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a b s t r a c t

The problem of designing an optical interface surface separating two media with different
refractive indices that focuses monochromatic collimated radiation, from a plane domain
Ω so that each ray has a prescribed destination in Ω ′ lying in 3d-space, is locally solved.
Similar questions are also considered for reflection. The surface solutions satisfy first order
PDEs.
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1. Introduction

We have a domainΩ ⊂ Rn and a transformation T : Ω → Rn+1. We assume thatΩ is surrounded by an homogeneous
medium I , and T (Ω) is surrounded by another homogeneousmedium II . From each x ∈ Ω a light ray emanateswith vertical
direction en+1. The problem considered in this paper is to find conditions on the transformation T such that there exists a
separation surface z = u(x) between media I and II so that each ray emanating from the point x ∈ Ω is refracted into the
destination point T x. Indeed, we find conditions on the transformation T such that a refracting surface z = u(x) exists
locally. For example, given a plane image F surrounded by medium I and an image F ′ in 3d-space surrounded by medium II ,
we find conditions so that there is a surface separating the media, that refracts F into F ′ locally so that each point x ∈ F goes
into a prescribed point x′

∈ F ′. We also consider in Section 3 a similar question when the rays emanate from a point source.
The main result is Theorem 2.1 and examples of illustration are given in Section 2.3. Our method also gives similar results
for reflection. With the same method we also show in Section 2.4 that given a plane curve γ and a 3-d curve Γ satisfying
(2.17), there exists a surface that refracts γ into Γ so that each point x ∈ γ goes into a prescribed point x′

∈ Γ . All problems
in the paper are solved by studying the systems of first order PDEs (2.2) and (3.10).

We remark that the paper focuses only in the destination of the points after refraction regardless of the input and
output intensities of radiation. Some results in this direction were obtained in [1] and [2] wheremagnification of images are
considered. See also [3] for reflectors in the far field case. If one is interested in the problem of constructing surfaces that
after refraction only preserve energy with given intensities, then one is lead to second order fully nonlinear equations of
Monge–Ampère type. These kind of problems have been recently considered in [4] in the case of one source, and in [5] for
the case of collimated beams. In these cases the destination of the points is not specifically prescribed.

The results are organized as follows. Section 2 contains a derivation of the PDE for the collimated beam case and the proof
of the main result, the local existence Theorem 2.1. In Section 2.3 we show examples of application, and in Remark 2.2 we
discuss the case when the given mapping does not satisfy the conditions of Theorem 2.1. Section 2.4 discusses the refractor
mapping one curve into another. Section 3 discusses the casewhen the rays emanate from one point source, where themain
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result is Theorem 3.1, which is illustrated by Example 3.2 and Remark 3.3. We work most of the time in 3d-space which is
the relevant case for the physical problem.

2. Case when the rays emanate in a collimated beam

2.1. Derivation of the equation

We have two homogeneous and isotropic media I, II with refractive indices n1, n2 respectively; and we set κ =
n2
n1
.

We consider light rays that emanate from a domain Ω ⊂ Rn with direction en+1, and we are given a C1 transformation
T := (T , S) : Ω → Rn+1, where Tx ∈ Rn, and Sx ∈ R. Ω is surrounded by medium I , and T (Ω) is surrounded by
medium II .

Let us first derive the differential equation for the surface z = u(x), interface of the media I and II , that refracts the rays
from each point x ∈ Ω into the point T x. The outer unit normal to the surface z = u(x) is N =

(−Du(x),1)√
1+|Du(x)|2

; x = (x1, . . . , xn).

From the Snell law in vector form we have

m =
T x − (x, u(x))
|T x − (x, u(x))|

=
1
κ
(en+1 − Φ(en+1 · N)N) (2.1)

whereΦ(t) = t − κ

1 − κ−2(1 − t2), see [6, formula (2.1)]. Of course, a physical condition on refraction must be satisfied

to avoid internal reflection. That is, m · en+1 ≥ κ when κ < 1 and m · en+1 ≥ 1/κ if κ > 1, see [6, Lemma 2.1]. We then
obtain from (2.1) the following two equations:

Tx − x
|T x − (x, u(x))|

=
1
κ
Φ


1

1 + |Du(x)|2


Du(x)

1 + |Du(x)|2

and

Sx − u(x)
|T x − (x, u(x))|

=
1
κ


1 − Φ


1

1 + |Du(x)|2


1

1 + |Du(x)|2


.

Solving for Du we obtain the first order system of PDEs

Du(x) =
Tx − x

1
κ

|T x − (x, u(x))| + u(x)− Sx
. (2.2)

Then our problem is reduced to see under what conditions on the transformation T = (T , S) the system (2.2) has solutions.
We notice that for reflection, (2.1) is replaced by m = en+1 − 2(en+1 · N)N , and the resulting equation for u is (2.2) with
κ = 1.

2.2. Local existence of solutions passing through a point

Let us set

F(x, z) :=
Tx − x

1
κ

|(T x − (x, z))| + z − Sx
= (F1(x, z), . . . , Fn(x, z)),

so we have Du(x) = F(x, u(x)). If u solves (2.2) and is C2, then uij = uji, we therefore obtain

∂Fi
∂xj
(x, u(x))+

∂Fi
∂z
(x, u(x))Fj(x, u(x)) =

∂Fj
∂xi
(x, u(x))+

∂Fj
∂z
(x, u(x))Fi(x, u(x)). (2.3)

From [7, p. 117–118], the condition

∂Fi
∂xj
(x, z)+

∂Fi
∂z
(x, z)Fj(x, z) =

∂Fj
∂xi
(x, z)+

∂Fj
∂z
(x, z)Fi(x, z) (2.4)

for all x, z in an open set for 1 ≤ i, j ≤ n, implies that a solution u to (2.2) passing through a fixed point exists. We will find
explicit conditions on the mapping T , that are equivalent to (2.4) when n = 2 which is the significant dimension for the
physical problem. In fact, the conditions on the transformation T can be read from the fourth order polynomial equation
(2.11) in the variable z − Sx. This polynomial also allows to analyze the case when the transformation T does not satisfy the
conditions, see Remark 2.2.
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More precisely we have the following theorem.

Theorem 2.1. Let x0 ∈ Ω ⊂ R2, y0 ∈ Rwith (Tx0, Sx0) ≠ (x0, y0) and such that the physical condition for refraction is satisfied:

(Tx0, Sx0)− (x0, y0)
|(Tx0, Sx0)− (x0, y0)|

· en+1 > κ (2.5)

when κ < 1, and

(Tx0, Sx0)− (x0, y0)
|(Tx0, Sx0)− (x0, y0)|

· en+1 > 1/κ (2.6)

if κ > 1. Given the mapping T = (T1, T2, S) we define

F =
∂T1
∂x2

−
∂T2
∂x1

(2.7)

G = (T1x − x1)
∂S
∂x2

− (T2x − x2)
∂S
∂x1

H = (T1x − x1)2
∂T1
∂x2

− (T2x − x2)2
∂T2
∂x1

+ (T1x − x1)(T2x − x2)

∂T2
∂x2

−
∂T1
∂x1


.

If F = G = H = 0 for all x in a neighborhood of x0, then there is a neighborhood U of x0, and a unique solution u(x)
to (2.2) defined for x ∈ U with u(x0) = y0, such that each ray emanating from x ∈ U with direction en+1 is refracted by the
surface z = u(x) into the destination T x.

For reflection , if F = G = H = 0 for x in a neighborhood of x0 and if |(Tx0, Sx0) − (x0, y0)| + y0 − Sx0 ≠ 0, then there
exists a neighborhood U of x0, and a unique solution u(x) to (2.2) with κ = 1 defined for x ∈ U with u(x0) = y0, such that each
ray emanating from x ∈ U with direction en+1 is reflected by the surface z = u(x) into the destination T x.

Proof. Notice that by continuity, T x ≠ (x, u(x)) for x in a neighborhood of x0. Therefore the physical condition for refraction
given in the statement of the theorem holds also in a neighborhood of x0.

We begin working in Rn. Set Tx = (T1x, . . . , Tnx); x = (x1, . . . , xn). We then have Fi(x, z) =
Tix−xi
∆(x,z) , 1 ≤ i ≤ n, where

∆(x, z) =
1
κ

|T x − (x, z)| + z − Sx.

Notice that if κ < 1, then ∆(x0, y0) > 0. And if κ > 1, then from (2.6) we have ∆(x0, y0) < 0. Therefore, there is a
neighborhood V of (x0, y0)where∆ ≠ 0. And similarly when κ = 1 by the assumption.

We have for i ≠ j

∂Fi
∂xj
(x, z) =

∂Ti
∂xj
(x)∆(x, z)− (Tix − xi) ∂∆∂xj (x, z)

∆(x, z)2
,

and

∂Fi
∂z
(x, z) = −

(Tix − xi) ∂∆∂z (x, z)
∆(x, z)2

.

Substituting these into (2.4) and simplifying yields
∂Ti
∂xj

−
∂Tj
∂xi


∆ = (Tix − xi)

∂∆

∂xj
− (Tjx − xj)

∂∆

∂xi
, (2.8)

for 1 ≤ i, j ≤ n. We have

∆(x, z) =
1
κ


|Tx − x|2 + (z − Sx)2


+ z − Sx,

and

∂∆

∂xj
=

1
κ


n

k=1


∂Tk
∂xj

− δkj


(Tkx − xk)+ (Sx − z) ∂S

∂xj
|Tx − x|2 + (Sx − z)2

−
∂S
∂xj
.



C.E. Gutiérrez, F. Tournier / Nonlinear Analysis 108 (2014) 302–311 305

Let us assume from now on that n = 2, which is the relevant case for the physical application. Then (2.8) becomes
∂T1
∂x2

−
∂T2
∂x1


∆ = (T1x − x1)

∂∆

∂x2
− (T2x − x2)

∂∆

∂x1
, (2.9)

valid for all x = (x1, x2) in a neighborhood of a point x0 = (x01, x
0
2) and all z in a neighborhood of a point y0.

Inserting the derivatives of∆ in (2.9) and simplifying yields
1
κ


|Tx − x|2 + (Sx − z)2 + z − Sx


|Tx − x|2 + (Sx − z)2F

+


|Tx − x|2 + (Sx − z)2 +

1
κ
(z − Sx)


G =

1
κ
H. (2.10)

From (2.10) we can write

1
κ


|Tx − x|2 + (Sx − z)2


F +


|Tx − x|2 + (Sx − z)2 ((z − Sx)F + G)+

1
κ
(z − Sx)G =

1
κ
H

which implies that
|Tx − x|2 + (Sx − z)2


((z − Sx)F + G)2 =


1
κ
H −

1
κ

|Tx − x|2F −
1
κ
(z − Sx)G −

1
κ
(z − Sx)2F

2

.

Expanding this equation, we then get a fourth order polynomial equation in the variable z − Sx, with coefficients depending
only on x, and satisfying

1 −
1
κ


F 2(z − Sx)4 + 2


1 −

1
κ


FG(z − Sx)3 +


1 −

2
κ2


|Tx − x|2F 2

+
2
κ2

HF +


1 −

1
κ2


G2

(z − Sx)2

+


2

1 −

1
κ2


|Tx − x|2F + 2

1
κ2

H

G(z − Sx)+ |Tx − x|2G2

−
1
κ2


H − |Tx − x|2F

2
= 0, (2.11)

notice that when κ = 1 this is a quadratic polynomial in z − Sx. In order for this equation to hold for all x1, x2, z on an open
set we must have that all four coefficients of the powers of z − Sx are equal 0. In fact, given (x1, x2) if we evaluate the above
expression at z = S(x1, x2), then we get that the constant coefficient must be 0. We next take the derivative with respect
to z of the fourth order polynomial and evaluate again at z = S(x1, x2), yields that the quantity multiplying z − Sx must be
0. Taking more derivatives with respect to z we obtain the desired result. Notice that F = G = H = 0 is a necessary and
sufficient condition for the fourth order polynomial to be zero in a neighborhood of a point.

Thus, we have proved that (2.9) implies that F = G = H = 0. And reciprocally, if F = G = H = 0, then (2.9) holds.
Let us then assume that F = G = H = 0 and proceed to find the solution u to (2.2).
Since F = 0, it follows that there exists a potential function w = w(x1, x2) satisfying wx1(x1, x2) = T1x − x1 and

wx2(x1, x2) = T2x − x2. Inserting this in H = 0, we get thatw must solve the quasilinear PDE

(w2
x1 − w2

x2)wx1x2 + wx1wx2(wx2x2 − wx1x1) = 0. (2.12)

The condition G = 0 yields a linear PDE for S = S(x, y) given by

wx1Sx2 − wx2Sx1 = 0.

At this point we have proved that given a mapping (T1(x1, x2), T2(x1, x2), S(x1, x2)) satisfying the three conditions
F = G = H = 0 and setting

F1(x1, x2, z) =
T1(x1, x2)− x1

1
κ


(T1(x1, x2)− x1)2 + (T2(x1, x2)− x2)2 + (S(x1, x2)− z)2 + z − S(x1, x2)

(2.13)

F2(x1, x2, z) =
T2(x1, x2)− x2

1
κ


(T1(x1, x2)− x1)2 + (T2(x1, x2)− x2)2 + (S(x1, x2)− z)2 + z − S(x1, x2)

,

we have that (F1)x2 + (F1)zF2 = (F2)x1 + (F2)zF1.
We now prove that there exists a function u = u(x1, x2) that locally solves the system ux1(x1, x2) = F1(x1, x2, u(x1, x2))

and ux2(x1, x2) = F2(x1, x2, u(x1, x2)) and passes through a given point, i.e., u(x01, x
0
2) = y0. This is proved in general in [7,

Chapter VI], but give a proof in this simpler case for the convenience of the reader. Indeed, since we assume that T is C1,
then F1 and F2 are Lipschitz and so the existence and uniqueness theorems for ODEs apply. To prove this, let φ solve the ODE
φ′(x2) = F2(x01, x2, φ(x2))with φ(x02) = y0, for x2 in some open interval I(x01,x02) containing x

0
2. Next, for each fixed x2 ∈ I(x01,x02),

let ψ(x1, x2) solve the ODE dψ(x1,x2)
dx1

= F1(x1, x2, ψ(x1, x2)) with ψ(x01, x2) = φ(x2) for x1 ∈ J an interval around x01 whose
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size depends on x2. Define u(x1, x2) = ψ(x1, x2). It follows that u(x01, x
0
2) = y0 and ux1(x1, x2) = F1(x1, x2, u(x1, x2)). It

remains to show that ux2(x1, x2) = F2(x1, x2, u(x1, x2)). Since ux1(x1, x2) = F1(x1, x2, u(x1, x2)), we have

ux1x2(x1, x2) =
∂F1(x1, x2, u(x1, x2))

∂x2
+
∂F1(x1, x2, u(x1, x2))

∂z
ux2(x1, x2).

This means that for each fixed x2 the function ux2(x1, x2) solves the ODE

∂

∂x1
(ux2(x1, x2)) =

∂F1(x1, x2, u(x1, x2))
∂x2

+
∂F1(x1, x2, u(x1, x2))

∂z
ux2(x1, x2).

For fixed x2 consider the function F2(x1, x2, u(x1, x2)). We have that

∂

∂x
(F2(x1, x2, u(x1, x2))) =

∂F2(x1, x2, u(x1, x2))
∂x1

+
∂F2(x1, x2, u(x1, x2))

∂z
ux1(x1, x2)

=
∂F2(x1, x2, u(x1, x2))

∂x1
+
∂F2(x1, x2, u(x1, x2))

∂z
F1(x1, x2, u(x1, x2))

=
∂F1(x1, x2, u(x1, x2))

∂x2
+
∂F1(x1, x2, u(x1, x2))

∂z
F2(x1, x2, u(x1, x2)),

where in the last equality we have used the condition satisfied by F1 and F2.
We have shown that, for each fixed x2, both functions ux2(x1, x2) and F2(x1, x2, u(x1, x2)) solve the linear ODE

p′(x1) =
∂F1(x1, x2, u(x1, x2))

∂x2
+
∂F1(x1, x2, u(x1, x2))

∂z
p(x1),

and satisfy ux2(x
0
1, x2) = F2(x01, x2, u(x0, x2)). Therefore ux2(x1, x2) = F2(x1, x2, u(x1, x2)) for all (x1, x2) near (x01, x

0
2).

Therefore we have proved that the system (2.2) has a solution under assumption (2.9). This completes the proof of the
theorem. �

2.3. Examples

We illustrate with examples of mappings that verify F = H = G = 0.
Letw = w(x1, x2) solve the PDE

w2
x1 + w2

x2 = g(w), (2.14)

for some function g , thenw satisfies (2.12). Conversely we notice in passing that, ifw satisfies (2.12), thenw2
x1 +w2

x2 equals
a function ofw.1

Let T1(x1, x2) = x1 + wx1(x1, x2), T2(x1, x2) = x2 + wx2(x1, x2), and let S(x1, x2) = h(w(x1, x2)) for some function h,
where w is a solution to (2.14) for some g . Then, it is easy to check that the mapping (T1, T2, S) verifies the conditions
F = G = H = 0. Therefore the system (2.2) has a unique solution which by calculation is given by the function
u(x1, x2) = f (w(x1, x2))where f is a solution of the ODE

f ′(t) =
1

1
κ


g(t)2 + (f (t)− h(t))2 + f (t)− h(t)

. (2.15)

Choosing f and g we obtain the following geometric examples. If we choose w and h such that T1 = 0, T2 = 0 and
S = M > 0 (that is, u reflects/refracts all points to (0, 0,M)), then u is a paraboloid when κ = 1, and it is an ellipsoid when
κ > 1. We havew(x1, x2) = −

1
2 (x

2
1 + x22)+ c , g(w) = (2(c − w))

1
2 and h = M . So f solves the ODE

f ′(t) =
1

1
κ


2(c − t)+ (f (t)− M)2 + f (t)− M

.

This means 1
κ


(f (t)− M)2 + 2(c − t) + f (t) − M = b. If κ = 1, then f (t) =

b2+2t−2c
2b + M with b > 0 arbitrary. Hence

u(x1, x2) =
b2−x21−x22

2b + M , a paraboloid with focus at (0, 0,M). If κ > 1, then we get f (t) =
−

1
κ b−


b2+(1− 1

κ2
)2(t−c)

1− 1
κ2

+ M .

Hence u(x1, x2) =
−

1
κ b−


b2−(1− 1

κ2
)(x21+x22)

1− 1
κ2

+ M , an ellipsoid with upper focus at (0, 0,M). The case κ < 1 is similar.

1 Let u = f (w).We have that u verifies uxwy−uywx = 0. From (2.12), v = |Dw|
2 also verifies the same equation. If we set u(x, 0) = f (w(x, 0)) = v(x, 0),

then z = w(x, 0) for a unique x ifw is increasing in x. So we choose x such that f (w(x, 0)) = v(x, 0).
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Another example is when all rays are reflected/refracted into a vertical segment. That is, when T1 = x1 + wx1 = 0,
T2 = x2+wx2 = 0, and S = h(w(x1, x2))where h is an arbitrary positive function. Againwe havew(x, y) = −

1
2 (x

2
+y2)+c ,

g(w) = (2(c − w))
1
2 and we get u(x, y) = f (w(x, y))where f solves the ODE (2.15) with g(t) = (2(c − t))1/2.

On the other hand, if we let w(x, y) =

x2 + y2 −

1
2 (x

2
+ y2), then T1 =

x√
x2+y2

and T2 =
y√

x2+y2
. Let S = M > 0 and

u(x, y) = f (w(x, y))where f solves the ODE

f ′(t) =
1

1
κ


1 − 2t + f (t)2 + f (t)

.

Then all points are refracted (or reflected) by the surface z = u(x, y) into the unit circle on the plane z = M .
The last example is to find a reflector such that all points emanating from a neighborhood of the origin are reflected into

points on a curve y = f (x) on the xy-plane (without prescribing the exact destination of each point). More precisely, given
y = f (x) such that z0 + f (z0)f ′(z0) = 0 and 1 + (f ′(z0))2 + f (z0)f ′′(z0) ≠ 0 for some z0, we will show that there exist
neighborhoods U0 of (0, 0) and Vz0 of the point (z0, f (z0)), and a surface u reflecting all rays from U0 into Vz0 ∩{y = f (x)}. In
fact, then from implicit function theorem, given (x, y) near (0, 0) there is a unique z such that z−x+(f (z)−y)f ′(z) = 0. And
we then can define T1 implicitly by the formula T1(x, y) − x + (f (T1(x, y)) − y)f ′(T1(x, y)) = 0, and T2(x, y) = f (T1(x, y))
for (x, y) near (0, 0). We claim that T1 and T2 satisfy F = H = 0. In fact, differentiating implicitly, one can check that
∂T1(x,y)
∂y = f ′(T1(x, y))

∂T1(x,y)
∂x and since T2(x, y) = f (T1(x, y)), we also have ∂T2(x,y)

∂x = f ′(T1(x, y))
∂T1(x,y)
∂x . Therefore, F = 0.

To check that H = 0, notice that ∂T2(x,y)
∂y = f ′(T1(x, y))

∂T1(x,y)
∂y = f ′(T1(x, y))2

∂T1(x,y)
∂x . We have

H = (T1(x, y)− x)2f ′(T1(x, y))
∂T1(x, y)
∂x

− (f (T1(x, y))− y)2f ′(T1(x, y))
∂T1(x, y)
∂x

+ (T1(x, y)− x)(f (T1(x, y))− y)

(f ′(T1(x, y)))2

∂T1(x, y)
∂x

−
∂T1(x, y)
∂x


.

Inserting T1(x, y)− x = −(f (T1(x, y))− y)f ′(T1(x, y)), we get H = 0.
Therefore, from Theorem2.1 there exists a surface u that reflects accordingwith themapping (T1, f (T1), 0) near the point

(0, 0).
An equivalent way of solving this problem is as follows. Let u be defined by the formula

u(x, y) = sup

1
2
(1 − (x − t)2 − (y − f (t))2) : t ∈ [a, b]


.

One can check that each point (x, y) is reflected by u to the point (T1(x, y), f (T1(x, y)), 0), where (T1(x, y), f (T1(x, y))) is the
point on the curve C = {y = f (x)} where the distance to (x, y) is attained.

For refraction we define

u(x, y) = inf

−
1
κ

−


1 − (1 −

1
κ2
)((x − t)2 + (y − f (t))2)

1 −
1
κ2

+ M : t ∈ [a, b]

 ,
and each point (x, y) is refracted by u to the point (T1(x, y), f (T1(x, y)), 0) as before.

Remark 2.2. We analyze here the case when the given mapping (T1, T2, S) is such that the condition F = G = H = 0 in
the neighborhood of a point is not satisfied. We notice that if the system (2.2) would have a C2 solution u, then following
the calculations in Section 2.2, this time using (2.3), we would get that u verifies the polynomial equation (2.11) with
z = u(x1, x2), and therefore u could be determined by solving such equation.

If for example F ≠ 0 and G = 0, then it follows that u is determined up to a sign from the equation
1 −

1
κ


F 2(u − Sx)4 +


1 −

2
κ2


|Tx − x|2F 2

+
2
κ2

HF

(u − Sx)2 −

1
κ2


H − |Tx − x|2F

2
= 0. (2.16)

If for instance we consider the magnification mapping T1(x1, x2) = a + δx1, T2(x1, x2) = b + βx2, and S(x1, x2) = M ,
then F = G = 0, and H = (a + (δ − 1)x1)(b + (β − 1)x2)(β − δ). If for this map there would be a solution u to the system
(2.2), then from (2.11) we would get H = 0 and therefore for this mapping there are no solutions u unless β = δ. A similar
situation occurs in the far field case, see [1].

Similarly, if we consider the mapping T1(x1, x2) = a + δx2, T2(x1, x2) = b + βx1 and S(x1, x2) = M , then F = δ − β ,
G = 0, and H = δ(a+ δx2 − x1)2 −β(b+βx1 − x2)2. One can check that the function u obtained from (2.16) does not solve
the problem and hence there is no solution.

As an example for reflection, i.e. κ = 1, we consider the mapping T1 = x2, T2 = 0, and S = 0. In this case, F = 1,

H = (x2 − x1)2 and G = 0. If the system (2.2) would have a solution u, then (2.16) would have solutions u =
x22

((x2−x1)2−x22)
1/2

or u = −
x22

((x2−x1)2−x22)
1/2 . A calculation shows that none of these functions solve (2.2) and hence this system has no solution.
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Once again, in the case of reflection, κ = 1, we consider mappings of the form T1 = 0, T2 = f (y) and S = g(x, y). In this
case, F = 0,H = −(f (y)−y)xf ′(y) and G = −x ∂g(y)

∂y −(f (y)−y) ∂g(y)
∂x . The formula for the possible solution is obtained from

2GH(u − g(x, y))+ (x2 + (f (y)− y)2)G2
− H = 0. One can check from this that mappings of the form T1 = 0, T2 = δy + a

and S = βx + b have no solutions.

2.4. Existence of solutions refracting a given curve into another

Suppose we have a curve γ (s) = (x(s), y(s)) on the xy-plane, and a curve in 3-d given by Γ (s) = (φ(s), ψ(s), h(s)). We
consider the problem of finding a refractor (reflector) surface z = u(x, y) such that the ray starting from the point γ (s) and
moving upwards, is refracted (or reflected) by graph of u into the point Γ (s), at least locally near a given point on γ .

We show using Cauchy–Kovalevsky’s theorem that this problem is solvable. Let z(s) satisfy the equation

z ′(s) = (φ(s)− x(s))x′(s)+ (ψ(s)− y(s))y′(s).

Next, letw solve the Cauchy problem,

(w2
x − w2

y )wxy + wxwy(wyy − wxx) = 0,

with

w(x(s), y(s)) = z(s)
wx(x(s), y(s)) = φ(s)− x(s)
wy(x(s), y(s)) = ψ(s)− y(s).

This problem is solvable provided the initial curves are non-characteristic [8, Chapter 2, pp. 33–34] and the data are analytic.
In particular, to have a solutionw the initial curves must satisfy

det

 x′(s) y′(s) 0
0 x′(s) y′(s)

−(φ(s)− x(s))(ψ(s)− y(s)) (φ(s)− x(s))2 − (ψ(s)− y(s))2 (φ(s)− x(s))(ψ(s)− y(s))


= −(φ(s)− x(s))(ψ(s)− y(s))(y′(s))2 − ((φ(s)− x(s))2 − (ψ(s)− y(s))2)x′(s)y′(s)

+ (φ(s)− x(s))(ψ(s)− y(s))(x′(s))2 ≠ 0. (2.17)

We now define T1(x, y) = x+wx(x, y), T2(x, y) = y+wy(x, y), and notice that T1(x(s), y(s)) = φ(s) and T2(x(s), y(s)) =

ψ(s). Next, let S(x, y) solve the linear PDE

(T2(x, y)− y)Sx − (T1(x, y)− x)Sy = 0 (2.18)

with initial condition S(x(s), y(s)) = h(s).
At this pointwe have constructed amapping (T1(x, y), T2(x, y), S(x, y)) that satisfies the conditions F = G = H = 0,with

F ,G,H defined in (2.7), and maps the curve γ into the 3-d curve (φ(s), ψ(s), h(s)). From the existence result in Section 2.2,
we can find a function u passing through a given point that solves

ux(x, y) = F1(x, y, u(x, y)), and uy(x, y) = F2(x, y, u(x, y))

with F1 and F2 as defined by (2.13). The graph of u is the desired refracting surface.
The solutions u and w can be related as follows. Notice that both u and w solve the linear PDE (2.18). If u(x(s), y(s)) =

f (z(s)) for some function f , then u(x, y) = f (w(x, y)) for all (x, y). Because u(x, y) and f (w(x, y)) solve (2.18) and coincide
on the curve γ .

3. Case when the rays emanate from a point source

We consider the refractor problem for rays emanating from the origin in R3. We use spherical coordinates: r(θ, φ) =

(cos θ sinφ, sin θ sinφ, cosφ).
Consider a surface S given parametrically by

S = {S(θ, φ) = s(θ, φ)r(θ, φ) : θ ∈ [0, 2π ], φ ∈ [0, π]}

where s is a positive scalar function.
We are given a transformation Y (θ, φ) = (y1(θ, φ), y2(θ, φ), y3(θ, φ)) and we seek for a surface S so that each ray

emanating from the origin in the direction r(θ, φ) is refracted off by the surface S into the point Y (θ, φ) = (y1(θ, φ),
y2(θ, φ), y3(θ, φ)). We are going to determine the conditions on the mapping Y so that the refracting surface S exists. In
fact, wewill derive a systemof first order PDEs for the scalar function s(θ, φ), thatwill be solvable under certain assumptions
on Y .
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Let us use the notation Yφ =


∂y1(θ,φ)
∂φ

,
∂y2(θ,φ)
∂φ

,
∂y3(θ,φ)
∂φ


, and similarly Yθ , rφ , etc. Let N(θ, φ) be the unit normal to S

such that ⟨r,N⟩ > 0.
From the law of refraction we have the equation

Y − sr
|Y − sr|

=
1
κ
r + βN (3.1)

with β = −
1
κ
Φ(r · N)whereΦ is from (2.1); however, the explicit form of β is not used in the following calculations.

We will first derive an expression for N . We have that N =
Sφ×Sθ
|Sφ×Sθ |

, and Sθ = sθ r + srθ and Sφ = sφr + srφ . Using that
r, rθ , and rφ are mutually perpendicular, |r| = |rφ | = 1, and |rθ | = sinφ, we get

Sφ × Sθ = sφs(r × rθ )+ sθ s(rφ × r)+ s2(rφ × rθ )

= − sin(φ)sφsrφ −
ssθ

sin(φ)
rθ + s2 sin(φ)r.

Therefore, we obtain

N =
s sin2(φ)r − sθ rθ − sin2(φ)sφrφ

sin(φ)

sin2(φ)s2φ + s2θ + s2 sin2(φ)

1/2 :=
s sin2(φ)r − sθ rθ − sin2(φ)sφrφ

γ
.

Inserting in (3.1) the formula for N , we get

Y − sr
|Y − sr|

=
1
κ
r + β

s sin2(φ)r − sθ rθ − sin2(φ)sφrφ
γ

. (3.2)

We write Y−sr
|Y−sr| = ar + brθ + crφ with

a =
⟨Y , r⟩ − s
|Y − sr|

; b sin2(φ) =
⟨Y , rθ ⟩
|Y − sr|

; c =
⟨Y , rφ⟩
|Y − sr|

.

From (3.2) we get that

⟨Y , r⟩ − s
|Y − sr|

=
1
κ

+
β

γ
s sin2(φ)

⟨Y , rθ ⟩
|Y − sr|

= −
β

γ
sin2(φ)sθ

⟨Y , rφ⟩
|Y − sr|

= −
β

γ
sin2(φ)sφ .

From the first equality we get that −
β

γ
=

1
κ |Y−sr|+s−⟨Y ,r⟩
s sin2(φ)|Y−sr|

and inserting this in the last two equations we get that the scalar
function s satisfies the system

sθ =
s⟨Y , rθ ⟩

1
κ
|Y − sr| + s − ⟨Y , r⟩

:= F1(θ, φ, s) (3.3)

and

sφ =
s⟨Y , rφ⟩

1
κ
|Y − sr| + s − ⟨Y , r⟩

:= F2(θ, φ, s). (3.4)

Now, we will find conditions on the mapping Y so that systems (3.3) and (3.4) can be solved. We will require that

∂F1
∂φ

+
∂F1
∂s

F2 =
∂F2
∂θ

+
∂F2
∂s

F1 (3.5)

for all s > 0 and for all θ, φ near a fixed value θ0, φ0. We will now derive conditions on the mapping Y so that (3.5) holds.
If we set Q =

1
κ
R1/2

+ s − ⟨Y , r⟩ and R = |Y |
2
− 2s⟨Y , r⟩ + s2, then we can write

F1 = sQ−1
⟨Y , rθ ⟩, and F2 = sQ−1

⟨Y , rφ⟩.

Then
∂F1
∂φ

+
∂F1
∂s

F2 = sQ−1
⟨Y , rφ⟩⟨Y , rθ ⟩(Q−1

− sQ−2Qs)− sQ−2
⟨Y , rθ ⟩Qφ + sQ−1 ∂

∂φ
⟨Y , rθ ⟩,
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and
∂F2
∂θ

+
∂F2
∂s

F1 = sQ−1
⟨Y , rφ⟩⟨Y , rθ ⟩(Q−1

− sQ−2Qs)− sQ−2
⟨Y , rφ⟩Qθ + sQ−1 ∂

∂θ
⟨Y , rφ⟩.

Therefore, (3.5) is equivalent to

⟨Y , rθ ⟩Qφ − Q
∂

∂φ
⟨Y , rθ ⟩ = ⟨Y , rφ⟩Qθ − Q

∂

∂θ
⟨Y , rφ⟩. (3.6)

By computation

Qθ =
⟨Y , Yθ ⟩ − (s + κR1/2) ∂

∂θ
⟨Y , r⟩

κR1/2
,

and

Qφ =
⟨Y , Yφ⟩ − (s + κR1/2) ∂

∂φ
⟨Y , r⟩

κR1/2
.

Inserting these in (3.6) and multiplying the resulting expression by κR1/2 yields

⟨Y , rθ ⟩

⟨Y , Yφ⟩ − (s + κR1/2)

∂

∂φ
⟨Y , r⟩


−

R + κR1/2(s − ⟨Y , r⟩)

 ∂
∂φ

⟨Y , rθ ⟩

= ⟨Y , rφ⟩

⟨Y , Yθ ⟩ − (s + κR1/2)

∂

∂θ
⟨Y , r⟩


−

R + κR1/2(s − ⟨Y , r⟩)

 ∂
∂θ

⟨Y , rφ⟩.

This is equivalent to

κR1/2

⟨Y , rφ⟩

∂

∂θ
⟨Y , r⟩ + (s − ⟨Y , r⟩)

∂

∂θ
⟨Y , rφ⟩ − ⟨Y , rθ ⟩

∂

∂φ
⟨Y , r⟩ − (s − ⟨Y , r⟩)

∂

∂φ
⟨Y , rθ ⟩


= ⟨Y , rφ⟩⟨Y , Yθ ⟩ − s⟨Y , rφ⟩

∂

∂θ
⟨Y , r⟩ − R

∂

∂θ
⟨Y , rφ⟩ − ⟨Y , rθ ⟩⟨Y , Yφ⟩ + s⟨Y , rθ ⟩

∂

∂φ
⟨Y , r⟩ + R

∂

∂φ
⟨Y , rθ ⟩.

If we let

A =
∂

∂θ
⟨Y , rφ⟩ −

∂

∂φ
⟨Y , rθ ⟩

B = ⟨Y , rφ⟩
∂

∂θ
⟨Y , r⟩ − ⟨Y , r⟩

∂

∂θ
⟨Y , rφ⟩ − ⟨Y , rθ ⟩

∂

∂φ
⟨Y , r⟩ + ⟨Y , r⟩

∂

∂φ
⟨Y , rθ ⟩

C = ⟨Y , rθ ⟩
∂

∂φ
⟨Y , r⟩ − 2⟨Y , r⟩

∂

∂φ
⟨Y , rθ ⟩ − ⟨Y , rφ⟩

∂

∂θ
⟨Y , r⟩ + 2⟨Y , r⟩

∂

∂θ
⟨Y , rφ⟩

D = ⟨Y , rφ⟩⟨Y , Yθ ⟩ − ⟨Y , rθ ⟩⟨Y , Yφ⟩ + |Y |
2

∂

∂φ
⟨Y , rθ ⟩ −

∂

∂θ
⟨Y , rφ⟩


,

then

κ(s2 − 2s⟨Y , r⟩ + |Y |
2)1/2(As + B) = −As2 + Cs + D.

Squaring both sides, we get

κ2(s2 − 2s⟨Y , r⟩ + |Y |
2)(As + B)2 = (−As2 + Cs + D)2. (3.7)

Expanding the powers in (3.7) yields

(κ2
− 1)A2s4 + 2As3


κ2B − κ2

⟨Y , r⟩A + C


+ s2

κ2B2

− 4κ2
⟨Y , r⟩AB + κ2A2

|Y |
2
+ 2AD − C2

+ s

2κ2AB|Y |

2
− 2κ2

⟨Y , r⟩B2
− 2CD


+ κ2

|Y |
2B2

− D2
= 0, (3.8)

for all s > 0 and (θ, φ) close to (θ0, φ0). Setting E = ⟨Y , rφ⟩⟨Yθ , r⟩ − ⟨Y , rθ ⟩⟨Yφ, r⟩, we get after a short calculation that

A = ⟨Yθ , rφ⟩ − ⟨Yφ, rθ ⟩
B = −⟨Y , r⟩A + E
C = 2⟨Y , r⟩A − E

D = ⟨Y , rφ⟩⟨Y , Yθ ⟩ − ⟨Y , rθ ⟩⟨Y , Yφ⟩ + |Y |
2A.
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We can also re-write

E = ⟨⟨Y , rφ⟩Yθ − ⟨Y , rθ ⟩Yφ, r⟩

D = ⟨⟨Y , rφ⟩Yθ − ⟨Y , rθ ⟩Yφ, Y ⟩ + |Y |
2A.

Notice that sufficient conditions for (3.8) to hold are that

⟨Yθ , rφ⟩ − ⟨Yφ, rθ ⟩ = 0 (3.9)
⟨⟨Y , rφ⟩Yθ − ⟨Y , rθ ⟩Yφ, r⟩ = 0
⟨⟨Y , rφ⟩Yθ − ⟨Y , rθ ⟩Yφ, Y ⟩ = 0.

We therefore have the following theorem.

Theorem 3.1. Let Y be a C1 mapping on a neighborhood U of (θ0, φ0) such that

⟨Yθ , rφ⟩ − ⟨Yφ, rθ ⟩ = 0 (3.10)
⟨⟨Y , rφ⟩Yθ − ⟨Y , rθ ⟩Yφ, r⟩ = 0
⟨⟨Y , rφ⟩Yθ − ⟨Y , rθ ⟩Yφ, Y ⟩ = 0,

for all (θ, φ) ∈ U. Let X0 = s0r(θ0, φ0) and Y0 = Y (θ0, φ0). Assume that


Y0−X0
|Y0−X0|


·

X0
|X0|

> 1
κ
if κ > 1,


Y0−X0
|Y0−X0|


·

X0
|X0|

> κ if

κ < 1, and


Y0−X0
|Y0−X0|


·

X0
|X0|

≠ 1 if κ = 1.
Then there exists a unique surface S defined parametrically for (θ, φ) in a neighborhood V of (θ0, φ0) passing through

X0 = s0 r(θ0, φ0) such that each ray emanating from the origin with direction r(θ, φ) with (θ, φ) ∈ V is refracted by S into the
destination Y (θ, φ).

When κ = 1 the conclusion is similar but the surface S reflects.

Example 3.2. We give some examples of mappings that satisfy the conditions.
If κ = 1 and Y is the constant mapping Y = Y0 = (x0, y0, z0), then the solutions of the system (3.3), (3.4) are given

by s(θ, φ) =
b2−|Y0|2

2(b−⟨r,Y0⟩)
, and the corresponding surfaces S = {s(θ, φ)r(θ, φ) : θ ∈ [0, 2π ], φ ∈ [0, π]} are ellipsoids of

revolution with foci 0 and Y0. For κ ≠ 1 we get that the solutions to (3.3), (3.4) satisfy the equation |sr − Y0| +
1
κ
s = b, that

is, the corresponding surfaces are Descartes ovals.
If Y = (cos θ, sin θ, 0), then Y satisfies the conditions (3.10), and the solution s to (3.3), (3.4) depends only on φ.

Remark 3.3. When at least one of the coefficients in the polynomial (3.8) is different from zero then the only possible
solution of the problem is obtained by solving this polynomial equation in s.

For example ifM is a 3 × 3 constant symmetric matrix (not a multiple of the identity) and Y (θ, φ) = Mr(θ, φ), then we
have A = B = C = 0 and D ≠ 0 and hence the problem has no solution.
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