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The celebrated Heinz inequality asserts that 2|||A1/2XB1/2||| �
|||AνXB1−ν + A1−νXBν ||| � |||AX + XB||| for X ∈ B(H ), A, B ∈
B(H )+, every unitarily invariant norm ||| · ||| and ν ∈ [0, 1]. In
this paper, we present several improvement of the Heinz inequal-

ity by using the convexity of the function F(ν) = |||AνXB1−ν +
A1−νXBν |||, some integration techniques and various refinements

of the Hermite–Hadamard inequality. In the setting of matrices we

prove that
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for real numbers α, β .
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1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators acting on a complex separable

Hilbert space (H , 〈·, ·〉). In the case when dimH = n, we identify B(H )with the full matrix algebra
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Mn of all n × n matrices with entries in the complex field. The cone of positive operators is denoted

by B(H )+. A unitarily invariant norm |||·||| is defined on a norm ideal J|||·||| of B(H ) associated with

it and has the property |||UXV ||| = |||X|||, where U and V are unitaries and X ∈ J|||.|||. Whenever we

write |||X|||, we mean that X ∈ J|||·|||. The operator norm on B(H ) is denoted by ‖ · ‖.
The arithmetic–geometric mean inequality for two positive real numbers a, b is

√
ab � (a+ b)/2,

which has been generalized in the context of bounded linear operators as follows. For A, B ∈ B(H )+
and an unitarily invariant norm ||| · ||| it holds that

2|||A1/2XB1/2||| � |||AX + XB|||.
For 0 � ν � 1 and two nonnegative real numbers a and b, the Heinz mean is defined as

Hν(a, b) = aνb1−ν + a1−νbν

2
.

The function Hν is symmetric about the point ν = 1
2
. Note that H0(a, b) = H1(a, b) = a+b

2
,

H1/2(a, b) = √
ab and

H1/2(a, b) � Hν(a, b) � H0(a, b) (1.1)

for 0 � ν � 1, i.e., the Heinz means interpolate between the geometric mean and the arithmetic

mean. The generalization of (1.1) in B(H ) asserts that for operators A, B, X such that A, B ∈ B(H )+,

every unitarily invariant norm ||| · ||| and ν ∈ [0, 1] the following double inequality due to Bhatia and

Davis [3] holds

2|||A1/2XB1/2||| � |||AνXB1−ν + A1−νXBν ||| � |||AX + XB|||. (1.2)

Indeed, it has been proved that F(ν) = |||AνXB1−ν + A1−νXBν ||| is a convex function of ν on [0, 1]
with symmetry about ν = 1/2, which attains its minimum there at and its maximum at ν = 0 and

ν = 1.

The second part of the previous inequality is one of the most essential inequalities in the operator

theory, which is called the Heinz inequality; see [10]. The proof given by Heinz [11] is based on the

complex analysis and is somewhat complicated. In [18], McIntosh showed that the Heinz inequality is

a consequence of the following inequality∥∥A∗AX + XBB∗∥∥ � 2 ‖AXB‖ ,

where A, B, X ∈ B(H ). In the literature, the above inequality is called the arithmetic–geometric mean

inequality. Fujii et al. [9] proved that the Heinz inequality is equivalent to several other norm inequal-

ities such as the Corach–Porta–Recht inequality ‖AXA−1 + A−1XA‖ � 2‖X‖, where A is a selfadjoint

invertible operator and X is a selfadjoint operator; see also [6]. Audenaert [2] gave a singular value

inequality for Heinz means by showing that if A, B ∈ Mn are positive semidefinite and 0 � ν � 1,

then sj(A
νB1−ν + A1−νBν) � sj(A+ B) for j = 1, . . . , n, where sj denotes the jth singular value. Also,

Yamazaki [22] used the classical Heinz inequality ‖AXB‖r‖X‖1−r ≥ ‖ArXBr‖ (A, B, X ∈ B(H ), A �
0, B � 0, r ∈ [0, 1]) to characterize the chaotic order relation and to study isometric Aluthge trans-

formations.

For a detailed study of these and associated norm inequalities along with their history of origin,

refinements and applications, one may refer to [3–5,12–15].

It should be noticed that F(1/2) � F(ν) � F(0)+F(1)
2

provides a refinement to the Jensen inequality

F(1/2) � F(0)+F(1)
2

for the function F . Therefore it seems quite reasonable to obtain a new refinement

of (1.2) by utilizing a refinement of Jensen’s inequality. This idea was recently applied by Kittaneh [17]

in virtue of the Hermite–Hadamard inequality (2.1).

One of the purposes of the present article is to obtain some new refinements of (1.2), from different

refinements of inequality (2.1). We also aim to give a unified study and further refinements to the

recent works for matrices.
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2. The Hermite–Hadamard inequality and its refinements

For a convex function f , the double inequality

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x)dx � f (a) + f (b)

2
(2.1)

is known as the Hermite–Hadamard (H-H) inequality. This inequality was first published by Hermite

in 1883 in an elementary journal and independently proved in 1893 by Hadamard. It gives us an

estimation of the mean value of the convex function f ; see [18,19].

There is an extensive amount of literature devoted to this simple and nice result, which has many

applications in the theory of special means from which we would like to refer the reader to [20].

Interestingly, each of two sides of the H-H inequality characterizes convex functions. More precisely, if

J is an interval and f : J → R is a continuous function, whose restriction to every compact subinterval

[a, b] verifies the first inequality of (2.1) then f is convex. The same works when the first inequality is

replaced by the second one.

Applying the H-H inequality, one can obtain the well-known geometric–logarithmic–arithmetic

inequality

H1/2(a, b) � L(a, b) � H0(a, b),

where L(a, b) = ∫ 1
0 atb1−tdt. An operator version of this has been proved by Hiai and Kosaki [13],

which says that for A, B ∈ B(H )+,

|||A1/2XB1/2||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0
AνXB1−νdν

∣∣∣∣
∣∣∣∣
∣∣∣∣ � 1

2
|||AX + XB||| ,

which is another refinement of the arithmetic–geometric operator inequality.

Throughout this paper we will use the following notations: For a, b ∈ R and t ∈ [0, 1],

mf (a, b) = 1

b − a

∫ b

a
f (x)dx,

and

[a, b]t = (1 − t)a + tb.

If f is an integrable function on [a, b] then
1

b − a

∫ b

a
f (x)dx =

∫ 1

0
f (ta + (1 − t)b)dt =

∫ 1

0
f (tb + (1 − t)a)dt,

and if f is convex on [a, b] we get

1

b − a

∫ b

a
f (x)dx =

∫ 1

0
F(a,b)(t)dt,

where F(a,b)(t) = 1
2

(
f
(
a + t(b−a)

2

)
+ f

(
b − t(b−a)

2

))
; see [1, Theorem 1.2].

In this section we collect various refinements of the H-H inequality for convex functions.

Theorem 2.1 [7,21]. If f : [a, b] → R is a convex function and Ht, Gt are defined on [0, 1] by

Ht(a, b) = 1

b − a

∫ b

a
f

([
a + b

2
, x

]
t

)
dx,

and

Gt(a, b) = 1

2(b − a)

∫ b

a
[f ([x, a]t) + f ([x, b]t)]dx,
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then Ht and Gt are convex, increasing and

f

(
a + b

2

)
= H0(a, b) � Ht(a, b) � H1(a, b) = mf (a, b), (2.2)

mf (a, b) = G0(a, b) � Gt(a, b) � G1(a, b) = f (a) + f (b)

2
(2.3)

for all t ∈ [0, 1]. Furthermore,

f

(
a + b

2

)
� 2

b − a

∫ (a+3b)
4

(3a+b)
4

f (x)dx �
∫ 1

0
Ht(a, b)dt

� 1

2

(
f

(
a + b

2

)
+ mf (a, b)

)
� mf (a, b)

and

2

b − a

∫ (a+3b)
4

(3a+b)
4

f (x)dx � 1

2

(
f

(
3a + b

4

)
+ f

(
a + 3b

4

))
�
∫ 1

0
Gt(a, b)dt

� 1

2

(
f

(
a + b

2

)
+ f (a) + f (b)

2

)
� f (a) + f (b)

2
. (2.4)

Remark 2.2. (1) From (2.4) we get that

mf (a, b) � 1

2

(
f

(
a + b

2

)
+ f (a) + f (b)

2

)
� f (a) + f (b)

2
,

which is the well-known Bullen’s inequality; see [20, p. 140]. As an immediate consequence,

from the previous inequality, we note that the first inequality is stronger than the second one

in (2.1), i.e.

mf (a, b) − f

(
a + b

2

)
� f (a) + f (b)

2
− mf (a, b).

(2) We note some properties of Ht and Gt useful in the next sections. For μ ∈ [0, 1] we get

(a) Ht(μ, 1 − μ) = 1
1−2μ

∫ 1−μ
μ f

([
1
2
, x
]
t

)
dx = 1

2μ−1

∫μ
1−μ f

([
1
2
, x
]
t

)
dx = Ht(1 − μ, μ).

(b) Gt(μ, 1 − μ) = 1
2(1−2μ)

∫ 1−μ
μ [f ([x, μ]t) + f ([x, 1 − μ]t)]dx = Gt(1 − μ, μ).

Recently, the following result was proved:

Theorem2.3 [21]. If f is a convex function defined on open interval J, a, b ∈ J with a < b and themapping

Tt is defined by

Tt(a, b) = 1

2

(
f

(
1 + t

2
a + 1 − t

2
b

)
+ f

(
1 − t

2
a + 1 + t

2
b

))
,

then Tt is convex and increasing on [0, 1] and

f

(
a + b

2

)
� Tη(a, b) � Tξ (a, b) � Tλ(a, b) � f (a) + f (b)

2
,

for all η ∈ (0, ξ), λ ∈ (ξ, 1), where Tξ (a, b) = mf (a, b).

In [8], the author asked whether for a convex function f on an interval J there exist real numbers l,

L such that
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f

(
a + b

2

)
� l � 1

b − a

∫ b

a
f (x)dx � L � f (a) + f (b)

2
.

An affirmative answer to this question is given as follows.

Theorem 2.4 [8]. Assume that f : [a, b] → R is a convex function. Then

f

(
a + b

2

)
� l(λ) � 1

b − a

∫ b

a
f (x)dx � L(λ) � f (a) + f (b)

2
(2.5)

for all λ ∈ [0, 1], where

l(λ) = λf

(
λb + (2 − λ)a

2

)
+ (1 − λ)f

(
(1 + λ)b + (1 − λ)a

2

)

and

L(λ) = 1

2
(f (λb + (1 − λ)a) + λf (a) + (1 − λ)f (b)).

Remark 2.5. Applying inequality (2.5) for λ = 1
2
we get

f

(
a + b

2

)
� 1

2

(
f

(
3a + b

4

)
+ f

(
a + 3b

4

))
� mf (a, b)

� 1

2

(
f

(
a + b

2

)
+ f (a) + f (b)

2

)
� f (a) + f (b)

2
.

This result has been obtained by Akkouchi in [1].

3. Refinements of the Heinz inequality for operators

In this section we use the convexity of F(ν) = |||AνXB1−ν + A1−νXBν |||; ν ∈ [0, 1] and the

different refinements of inequality (2.1) described in the previous section.

Theorem 3.1. Let A, B, X be operators such that A, B ∈ B(H )+. Then for any t, μ ∈ [0, 1] and any

unitarily invariant norm ||| · |||,
2|||A1/2XB1/2||| � 1

1 − 2μ

∫ 1−μ

μ
F([1/2, x]t)dx

� 1

1 − 2μ

∫ 1−μ

μ
|||AxXB1−x + A1−xXBx|||dx

� 1

2(1 − 2μ)

∫ 1−μ

μ
[F([x, μ]t) + F([x, 1 − μ]t)]dx

� |||AμXB1−μ + A1−μXBμ|||.
Proof. For μ 
= 1

2
the inequalities follows by applying inequalities (2.2) and (2.3) on the interval

[μ, 1 − μ] if 0 � μ < 1
2
or [1 − μ,μ] if 1

2
< μ � 1. Finally

lim
μ→ 1

2

1

2(1 − 2μ)

∫ 1−μ

μ
(F([x, μ]t) + F([x, 1 − μ]t)) dx = 2|||A1/2XB1/2|||

completes the proof. �
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Applying Theorem 2.1 to the function F on the interval
[
μ, 1

2

]
or
[
1
2
, μ
]
for μ ∈ [0, 1] we obtain

the following refinement of [17, Theorem 2 and Corollary 1].

Theorem 3.2. Let A, B, X be operators such that A, B ∈ B(H )+. Then for every μ ∈ [0, 1] and every
unitarily invariant norm ||| · |||,

2|||A1/2XB1/2||| � |||A 2μ+1
4 XB

3−2μ
4 + A

3−2μ
4 XB

2μ+1
4 |||

� 4

1 − 2μ

∫ (2μ+3)
8

(6μ+1)
8

|||AxXB1−x + A1−xXBx|||dx �
∫ 1

0
Ht(1/2, μ)dt

� 1

2
|||A 2μ+1

4 XB
3−2μ

4 + A
3−2μ

4 XB
2μ+1

4 ||| + 1

1 − 2μ

∫ 1/2

μ
F(x)dx

� 2

1 − 2μ

∫ 1/2

μ
|||AxXB1−x + A1−xXBx|||dx = G0(1/2, μ) �

∫ 1

0
Gt(1/2, μ)dt

� 1

2

(
|||A 2μ+1

4 XB
3−2μ

4 + A
3−2μ

4 XB
2μ+1

4 ||| + |||AμXB1−μ + A1−μXBμ||| + F(1/2)

)

� 1

2
|||AμXB1−μ + A1−μXBμ||| + |||A1/2XB1/2|||

� |||AμXB1−μ + A1−μXBμ|||.
Now, we have the following refinement of the first part of the the Heinz inequality via certain

sequences.

Theorem 3.3. Let A, B, X be operators such that A, B ∈ B(H )+ and for n0 � 0 ,

xn(F, a, b) = 1

2n

2n∑
i=1

F

(
a +

(
i − 1

2

)
b − a

2n

)
,

yn(F, a, b) = 1

2n

⎛
⎝F(a) + F(b)

2
+

2n−1∑
i=1

F

(
[a, b] i

2n

)⎞⎠ .

Then

(1) For μ ∈ [0, 1/2] and for every unitarily invariant norm ||| · |||,
2|||A1/2XB1/2||| = x0(F, μ, 1 − μ) � · · · � xn(F, μ, 1 − μ)

� 1

1 − 2μ

∫ 1−μ

μ
|||AxXB1−x + A1−xXBx|||dx

� yn(F, μ, 1 − μ) � · · · � y0(F, μ, 1 − μ) = F(μ)

(2) For μ ∈ [1/2, 1] and for every unitarily invariant norm ||| · |||,
2|||A1/2XB1/2||| = x0(F, 1 − μ,μ) � · · · � xn(F, 1 − μ,μ)

� 1

2μ − 1

∫ μ

1−μ
|||AxXB1−x + A1−xXBx|||dx

� yn(F, 1 − μ,μ) � · · · � y0(F, 1 − μ,μ) = F(μ)

Applying the Theorem 2.4, we obtain the following refinement.
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Theorem 3.4. Let A, B, X be operators such that A, B ∈ B(H )+ and α, β ∈ [0, 1] and ||| · ||| be a

unitarily invariant norm. Then

F

(
α + β

2

)
� l(λ) � 1

b − a

∫ b

a
F(x)dx � L(λ) � F(α) + F(β)

2

for all λ ∈ [0, 1], where

l(λ) = λF

(
λβ + (2 − λ)α

2

)
+ (1 − λ)F

(
(1 + λ)β + (1 − λ)α

2

)

and

L(λ) = 1

2
(F(λβ + (1 − λ)α) + λF(α) + (1 − λ)F(β)).

Finally, using the refinement presented in Theorem 2.3 we get the following statement.

Theorem 3.5. Let A, B, X be operators such that A, B ∈ B(H )+. For a, b ∈ (0, 1) with a < b let Tt be

the mapping defined in [0, 1] by
Tt(a, b) = 1

2

(
F

(
1 + t

2
a + 1 − t

2
b

)
+ F

(
1 − t

2
a + 1 + t

2
b

))
.

Then, there exists ξ ∈ (0, 1) such that for any μ ∈ (0, 1) and any unitary invariant norm ||| · |||,
2|||A1/2XB1/2||| � Tη(μ, 1 − μ) � Tξ (μ, 1 − μ) = 1

1 − 2μ

∫ 1−μ

μ
F(x)dx

� Tλ(μ, 1 − μ) � |||AμXB1−μ + A1−μXBμ||| ,
where η ∈ [0, ξ ] and λ ∈ [ξ, 1].

From the generalization of the H-H inequality due to Vasić and Lacković, we get

Theorem 3.6. Let A, B, X be operators such that A, B ∈ B(H )+ and let p, q be positive numbers and

0 � α < β � 1. Then the double inequality

F

(
pα + qβ

p + q

)
� 1

2y

∫ c+y

c−y
F(t)dt � pF(α) + qF(β)

p + q

holds for c = pα+qβ
p+q

, y > 0 if and only if y � β−α
p+q

min{p, q}.

4. Refinement of the Heinz inequality for matrices

In what follows, the capital letters A, B, X, . . . denote arbitrary elements of Mn. By Pn we denote

the set of positive definite matrices. The Schur product of two matrices A = [aij] and B = [bij] in Mn

is the entrywise product and denoted by A ◦ B. We shall state the following preliminary result, which

is needed to prove our main results.

If X = [xij] is positive semidefinite, then for any matrix Y, we have

|||X ◦ Y ||| � |||Y |||max
i

xii (4.1)

for every unitarily invariant norm ||| · |||. For a proof of this, the reader may be referred to [11].
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Theorem 4.1. Let A, B ∈ Pn and X ∈ Mn. Then for any real numbers α, β and any unitarily invariant

norm ||| · |||,∣∣∣∣
∣∣∣∣
∣∣∣∣A α+β

2 XB1−
α+β
2 + A1− α+β

2 XB
α+β
2

∣∣∣∣
∣∣∣∣
∣∣∣∣ � 1

|β − α|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ β

α

(
AνXB1−ν + A1−νXBν

)
dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AαXB1−α + A1−αXBα + AβXB1−β + A1−βXBβ
∣∣∣∣∣∣∣∣∣ . (4.2)

Proof. Without loss of generality assume that α < β . We shall first prove the result for the case

A = B. Since the norms considered here are unitarily invariant, so we can assume that A is diagonal,

i.e. A = diag(λ1, λ2, . . . , λn).
Note that

A
α+β
2 XA1− α+β

2 + A1− α+β
2 XA

α+β
2 = Y ◦

(∫ β

α

(
AνXA1−ν + A1−νXAν

)
dν

)
,

where Y is a Hermitian matrix. If X = [xij] and Y = [yij], then[
λ

α+β
2

i xijλ
1− α+β

2

j + λ
1− α+β

2

i xijλ
α+β
2

j

]
=
[
yij

∫ β

α

(
λν
i xijλ

1−ν
j + λ1−ν

i xijλ
ν
j

)
dν

]
,

whence

yij =
λ

α+β
2

i λ
1− α+β

2

j + λ
1− α+β

2

i λ
α+β
2

j∫ β
α

(
exp

(
log(λi)ν + log(λj)(1 − ν)

)+ exp
(
log(λi)(1 − ν) + log(λj)ν

))
dν

= λ
β−α
2

i

(
λα
i λ

1−β
j + λ

1−β
i λα

j

)
λ

β−α
2

j (log λi − log λj)

λ
β
i λ

1−β
j − λ

1−β
i λ

β
j − λα

i λ1−α
j + λ1−α

i λα
j

= λ
β−α
2

i (log λi − log λj)λ
β−α
2

j

λ
β−α
i − λ

β−α
j

, for i 
= j

and yii = 1
β−α

> 0. By (4.1), it is enough to show that the matrix Y is positive semidefinite, or

equivalently the matrix

y′
ij =

⎧⎪⎨
⎪⎩

log λi−log λj

λ
β−α
i −λ

β−α
j

if i 
= j

1

(β−α)λ
β−α
i

if i = j

is positive semidefinite. On taking λ
β−α
i = si, we get

(β − α)y′
ij =

⎧⎨
⎩

log si−log sj
si−sj

if i 
= j

1
si

if i = j ,

which is a positive semidefinite matrix, since the matrix on the right hand side is the Löwner matrix

corresponding to the matrix monotone function log x; see [4, Theorem 5.3.3]. This proves the first

inequality in (4.2) for the case A = B.

The second inequality will follow on the same lines. We indeed have∫ β

α

(
AνXA1−ν + A1−νXAν

)
dν = Z ◦

(
AαXB1−α + A1−αXBα + AβXB1−β + A1−βXBβ

)
,

where Z is the Hermitian matrix with entries
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zij =
⎧⎪⎪⎨
⎪⎪⎩

λ
β−α
i −λ

β−α
j

(log λi−log λj)(λ
β−α
i +λ

β−α
j )

if i 
= j

(β−α)
2

if i = j .

On taking λ
β−α
i = eti we conclude that Z is positive semidefinite if and only if so is the following

matrix

2

β − α
z′ij =

⎧⎪⎨
⎪⎩

tanh((ti−tj)/2)

(ti−tj)/2
if i 
= j

1 if i = j .

The right hand sidematrix is positive semidefinite since the function f (x) = tanh x
x

is positive definite;

see [4, Example 5.2.11]. This proves the second inequality in (4.2) for the case A = B.

The general case follows on replacing A by

⎡
⎣ A 0

0 B

⎤
⎦ and X by

⎡
⎣ 0 X

0 0

⎤
⎦ . �

The first corollary provides some variants of [17, Theorems 2 and 3]. It should be noticed that

lim
μ→1/2

(
2

|1 − 2μ|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ 1/2

μ
(AνXB1−ν + A1−νXBν)dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)

= 2
∣∣∣∣∣∣∣∣∣A1/2XB1/2

∣∣∣∣∣∣∣∣∣
and

lim
μ→0

(
1

|μ|
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ μ

0
(AνXB1−ν + A1−νXBν)dν

∣∣∣∣
∣∣∣∣
∣∣∣∣
)

= |||AX + XB||| .

Corollary 4.2. Let A, B ∈ Pn, X ∈ Mn, μ be a real number and ||| · ||| be any unitarily invariant norm.

Then ∣∣∣∣
∣∣∣∣
∣∣∣∣A 2μ+1

4 XB
3−2μ

4 + A
3−2μ

4 XB
2μ+1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣ � 2

|1 − 2μ|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ 1/2

μ
(AνXB1−ν + A1−νXBν)dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AμXB1−μ + A1−μXBμ + 2A1/2XB1/2
∣∣∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣∣∣Aμ
2 XB1−

μ
2 + A1− μ

2 XB
μ
2

∣∣∣∣∣∣∣∣∣ � 1

|μ|
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ μ

0
(AνXB1−ν + A1−νXBν)dν

∣∣∣∣
∣∣∣∣
∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AX + XB + AμXB1−μ + A1−μXBμ
∣∣∣∣∣∣∣∣∣ .

The following consequence provides a matrix analogue of (1.1).

Corollary 4.3. Let A, B ∈ Pn and X ∈ Mn. Then for any 0 � α < β � 1 with α + β � 2 and any

unitarily invariant norm ||| · |||,
2|||A1/2XB1/2||| �

∣∣∣∣
∣∣∣∣
∣∣∣∣A α+β

2 XB1−
α+β
2 + A1− α+β

2 XB
α+β
2

∣∣∣∣
∣∣∣∣
∣∣∣∣

� 1

|β − α|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ β

α

(
AνXB1−ν + A1−νXBν

)
dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

R. Kaur et al. / Linear Algebra and its Applications 447 (2014) 26–3734



� 1

2

∣∣∣∣∣∣∣∣∣AαXB1−α + A1−αXBα + AβXB1−β + A1−βXBβ
∣∣∣∣∣∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AαXB1−α + A1−αXBα
∣∣∣∣∣∣∣∣∣+ 1

2

∣∣∣∣∣∣∣∣∣AβXB1−β + A1−βXBβ
∣∣∣∣∣∣∣∣∣

� |||AX + XB|||.
Proof. Applying the triangle inequality, theproperties of the function f (ν) = |||AνXB1−ν+A1−νXBν |||
and Theorem 4.1 we get the required inequalities. �

It is shown in [17, Corollary 3] that

|||AνXB1−ν + A1−νXBν ||| � 4r0|||A1/2XB1/2||| + (1 − 2r0)|||AX + XB|||. (4.3)

A natural generalization of (4.3) would be

|||AνXB1−ν + A1−νXBν ||| � |||4r0A1/2XB1/2 + (1 − 2r0)(AX + XB)|||
for 0 � ν � 1 and r0 = min{ν, 1 − ν} with A, B ∈ Pn and X ∈ Mn, which in fact is not true, in

general. The following counterexample justifies this:

Take X =

⎡
⎢⎢⎢⎣
52.39 38.71 12.36

32.86 35.38 64.82

91.79 99.45 66.10

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

92.315 87.791 71.090

87.791 120.130 83.340

71.090 83.340 103.610

⎤
⎥⎥⎥⎦,

B =

⎡
⎢⎢⎢⎣
118.482 23.249 112.676

23.249 10.343 38.224

112.676 38.224 156.551

⎤
⎥⎥⎥⎦ and ν = 0.4680. Then tr|AνXB1−ν + A1−νXBν | = 78135.5, while

tr|4r0A1/2XB1/2 + (1 − 2r0)(AX + XB)| = 78125.4.
We shall, however, present another result, which is a possible generalization of (4.3).

Theorem 4.4. Let A, B ∈ Pn and X ∈ Mn. Then for ν ∈ [0, 1] and for every unitarily invariant norm

||| · |||,
|||AνXB1−ν + A1−νXBν ||| � |||4r1(ν)A1/2XB1/2 + (1 − 2r1(ν))(AX + XB)||| , (4.4)

where r1(ν) = min{ν,
∣∣∣ 1
2

− ν
∣∣∣ , 1 − ν}.

Proof. First, we consider the case ν ∈ [0, 1/2]. Notice that by some simple algebraic or geometrical

arguments, we may conclude that 0 � r1 � 1/4. Again, by following a similar way as in Theorem 4.1,

we can write the matrix

AνXA1−ν + A1−νXAν = W ◦ (4r1A
1/2XA1/2 + (1 − 2r1)(AX + XA)),

where W is a Hermitian matrix with entries

wij =
⎧⎪⎨
⎪⎩

λν
i (λ

1−2ν
i +λ1−2ν

j )λν
j

4r1λ
1/2
i λ

1/2
j +(1−2r1)(λi+λj)

if i 
= j

1 if i = j

Now, observe that 0 � 4r1
1−2r1

� 2 and 0 � 1 − 2ν � 1, so the matrixW is positive semidefinite; see

[5, Theorem 5.2, p. 225]. On repeating the same argument as in Theorem 4.1, the required inequality

(4.4) follows.
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Finally, if ν ∈ [ 1
2
, 1] let μ = 1 − ν ∈ [0, 1

2
], then by the previous case we have

|||AνXB1−ν + A1−νXBν ||| = |||A1−μXBμ + AμXB1−μ|||
� |||4r1(μ)A

1
2 XB

1
2 + (1 − 2r1(μ))(AX + XB)||| ,

where r1(μ) = min
{
μ,
∣∣∣ 1
2

− μ
∣∣∣ , 1 − μ

}
= r1(ν). �

From the previous theorem, we deduce a new refinement of the Heinz inequality for matrices.

Corollary 4.5. Let A, B ∈ Pn and X ∈ Mn. Then for ν ∈ [0, 1] and for every unitarily invariant norm

||| · |||,
|||AνXB1−ν + A1−νXBν ||| � |||4r1(ν)A1/2XB1/2 + (1 − 2r1(ν))(AX + XB)|||

� 4r1(ν)|||A1/2XB1/2||| + (1 − 2r1(ν))|||AX + XB|||
� 2(2r1(ν) − 1)|||A1/2XB1/2||| + 2(1 − r1(ν))|||AX + XB|||
� |||AX + XB||| ,

where r1(ν) = min{ν,
∣∣∣ 1
2

− ν
∣∣∣ , 1 − ν}.

As a direct consequence of Theorem 4.4, we obtain the following refinement of an inequality

(see [6]).

Corollary 4.6. Let A, B ∈ Pn, X ∈ Mn, r ∈
[
1
2
, 3
2

]
and t ∈ (−2, 2]. Then for every unitarily invariant

norm ||| · |||,
|||ArXB2−r + A2−rXBr ||| � |||4sAXB + (1 − 2s)(A3/2XB1/2 + A1/2XB3/2)|||

� 4s|||AXB||| + (1 − 2s)|||A3/2XB1/2 + A1/2XB3/2|||
� 4s|||AXB||| + (1 − 2s)

2

t + 2
|||A2X + tAXB + XB2|||

� 2(2s − 1)|||AXB||| + 4(1 − s)

t + 2
|||A2X + tAXB + XB2|||

� 2

t + 2
|||A2X + tAXB + XB2|||

in which s = min
{
r − 1

2
, |1 − r|, 3

2
− r

}
.

Proof. Let Y = A1/2XB1/2 ∈ Mn and ν = r − 1
2

∈ [0, 1]. It follows from Theorem 4.4 that

|||ArXB2−r + A2−rXBr ||| = |||ArA−1/2YB−1/2B2−r + A2−rA−1/2YB−1/2Br |||
= |||AνYB1−ν + A1−νYB1−ν |||
� |||4r1(ν)A1/2YB1/2 + (1 − 2r1(ν))(AY + YB)|||
= |||4r1(ν)AXB + (1 − 2r1(ν))(A3/2XB1/2 + A1/2XB3/2)||| ,

where r1(ν) = min
{
ν,
∣∣∣ 1
2

− ν
∣∣∣ , 1 − ν

}
. Let s = r1

(
r − 1

2

)
. Applying the triangle inequality and

Zhan’s inequality, we obtain

|||ArXB2−r + A2−rXBr ||| � |||4sAXB + (1 − 2s)(A3/2XB1/2 + A1/2XB3/2)|||
� 4s|||AXB||| + (1 − 2s)|||A3/2XB1/2 + A1/2XB3/2|||
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� 4s|||AXB||| + 2(1 − 2s)

t + 2
|||A2X + tAXB + XB2|||

� 2(2s − 1)|||AXB||| + 4(1 − s)

t + 2
|||A2X + tAXB + XB2|||

� 2

t + 2
|||A2X + tAXB + XB2|||. �
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