((qf — g9k + q§) — sin(q})
sin(q{ — g§)
cos(qy) — cos((qf — g§)k + 7o)

sin(q] — ¢f)

4t = a5 + Alq] — ) cos((af — ¢5)/2

3

Ay = ab + Alg] — af) cos((qf — a§)/2)

apyy = (d] —ad)k +df.

Also, from (47) and (46),
0t = (af =)k + 1)+l

10. Reduced equations of motion: Chaplygin case. In this section we spe-
cialize Theorems 5.11 and 7.1 to the case where the original system is a discrete
mechanical system with Chaplygin type symmetries. In this case we go beyond the
result of equivalence between the discrete mechanical system in @ and a dynamical
system in G x (Q/G) to obtain an equivalence between discrete mechanical systems

on @ and Q/G.

Definition 10.1. A symmetry group G of (Q, L4, D, Dy) is a Chaplygin type sym-
metry group if it satisfies the following conditions.

1. TQ = V% @D and

2. Dy defines an affine discrete connection Ay on the principal bundle 7 : Q —

Q/G.

Notice that, by definition, the condition TQ = V& @ D is equivalent to the fact
that the decomposition (2) has the form

TQ:iO’}/@Ki@iO’}/@\/D/. (48)
W u S H

As in the general case, this decomposition defines a connection 4 on @ — Q/G,
whose horizontal space is H = D. Condition 2 in Definition 10.1 requires that, for
every (qo, q1) there exists a unique g € G such that (qo, qu,l (q1)) € Dg.
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Example 10.2. G := R is a Chaplygin type symmetry group of the discrete me-
chanical system (Q, Lq, D, Dy) defined in Example 5.1. The first condition is clear
from the decomposition of T'Q) that appears in Example 5.6; the second point cor-
responds to the discrete connection AZ considered in Example 4.17 when b = 1.

10.1. An inclusion. Let Y : (Q/G) x (Q/G) — G x (Q/G) be defined by

y(T()v Tl) = (p(QO7 6)7 Tl)a
where gy € 771(rg) and e is the identity of G.

Lemma 10.3. The application Y is well defined. Even more, if s is a local section
of m:Q — Q/G, then Y(ro,m1) = (p(s(r0), €),71).

Proof. Y does not depend on the choice of gy € 77 1(rg) by the G-invariance of p.
The expression of ) in terms of s holds because s(rg) € 7~ 1(rg). This formula also
shows that ) is a smooth map. O

Using ) we transport the existing structure on G x (Q/G) to (Q/G) x (Q/G).
More precisely, we define the (forced, unconstrained) discrete mechanical system
(Q/G, Lq, F) where Lq := Y*(Lg) = Lq oY and the discrete force Fy := Y*(Fy).
We also define D := D as a subbundle of T(Q/G), but notice that, D = T(Q/G) in
the Chaplygin case, due to (48).

Lemma 10.4. If A is a connection on the principal bundle = : Q@ — Q/G and
qo € T 1(ro), then

dLa(ro,1)(d70,6r1) = D1La(go, €,71)(h% (6r0)) + DsLa(go,e,71)(6r1).  (49)
Proof. If s is a local section of Q@ — Q/G with gy = s(ro) then Lg(ro,r) =
La(p(s(ro),€),m1) = La(s(ro),e,r1), so that
dLg(ro,m1)(6r0,0m1) = (dLa)(s(ro), e, m1)(ds(r0)(870), 0, 0r1)
=D Lg(s(r0),e,71)(ds(ro)(670)) + D3La(s(ro), e,r1)(671).
Since 7o s = idg,q, we have
org = dm(s(ro))ds(ro)(dro) = dm(s(ro))Hor a(ds(ro)(dro)),

thus Hor4(ds(ro)(679)) = h*(0)(8rg). Also, as Dy La(s(ro),e,71) vanishes on verti-
cal vectors by the G-invariance of Lg,

Dlj)d(s(ro),e,rl)(ds(ro)(5ro)) :Dlj)d(s(ro),e,rl)(HorA(ds(To)(éro)))
=D1La(s(ro), e,71)(h*)(670))
which, replaced in (50) leads to (49). O

(50)

Lemma 10.5. Let (v.,7.) be a discrete curve in G x (Q/G) such that vy = p(qx, €)
for some qi. € Q and all k. Then

N—1
dgd(v.,r.)(év.,ér) = de )+ Z C(reyTRt1) + F;(rk_l,rk))(érk)
—1

for all vanishing end points variations (5r. and

v, = dp(qr, €) (h™ (6r1), dAa(qr, qei1) (W% (g ), 9 (674 41)) )
for all k.
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Proof. By definition, using the explicit form of dv,

d8a(v.,r)(00.,6r) =3 (D1Lalge. e.ricer) (0% (673)
+ Do La(qr, €,y 1)(dAa(gr, qer) (R (57%), R+ (5r311)))
+ D3La(qr, e, mh+1) (0k41)).

Using Lemma 10.4 and the decomposition d Ay = D1 Ag + D2 Ay we obtain

dSa(v.,r.)(0v.,6r.) = dS(r.)(6r.)

£ 3 (Ea ks )0 + B (ans € 701) (67111)),
and the result follows. O
Lemma 10.6. Let (v.,7.) be a discrete curve in G x (Q/G) such that vy = p(qy, €)
for some qi. € Q and all k. Then (v.,r.) satisfies condition (25) if and only if
D1 La(ri,mis1) + DaLa(ri—,7k) + Ff (i1, 7i) + Fy (i, 7o) € (Dr,)° (51)
for all k.

Proof. Considering the form of vy, the vanishing condition (25) immediately trans-
lates, via ) to the vanishing condition (51). O

10.2. Reduced dynamics.

Theorem 10.7. Let G be a Chaplygin symmetry group of (Q, L4, D,Dya), q. be
a discrete curve in @Q, and ri = 7w(qx) be the corresponding curve in Q/G. If
(qk, qk+1) € Dy for all k, the following statements are equivalent.

1. q. satisfies the wvariational principle dSq(q)(dq.) = 0 for all vanishing end
points variations 6q. such that 0q, € Dy, for all k.

2. q. satisfies the Lagrange—D’Alembert equations (3).

3. 1. satisfies the variational principle

N—-1
dSa(r)(0r.) = = > (Fy (rk,miqr) + Fyf (re—1,7%)) (0r)
k=1

for all vanishing end points variations or. with oéry € T, (Q/G) and where
N-1

S’d(T.) = Z Ed(rk,TkJrl).

k=0
4. r. satisfies the following equation, for all k.
D1 La(ri, ri41) + DoLa(r—1,71) = —(F‘;(kalﬂ"k) + F‘J(Tk,TkH))-

Proof. Since § = {0}, by Theorem 5.11, we see that each one of the points 1 and 2
of the present result is equivalent to any one of

i. Item 3 in Theorem 5.11 holds for all horizontal variations, (& = 0 for all k).

ii. For all k (v, mk+1) € Dg and condition (16) holds.

As Hora, = D4, (qk, qk+1) € Dq if and only if w, = Ag(qr, gr+1) = e. Then,

(ks 7k41) € Da & (plgrs €),711) € ®a,(Da/G) & (ai, h (ris1)) € Da,

which always holds by definition of Ag4. Therefore Dy = G x (Q/G), so that we can
drop the reduced kinematic constraint condition from i and ii.
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By Lemma 10.5 the variational principle that appears in i is equivalent to the
one in point 3 of the statement. Similarly, as D = T(Q/G), Lemma 10.6 and
Proposition 6.2 show that ii is equivalent to the one in point 4 of the statement. [

Remark 10.8. Notice that the reduction of a discrete mechanical system with
Chaplygin type symmetry results in an unconstrained discrete mechanical system
but with external forces given by F* in the previous theorem. A similar analysis
has been done in the more general groupoid setting in [15].

Example 10.9. As we noted above, G = R is a Chaplygin type symmetry group
of the discrete mechanical system introduced in Example 5.1. We notice that the
construction described in this section corresponds to performing the reduction us-
ing the discrete connection Al from Example 4.17. Furthermore, the inclusion
Y from section 10.1 was essentially already present in the analysis of the reduc-
tion in Example 5.16 in the form of the section (Q/G) x (Q/G) — G given by
s(ro,m1) := p((ro,0),7r1).

In any case, the discrete unconstrained mechanical system associated to the re-
duced system by Theorem 10.7 is

Q = Q/G =R, with coordinate r,
o m
Lg(ro,m1) = 5((7“1 —10)% + (r; —r3)?/4)

with no forces since, by Example 5.6, the mixed curvature vanishes in the case b = 1,
hence there are no reduced forces. Finally, the discrete Euler-Lagrange equation
that determines the evolution of the (@, Lq) system is

(rh1r = 7k) = (r = mim1) + (P —72) — (i} = 1%21))/2=0,  (52)
that is, precisely, (22).
Last, we adapt Theorem 7.1 to the reconstruction in the present setting.

Theorem 10.10. Let G be a Chaplygin symmetry group of (Q, L4, D,Dyg). Let
(Go,q1) € Dg and r. be a discrete trajectory of the forced discrete mechanical system
(Q/G, id,ﬁ,ﬁd,pd) such that w(q;) = r; for j = 0,1. Define the discrete curve
q. in Q inductively by qo = Go and qry1 = h_g’“(rk_H) for all k € NU {0} (here
the horizontal lift is associated to the affine discrete connection whose horizontal
space is Dg). Then q. is a trajectory of the original discrete mechanical system with
qj = q; for 7 =0,1.

Proof. The trajectory r. defines a trajectory (vg, req1) = Y(re, res1) in G x (Q/G).
Indeed, by Lemma 10.5 both curves satisfy simultaneously the corresponding vari-
ational principles. Also, since go € 7 1(r0), vo = p(Go,e) = p(qo, Aa(do,q1)). In
general, vy = p(qk, ) for some G € 71 (r).

Then, since (o, 1) € Dg, by Theorem 7.1, there is a trajectory ¢. in @ such that
m(qr) = ri for all k and g0 = Go, ¢1 = 1. Furthermore, gi4+1 satisfies the formula
in the statement because, gp41 satisfies (31) with uy = e for all k. O

Example 10.11. We use Theorem 10.10 to reconstruct the trajectories of the
system reduced in Example 10.9. Applying the recursive formula and (9) we have
Tt = (Tht1, Yt1) = h_gk(rkﬂ) = (M1, Yk + (T%-H —71%)/2),

or, simplifying, (zx,yx) = (1%, yo + (r; —r2)/2), agreeing with the result obtained
in Example 7.2.



REDUCTION OF DISCRETE MECHANICAL SYSTEMS 105

11. Reduced equations of motion: Horizontal symmetries case. In this
section we specialize theorem 5.11 to the case where the original system is a me-
chanical system with horizontal symmetries. In the same way as in the Chaplygin
case discussed in Section 10, in this case we go beyond the result of equivalence
between the mechanical system in Q and a dynamical system in G x (Q/G) to ob-
tain an equivalence between the discrete mechanical system in ) and another one

in Q/G.

Definition 11.1. Let M be a symmetry group of (Q, Ly, D, D). A closed subgroup
G C M is said to be a horizontal symmetry subgroup for (Q, Lq, D, Dy) if

VYM(g)nD, =Vq) forall qeQ. (53)

From now on we will forget the group M and consider the action of G on the
system. It is in this context that we specialize Theorem 5.11. Due to condition (53),
we have that V& = S, the decomposition (2) of T'Q becomes

TQ=Wo {0} S H
~—~—
u

for any complementary subbundles H of S in D and W of D in T'Q. Fixing one
such decomposition we define a connection A on the principal bundle 7 : Q — Q/G
requiring that Hor4 = H.

In the context of this section the discrete nonholonomic momentum map Jy
defined by (32) has some special properties, which are studied next.

Lemma 11.2. If G is horizontal symmetry subgroup the following statements are
true.

1. g =Q x g and (gP)* ~ Q x g*.
2. Composing the nonholonomic momentum map Jq defined in (32) with the
projection onto the second variable defines a momentum application Jg : QQ X

Q — g*. Explicitly, for £ € g,
Ja(q0, ¢1)€ == —D1La(q0, 91)¢q(qo0)-

3. Any of the equivalent conditions of Theorem 8.5 is equivalent to the condition
that Jq is constant on the trajectory q..

Proof. Ttem 1 is a direct consequence of V& C D, while item 2 is clear from item 1.

Last we check item 3. Let ¢. be a discrete curve in (). Assume that equation (35)
holds on g. for any section §~ . Then, since any £ € g defines a (constant) section,
evaluating (35) on this section yields (Jd(qk, r+1) — Ja(qr—1, qk))§ = 0. Thus, since
& € g is arbitrary, Jy is conserved on gq..

Conversely, if J; is constant on ¢., equation (35) holds for constant sections of
g?. But, it can be readily checked that if (35) holds for a section ¢, it also holds
for the section fé, for arbitrary f : @ — R. Then, since in our setup every section
is a linear combination of constant sections with variable coefficients, we conclude
that (35) holds for all sections. O

Below we construct an affine discrete connection adapted to the present geometry.
Later we use that connection to specialize Theorem 5.11 to the horizontal setting.
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11.1. Affine discrete connection for horizontal symmetries. We recall two
well known results.

Lemma 11.3. If{ €g, g€ G and q € Q, then §Q(l§(q)) = ng((Adgfl(g))Q(q)).
Lemma 11.4. Ifg € G and qo,q1 € Q, then
Ja(1979 (g0, 1)) = Ad}, 1 (Ja(go, q1))-

When F' : @ x Q@ — R is a smooth map, DiF : piTQ — R is defined by
Dy F = dF|p=7q. Noticing that pjTQ ~ TQ x Q, we have Do(D1F) : p3TQ — R
(where py : TQ x Q — @ is the projection). As p5TQ ~TQ x TQ, it is customary
to consider DoD1Lg : TQ x TQ — R. It is easy to check that DyD; Ly is bilinear
in the tangent vectors.

Definition 11.5. Let Ly : Q X @ — R be a discrete lagrangian. We say that Ly is
regular at (qo, 1) € QX Q if the bilinear mapping D2 D1 Lg(qo, ¢1) : T, @%x T, Q@ — R
is nondegenerate, i.e., if Xy € Ty, Q satisfies DoD1Lg(qo, g1)(Xo, X1) = 0 for all
X1 €Ty Q, then Xg = 0. In coordinates, the regularity condition becomes that the
9% La(g0,q1)
9q00q1
Definition 11.6. Let G be a symmetry group of (Q, Ly, D, Dy). We say that Ly is
G-regular at (qo,q1) € Q X @ if the restriction of the bilinear form DoD1 L4(qo,q1) :
T,Q x Ty, Q — R to V¥(qo) x VE(q1) is nondegenerate.

matrix be invertible.

The notions of regularity introduced above have already been considered by other
authors ([21], [10], [23]). In order to study the relationship between the regularities
of a lagrangian and the fact that the discrete momentum values be regular we begin
by recalling the following fact.

Lemma 11.7. Let 7 : Q — Q/G a principal bundle and {vy,...,vx} C g a linearly
independent subset. Then, if ¢ € Q, {(v1)o(q),- .., (vk)o(q)} C T,Q is a linearly
independent subset. Furthermore, if the first set is a basis, then the second one is a
basis too.

Proposition 11.8. Let G be a horizontal symmetry group of (Q, La, D, Dyg) with
regular Lg, discrete momentum mapping Jg: Q X Q — g* and p € g*. Then,
o L is a regular value of Jq and, consequently, J,, = Jd_l(u) CQRxQisa
submanifold.
o if for qo € Q we let J° : Q — g* by J3°(q1) := Jalqo, q1), i is a regular value
of J* and, consequently, (J¥*)~1(u) C Q is a submanifold that, if not empty,
has dimension dim @ — dim G.

Proof. We have to prove that for all (go,¢1) € J,, the map
de(Qanl) : T(qo#h)(Q X Q) - T,ug* = g*

is onto. Let {e1,...,e,} be a basis of g and {e7,...,ex} its dual basis. Hence
Ja(qo,q1) = Z;Zl ®j(q0,q1)€],
where ¢;(qo,q1) = Ja(qo,q1)(ej) = —D1La(q0,q1)(ej)@(q0). Then,
dJa(qo, ¢1)(Xo, X1) = Z;ZI(DMJ%' (90, 41)(Xo) + D26;(q0, q1)(X1))e;.
Given ¢ = Z;Zl aje; € g*, by the regularity of Ly there is Xy € T, @ such that
D2¢(q0.¢1)(X1) = =D2D1La(q0, 01)((€5)@(q0), X1) = a;
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for all 5. Then,
dJa(g0, ¢1)(0, X1) = ZFI Da¢i(q0, q1)(X1)e; = ZFI aje; =1,
so that dJ4(qo, q1) is onto; thus u is a regular value of J; and standard results allow
us to conclude that J, C Q x @ is a submanifold.
We see in the previous computation that, for ¢ € g*

dJ3(q1)(X1) = DaJa(qo, 1) (X1) = ¥,

so that 4 is also a regular value of J°, hence, (J2°)~!(u) C Q is also a submanifold.
The dimension of (J3°)~!(x) can be computed noticing that, being y a regular value
of J, if g1 € (JI)~1(u), we have
dim((J3*) " (1)) = dim(ker(dJ° (1)) = dim(Ty, Q) — dim(Im(d /g’ (q1)))
= dim(Q) — dim(G).
O

Proposition 11.9. Let G be a horizontal symmetry group of (Q, Lq,D,Dy) with
Lq reqular and G-regular. Then, for all qo € Q and u € g*, if ¢1 € lg({qo}) N

(JE) M), then Ty, Q = Tylg({ao}) © Tys (J3°) ™ (1):
Proof. Assume that (JI°)~'(u) # 0 since, otherwise, the statement is valid. As

dim(J%) =1 (1) = dim Q—dim G, it suffices to see that Ty, 1&({go})NTy, (J) ' (1) =
{0} for all ¢; as in the statement. If X is in this last intersection,

0=dJi(q1)(X1) = Z;zl —D2D1 La(q0,91)((e5)@(q0), X1)ej,

so that DoD1Lg(qo, q1)((ej)o(q0), X1) = 0, for all j. By the G-regularity of Ly and
being {(e1)o(qo) - - -, (ex)q(qo)} a basis of qulg({qo}), we have that X; =0. O

Definition 11.10. Let G be a horizontal symmetry group of (Q, L4, D, Dy) with Ly
regular and G-regular. Given u € g* we say that G is a group of p-good symmetries
if, in addition, for each ¢ € @ there is a unique g € G such that Jg(ng(q)) = p. In
this case, we define v : @ — G by v(q) :=g¢.

It is possible to extend the previous notion to systems where there are more
than one g € G with the required property but, in this case, the action must be
accompanied by a smooth unique determination of g.

Proposition 11.11. Let G be a group of u-good symmetries of (Q, Lq, D, Dy) for
some p € g*. If p satisfies Ady () = p for all g € G, then J, C Q x Q defines an
affine discrete connection in w: Q — Q/G of level v, given by the u-goodness of G.
Proof. By Proposition 11.8, J,, is a submanifold of ) x @ and, by Lemma 11.4,
it is also G-invariant. According to the definition of ~, Jd(q,lg(q)(q)) = W, SO
that I' C J,. Last, by Proposition 11.8, J,(¢) C @ is a submanifold and, using
Proposition 11.9, we conclude that 7, defines an affine discrete connection. Notice

that v is G-equivariant by Lemma 11.4 and the condition Ad}(u) = p for all g €
G. O

Remark 11.12. In the context of Proposition 11.11, the condition that Adj(u) = u
for all g € G can be avoided by considering the (probably smaller) symmetry group
G, = {9 € G : Ady(p) = p} instead of G. Indeed, G, is a Lie group and a
symmetry group of (Q, La, D, Dy). Since G satisfies (53), V% (q) C D, for all ¢, so
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that V9 (q) C D, for all g. Hence, (53) holds if we put G, instead of M and G
and run the reduction arguments in this setting. This same remark applies to the
statements made in what remains of this section.

11.2. Reduction. In this section we assume that G is a group of p-good symme-
tries of a regular and G-regular system for some p € g*. In the previous section
we saw that if p satisfies Adj(u) = p for all g € G, we can define an affine discrete
connection Ag such that Hor 4, = J,,. Below, we use this connection to specialize
Theorem 5.11 to the context of horizontal symmetries.

As in the Chaplygin case studied in Section 10.1, using ) we define a forced
discrete mechanical system on Q/G with discrete lagrangian Lq(ro, 1) == Y*(La) =
Lg oY, variational constraints D := dm (D), kinematic constraints Dy := Y~ 1(Dy)
and forces I := Y*(F).

Theorem 11.13. Let G be a p-good symmetry group of (Q, Lq, D, Dyg) for some
p € g*. Assume that Ady () = pu for all g € G. Let q. be a discrete curve in Q and
ri := m(qr) the corresponding discrete curve in Q/G. Then, if Ji(qk, qr+1) = w1 for
all k, the following statements are equivalent.

1. (qr,qr+1) € Dg for all k and q. satisfies the variational principle dSq(q)(dq.) =
0 for all vanishing end points variation 6q. such that 6qy, € D, for all k.

2. (qk,qr+1) € Dg for all k and q. satisfies the discrete Lagrange—D’Alembert
equations (3) for all k.

3. 1. satisfies the variational principle

dSa(r)(6r) =—=>_

for all vanishing end points variations such that éry € ’ﬁrk for all k. In
addition, (ri,ri1+1) € Dg for all k.
4. r. satisfies (51). In addition, (ri,rr+1) € Dy for all k.

N—-1 o

o Fa ) + B (reea, 1)) (07%)

Proof. In the present context Jy is conserved over ¢q.. Hence, equation (35) is
satisfied and, by Theorem 8.5 the vertical equations in Theorem 5.11 are satisfied.
Then, by Theorem 5.11, points 1 or 2 of the present result are equivalent to either
one of

i. Item 3 in Theorem 5.11 holds for all horizontal variations, (& = 0 for all k).

ii. For all k (v, Tk+1) € Dg and condition (16) holds.
Notice that wr = Aq(qk, qx+1) = e due to the conservation of J; and the choice of
Aa. Then, (vg,764+1) = (p(ar; €), Trt1) = V(rk, 7h41) € Da if and only if (rg, 7r11) €
Y~ 1(D4) = Dy. Thus the constraint conditions that appear in items i or ii are
equivalent to the ones that appear in 3 or 4.

By Lemma 10.5, the variational principle that appears in item i is equivalent to
the variational principle in point 3. Similarly, by Lemma 10.6, the equations that
appear in item ii are equivalent to the ones that appear in 4. O

The following reconstruction result is the analogue of Theorem 7.1 which is valid
in the current setting.

Theorem 11.14. Let G be a horizontal symmetry group of (Q,Lq,D,Dg) and
(q0,q1) € Da. Let p = Ja(qo, q1) € g*. Assume that Ady(p) = p for all g € G and
that G is p-good.
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Let r. be a discrete trajectory of (Q/G, L4, D, Dy, F'd) such that w(q;) = r; for j =
0,1. Define the discrete curve q. in Q inductively by qo = Go, and qr+1 = h_g’“(rk_H)
for all k (here the horizontal lift is associated to the affine discrete connection whose
horizontal space is J,). Then q. is a trajectory of the original discrete mechanical
system that satisfies g0 = Go and q1 = q1 .

Proof. See the proof of Theorem 10.10. O

11.3. An example of reduction of horizontal symmetries. In this section
we apply the analysis developed in the previous sections to a system that exhibits
horizontal symmetries. The system is a discretization of the nonholonomic free
particle considered by J. Cortés on page 100 of [11]. More precisely, the system
(Q, L4, D,Dy) has Q := R? and

m €T €T z z
=5 (a7 = a5)* + (af —a0)” + (i — %)),

where ¢ := (¢%, ¢¥, ¢*). The constraints are

Dy i= {0, + 40, +20. € T,Q : § = ¢"&} = (x|, +479y],), -], )

La(qo,q1)

Da = {(q0,01) € @ x Q 1 ¢f — gf = ((a)* — (45)*)/2}

The group M := R? acts on Q by ng(q) = (¢*,¢¥ + ¢¥,¢* + ¢g°), where g :=
(¢9¥,9%) € M. The Lie algebra of M is m that we identify with R?. The correspond-
ing lifted action is I79(q,v) = (I$(g),v). Therefore, L4, D and Dq are M-invariant.

The vertical space for the action is V' = <8y|q, 0. |q) C T,Q, so that

Sq :=Dg NV} = (8:1,).

Thus, the closed subgroup G := {0} x R C M, satisfies D, N Véw =85, = VqG, for
all ¢ € Q. Hence, G is a horizontal symmetry (sub)group of the system. We have
g={0} x RCR?=m.

Clearly, Ly is regular as well as G-regular. Also, being G abelian, Adj (1) = p for
all g € G and p € g*. A simple computation shows that J4(qo,q1) = m(¢f — ¢§)1%,
where 1* denotes the basis of g* that is dual to (0,1). Then, if ¢ € Q and p = p*1*,
Ji(19(¢q)) = p has a unique solution g := (0, £p*) € G and G is a group of u-
good symmetries. Hence Theorem 11.13 applies to identify the reduced system
with a forced discrete mechanical system on Q/G ~ R?. Below we give an explicit
description of this reduced system.

As in the previous sections, we use the affine discrete connection .45 whose hor-
izontal space is, for a fixed u € g%, J, = {(q0,q1) € @ x Q : m(¢f — ¢5) = p*}.
Equivalently, Aq4(qo,q1) = (0,4 — ¢ — +p*) € G. The discrete horizontal lift of
Agis h(r) = (', 7", Lp* + ¢f).

As an intermediate step we have to describe the reduced system on G x (Q/G).
Since 7 : @ — @Q/G is a trivial principal bundle with structure group G we apply
the description of the reduced system given in Section 9. The resulting system is

Gx(Q/G)~(Q/G) x G x (Q/G) =R? x R x R?,

fjfi(rmﬁkﬂ'kﬁ-l) = 2((Fyy — e )2+ (i — 1) + (Lp* +9)2),

IDi = <ar/|r + T/ar”lr> C T’I‘(Q/G)7

DY = {(rks . i) € (Q/G) x G x (Q/G) iy il = ((rep)? — (r)2) /23,
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In order to complete the description of the reduced system we need to compute the
reduced forces Fy. We fix a splitting

T,Q = <6y|q> © {0} @ <6Z|q> D <aﬂa|q + qmaqu%
—_—— ~ M —-
=W, =U; =S, —H,

which determines the nonholonomic connection A. In particular, notice that since
dAq(qo,q1) = (0,dz|q, —dz|g,) and Hor4(dq) € (81‘q +qw(9y‘q> the mixed curvature

B, vanishes, and so does the reduced force Fd.
The inclusion Y is Y(rk, 7k+1) := (rk,e,7541) so that the reduced mechanical
system (@, Lq, D,Dy) has @ = Q/G and
La(rk,mien) = B ((Fey — 702 + (s — 702 + (H19)?),
Dy = (0 .t 7' Oprr T), (54)
9 ’I‘/ 2_ ’I‘/ 2
D= {(r,mhs1) € (Q/G) X (Q/G) s Ly, — vy = Lol Uy

The discrete Lagrange-D’Alembert equations (3) for this system are

—(Phyr = 7%) + (k= 7h1) = AT
_(Tgﬂ =)+ (g =) = =k
Thp1 —Th = ((T;c+l)2 —(r1.)%)/2.
Those equations can be easily solved to determine the evolution of the reduced

system, r.. The corresponding trajectory ¢. of the original system is obtained re-
cursively, according to Theorem 11.14, by, for a given ¢, defining

1
qr+1 =(q;”5+1, QZH, qZ+1) = hZ" (Thy1) = (T;chl?T;clJrl? EMZ +4q7)

:(T;chl?T;clJrlv a1 — 46 + i)
or,
(4> a> ai) = (i kel — 46) + 46)-

Interestingly, the discrete mechanical system (Q, La, ﬁ,ﬁd) defined by (54) still
has a residual symmetry group. The group M/G ~ R acts on Q/G via the action
induced by (¢ on Q/G. This is precisely the system and symmetry group whose
reduction and reconstruction as a Chaplygin system was discussed in Examples 10.9
and 10.11. Using those results we get the trajectories of the original system

where 7y, is determined from (52) with 7o = ¢& and r1 = ¢f.

Remark 11.15. The presence of this second reduction step by M /G is an example
of reduction by stages for discrete mechanical systems, a topic that will be discussed
elsewhere.
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