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Abstract:Much progress has been made in the past few decades in understanding the sources, transport, fate, and biological
effects of contaminants of emerging concern (CECs) in aquatic ecosystems. Despite these advancements, significant obstacles
still prevent comprehensive assessments of the environmental risks associated with the presence of CECs. Many of these
obstacles center around the extrapolation of effects of single chemicals observed in the laboratory or effects found in individual
organisms or species in the field to impacts of multiple stressors on aquatic food webs. In the present review, we identify 5
challenges thatmust be addressed to promote studies of CECs from singular exposure events tomultispecies aquatic foodweb
interactions. There needs to be: 1)more detailed information on the complexity ofmixtures of CECs in the aquatic environment,
2) a greater understanding of the sublethal effects of CECs on a wide range of aquatic organisms, 3) an ascertaining of the
biological consequences of variable duration CEC exposures within and across generations in aquatic species, 4) a linkage of
multiple stressors with CEC exposure in aquatic systems, and 5) a documenting of the trophic consequences of CEC exposure
across aquatic food webs. We examine the current literature to show how these challenges can be addressed to fill knowledge
gaps. Environ Toxicol Chem 2019;38:46–60. �C 2018 SETAC
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INTRODUCTION

Contaminants of emerging concern (CECs) are ubiquitous in
surface waters and include pharmaceuticals (stimulants, analge-
sics, antibiotics, antihistamines, and hormones), personal care
products (fragrances, parabens), plasticizers, and flame retard-
ants including perfluoroalkyl and polyfluoroalkyl substances
(PFASs), among others. No commonly agreed definition exists
for CECs; therefore, we are limiting the discussion of CECs for
the purpose of this review to chemicals whosewidespread use or
ubiquitous presence in the environment in the past few decades
has raised concern because analytical limitations and other
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impediments have hindered their study. Several groups of CECs
are of particular concern because of their high rates of
human usage, and because some can exert biological effects
on nontarget organisms similar to the mode of action for
which they were designed. These CECs include natural and
synthetic hormones, pharmaceuticals and personal care prod-
ucts, endocrine-disrupting compounds (EDCs), and PFASs (e.g.,
perfluorooctanesulfonate [PFOS] and perfluorooctanoate). We
recognize that this working definition is narrower than that used,
for example, by the US Environmental Protection Agency (EPA
2008) and most notably excludes nanomaterials and some
persistent organic pollutants. However, the diversity of CECs
within and beyond our working definition requires exclusions to
retain a focused review.

In recent years, substantial effort has been invested in
understanding the presence of CECs in the aquatic environment
wileyonlinelibrary.com/ETC
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(Burkhardt-Holm 2010; Windsor et al. 2017) and their effects on
certain species (Tyler et al. 1998; Palace et al. 2009; Kidd et al.
2014).Major sources of CECs to the aquatic environment include
small- and large-scale sewage treatment plants (STPs) from
municipal and industrial sources as well as hospitals (Heberer
2002; Caliman andGavrilescu 2009; Blumet al. 2017; Ebele et al.
2017; Gago-Ferrero et al. 2017). Some of these compounds are
not completely removed by wastewater treatment processes;
once they enter the receiving environment, they degrade slowly
in water, sediment, and biofilms (Heberer 2002; Bolong et al.
2009; Kasprzyk-Hordern et al. 2009). Contaminants of emerging
concern also enter aquatic environments from landfill leachates,
surface runoff, atmospheric deposition, and application of
biosolids and manure to agricultural land (Pal et al. 2010; Sui
et al. 2015; Ebele et al. 2017).

After CECs are released, their distribution in the environment
can be related to their physicochemical properties (e.g., water
solubility, solid–liquid distribution, polarity, vapor pressure) and
environmental conditions (e.g., pH, organic matter content; Pal
et al. 2010; Wilkinson et al. 2017). Some CECs such as flame
retardants are transported long range, which results in a global
distribution even in remote regions (Liu andWong 2013; Aus der
Beek et al. 2016); other CECs have the potential to accumulate in
aquatic food webs. Contaminants of emerging concern can be
transformed by biotic (i.e., microorganisms and wildlife) or
abiotic (e.g., ultraviolet) processes (Bletsou et al. 2015).

Studies are mostly devoted to lethal and sublethal effects of
CECs at the individual level, with limited information on how
these effects cascade through the food web via either direct or
indirect effects. Very few investigations have focused on the
effects of CECs on foodwebs, although clear detriment has been
shown in an experimental lake with a synthetic estrogen (Kidd
et al. 2014). To understand the potential impacts of CEC
exposure on the structure and function of aquatic communities,
more research at multiple levels of biological organization is
needed.

In the present review, we identify knowledge gaps and
explore the challenges associated with filling them. Although
not unique to CECs alone, we posit that there are several critical
gaps in comprehending the effects of CECs on food webs that
individual and interdisciplinary fields of study have not yet
tackled. We address first the challenges of defining and
documenting the complex environmental mixtures of CECs
and their effects in the aquatic environment (Figure 1).
Organisms exposed to complex mixtures often exhibit subtle,
sublethal effects that are challenging for toxicologists to identify
accurately. The challenge of identifying sublethal effects is
compounded by the multigenerational CEC exposure duration
for organisms in the aquatic environment, which may delay the
occurrence of adverse effects or may result in adaptive
evolutionary change to historically exposed populations.
Aquatic organisms are exposed to CECs often in concert with
additional environmental stressors, resulting in the presence of
multiple stressors (not only CEC mixtures but also geomorpho-
logical alterations, land-use changes, water abstraction, invasive
species, and pathogens). We conclude by discussing the
trophic consequences of multigenerational and population-level
wileyonlinelibrary.com/ETC
exposures, and the need for considering delayed effects over
longer exposure periods and complex food web structures
(Figure 1). These are the thorny challenges presenting obstacles
to understanding CEC effects on food webs, and advances will
notbeachieveduntil webegin toaddress them.Weacknowledge
that these issues are not specific to CECs only; nevertheless, we
assert that these issues have not been as completely (if at all)
examined relative to CECs as they have been for more traditional
contaminants. The present review has been structured around
these grand challenges, with the goal of briefly summarizing the
studies and data currently available and identifying the critical
gaps that remain for each challenge. It is our hope that the
present critical review will set the stage for motivated
international research consortiums to grapple with these
challenges and ultimately solve outstanding problems within
this complex topic.

The present review is constrained to CECs in freshwater food
webs, with limited mention of examples where freshwater food
webs have direct linkages to estuarine and terrestrial food webs.
The latter represent important gaps in understanding and
should be addressed in detail in future work.

To deal with these challenges, expertise will be required from
multiple fields including, among others, biology, ecology,
chemistry, and toxicology. Work on these complex challenges
will be difficult but not without precedent. Various scientific
fields have together achieved wide-ranging and significant
understanding of the occurrence and effects of CECs over the
past 2 decades via laboratory, mesocosm, field-based, and
modeling studies. However, we still lack basic comprehension
regarding the effects of CECs on aquatic food webs. We
encourage the application of novel approaches and innovative
tools to explore these issues.
CHALLENGE 1: COMPLEXITY OF MIXTURES
OF CECS IN THE AQUATIC ENVIRONMENT

High concentrations and low removal of some CECs in STPs
are of concern and lead to their widespread distribution in the
aqueous environment (Calisto and Esteves 2009) as persistent or
“pseudo-persistent” contaminants (Daughton 2002) forming
complex mixtures. Contaminants of emerging concern are
widely used and continuously introduced into the environment.
In addition, some CECs are designed to exert biological effects;
thus it is expected that they will induce unwanted effects on
nontarget organisms. These characteristics present problems
that differ from studying the effects of other chemicals. Complex
mixtures of CECs are distributed in surface waters worldwide in
both heavily impacted and pristine environments, and nontarget
organisms are exposed to these mixtures throughout their lives
(Pal et al. 2010; Richardson 2010; Ahrens and Bundschuh 2014;
Ebele et al. 2017; Richardson and Kimura 2017; Wilkinson et al.
2017).

As a result of the complexity of environmental mixtures, it is
necessary to prioritize relevant CECmixtures and their effects for
further study. This is especially crucial because CEC mixtures in
some cases lead to more bioaccumulation and stronger effects
than would be expected with a single CEC (Ding et al. (2016)).
�C 2018 SETAC



FIGURE 1: Conceptual image illustrating the grand challenges associated with contaminants of emerging concern (CECs) on aquatic food webs. (1)
Complex contaminant mixtures; (2) sublethal effects of CEC exposure; (3) long-term, multigenerational exposures; (4) multiple stressors; and (5)
linkages across populations and trophic levels. AFO¼ animal feeding operation.
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For instance, Ding et al. (2016) found that co-exposure to
roxithromycin and fluoxetine, and propranolol and fluoxetine,
induced stronger antioxidant responses than single pharmaceu-
tical exposures in crucian carp (Carassius auratus). Concentration
addition models have been employed to predict toxicity of CEC
mixtures on a simplified food web in laboratory settings
(Watanabe et al. 2016; Oliveira et al. 2017). Altenburger et al.
(2018) ran a mixture of micropollutants in several different early
life stage, whole-organism assays as well as in vitro bioassays,
and found concentration addition to be the most suitable.
However, the ecotoxicology of complex CEC mixtures at
environmentally relevant concentrations requires further study
(Backhaus 2014), particularly at the lower concentration ranges
(Orton et al. 2014; Di Nica et al. 2017). Mixture toxicity models
such as concentration addition and independent action do not
consider any interactions that occur at the toxicokinetic or
toxicodynamic level (Backhaus 2014). The bioavailability and
effects of complex chemical mixtures of CECs on aquatic food
webs in natural matrices have not been adequately explored.

Few data exist regarding the bioaccumulation of CEC
mixtures in biota, with most of the available information
�C 2018 SETAC
obtained only for some substances representative of groups
of chemicals and in a limited number of species, often in a
laboratory setting. Mixtures of polybrominated, flame-retardant
congeners have been assessed in limited food webs in natural
settings (Stapleton and Baker 2003; Nilsen et al. 2014).
Concentrations of a suite of PFASs were found to be higher in
piscivorous fish species compared with nonpiscivorous species
in a lake in Ethiopia (Ahrens et al. 2016). In a semi-natural
mesocosm experiment, it was shown that uptake rates of 5
pharmaceuticals were variable in 4 invertebrate taxa and one fish
species (Lagesson et al. 2016). Another study investigated the
bioaccumulation and trophic transfer of 23pharmaceuticals in 14
lake species (Xie et al. 2017). These authors observed interesting
patterns in uptake across species and found that fish accumu-
lated higher levels of pharmaceuticals in the liver and brain
comparedwith other tissues; however, they did not see evidence
of trophic magnification.

Studies on effects of chemical mixtures in food webs are
needed to adequately understand the relevance of trophic
position and biomagnification in contaminant transfer
within aquatic food webs (Lescord et al. 2015). Outcomes of
wileyonlinelibrary.com/ETC
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pharmaceutical mixtures have been investigated in single fish
species in laboratory exposures (Schoenfuss et al. 2016;
McCallum et al. 2017; Sehonova et al. 2017). Complex chemical
mixtures in STP effluent have been shown to cause reproductive
disruption in a single fish species (Vajda et al. 2008). Neverthe-
less, limited information is available on the results of environ-
mentally relevant pharmaceutical and STP effluent mixtures at
multiple trophic levels in the field. Algal growth was inhibited by
mixtures of antimicrobial agents (Yang et al. 2008); however,
effects of CEC mixtures on aquatic plants have received little
attention (Llorca et al. 2017) and could be included in future food
web studies. More information exists on the outcomes of CEC
mixtures on fish (Lee et al. 2012; Reinling et al. 2017), bivalves
(Ismail et al. 2014), and aquatic invertebrates (Ruh�et al. 2016;
Garcia-Galan et al. 2017); nonetheless, investigations are often
limited to a single organism or trophic position. Furthermore,
complex laboratory mixtures should be representative of
environmental conditions to achieve environmental relevance.
With increased reporting on the presence and concentrations of
CECs in aquatic environments, there are enough data to apply
mathematical tools (i.e., cluster analysis) to develop laboratory
mixtures that reflect environmental realities (Elliott et al. 2018).

To confront the challenge of grasping the complexity of CEC
mixtures in the aquatic environment, several knowledge gaps
will need to be addressed. The continued development of
sensitive and robust analytical methods for a wide variety of
CECs in various biologicalmatriceswill be required. Also, limited
information is available on the occurrence of CEC metabolites
and transformation products in the environment (Farr�e et al.
2008), in part because of the lack of existing analytical methods.
Nontarget screening using high-resolution mass spectrometry
could help to fill this data gap to identify metabolites,
transformation products, or new contaminants (Bletsou et al.
2015). Models to understand the occurrence, composition, and
concentrations of CECs in environmental mixtures are also
missing. New high-throughput screening techniques may
address some of the difficulties with low doses, complex
mixtures, and variable environmental conditions encountered
when using current mixture models (Judson et al. 2015; Rodea-
Palomares et al. 2016). These types of tools may assist in
distinguishing information gained from studying simple chemi-
cal mixtures containing similar compounds (Yang et al. 2008)
versus complex mixtures containing multiple classes of com-
pounds with widely different characteristics (e.g., Baldwin et al.
2016). A road map could be developed to show how these
screening techniques and tools could be used to deal with this
challenge and streamline advances.
CHALLENGE 2: SUBLETHAL EFFECTS OF
CECS ON AQUATIC ORGANISMS

Considerable information is available in the scientific literature
on the acute toxic effects of CECs on aquatic organisms (Kent
et al. 2006; Santos et al. 2010); however, a broader understanding
of sublethal effects on a wide range of aquatic organisms is
necessary. For most CECs, acute toxic effects occur at concen-
trations in the mg L–1 range (Kent et al. 2006), whereas
wileyonlinelibrary.com/ETC
concentrations detected in the environment typically range
from the ng L–1 to mg L–1 levels (Kolpin et al. 2002; Aus der
Beek et al. 2016; Baldwin et al. 2016; Gago-Ferrero et al. 2017).
Furthermore, environmentalexposure toCECsoccursat relatively
low concentrations chronically over long periods of time
(Daughton 2002; Hampel et al. 2016). Exposure to low concen-
trations of CECs may not cause overt toxicity but rather subtle
changes in the health and physiology (e.g., behavior) of the
organisms (Hampel et al. 2016). These subtle changes have the
potential to cause adverse ecological outcomes in terms of
population levels and biodiversity.

A variety of CECs including some pharmaceuticals and
personal care products, flame retardants, and synthetic hor-
mones are known or suspected EDCs, altering the normal
function of hormones resulting in a variety of health effects.
Endocrine-disrupting compounds may in some cases interfere
with the activation of nuclear estrogen and androgen receptors.
At this level of biological organization, disruption results in the
reduction of gamete production (declining production of
vitellogenin, occurrence of intersex, ovarian atrophy; Vajda
et al. 2008; Blazer et al. 2014), mate availability (Martinovic et al.
2007), fecundity (Parrott and Blunt 2005; Vajda et al. 2008;
Dammann et al. 2011; Vajda et al. 2011), and fertility (Parrott and
Blunt 2005). Reduction in reproductive potential through
endocrine disruption is most readily connected to a decrease
in population size and subsequently to an adverse impact on the
trophic cascade (Fleeger et al. 2003; Kidd et al. 2007; Miller et al.
2007). An example of endocrine disruption in snails caused by
exposure to tributyltin has recently been extrapolated to
vertebrates, including fish that were found to be as sensitive
as snails to this compound and suffered endocrine effects at
environmental concentrations (Lagadic et al. 2017).

Other important consequences of CEC exposure include
behavioral effects mainly associated with psychoactive drugs.
For example, fish exposed to anti-anxiety and serotonin
reuptake inhibitor drugs have the potential to cause increased
activity and boldness (Brodin et al. 2017), inhibition of
aggressive behavior (Forsatkar et al. 2014; Greaney et al.
2015), changes inmotor activity (Kellner et al. 2016), reduction in
daytime activity levels (Melvin et al. 2015), and increased time
(Bisesi et al. 2014) and decreased ability (Gaworecki and Klaine
2008) to capture prey items. Neurotoxic effects have also been
reported for the antidepressant venlafaxine that targets
neurological tissue (Bidel et al. 2016).

For many pharmaceuticals, scientific research has focused on
understanding effects on wildlife based on the drug’s therapeu-
tic mode of action in humans (Corcoran et al. 2010). The
evolutionary preservation of molecular targets of CECs in
aquatic organisms suggests that they may exert a mode of
action-mediated effects similar to those desired in humans
(Huerta et al. 2016), which is a unique characteristic of CECs.

Various molecular techniques provide useful tools for
evaluating sublethal effects of CECs on aquatic organisms,
although some methods require further development. Changes
in gene expression, which are frequently considered one of the
first steps in altering the entire organism pathway, are a widely
reported sublethal response to CEC exposure (Garc�a-Reyero
�C 2018 SETAC
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et al. 2011). Genes associated with steroid production, sexual
differentiation, immune–response growth, and development
have been reported to be altered by CEC exposures (Jin et al.
2010; Caspillo et al. 2014; Baldigo et al. 2015). Few studies have
assessed the immunological responses of aquatic organisms
exposed to CECs. In fish species, this may be related to the
difficulties in applying an appropriate methodology because
nucleated erythrocytes complicate the use of flow cytometry—
one of the workhorses of immune system analysis in other
vertebrates (Schoenfuss et al. 2016). Limited research utilizing
gene arrays has pinpointed gene expression changes consistent
with immunotoxic responses in fish exposed to CECs (Burkina
et al. 2015). Genotoxic alterations—such as DNA strand breaks
in blood cells (increase of genetic damage index), chromosome
breakage and segregational abnormalities (Rodrigues et al.
2017), DNA and oxidative damages (Pandey et al. 2017),
erythrocyte DNA strand breaks (Barreto et al. 2017), and loss of
DNA integrity (Rocco et al. 2010)—have been observed in fish
exposed to pharmaceuticals. Molecular biomarkers reported in
the literature highlight the broad array of biological effects of
CECs on aquatic organisms at molecular, biochemical, histolog-
ical, and behavioral levels.

To expand the current knowledge on biomarkers, the field of
aquatic ecotoxicology has recently integrated “omics” technol-
ogies including metabolomics, transcriptomics, and proteomics
as valuable tools to assess sublethal effects of CECs on aquatic
organisms. Metabolomics refers to the comprehensive profiling
of small-molecule metabolites in cells, tissues, or whole
organisms to detect changes in their pattern brought on by
external or internal stressors utilizing advanced analytical
techniques in combination with multivariate statistical analysis
(Campillo et al. 2015; Kovacevic et al. (2016)). For example,
Kovacevic et al. (2016) suggested that subchronic exposure of
Daphnia magna to a range of sublethal concentrations of
triclosan, carbamazepine, and ibuprofen produced a general
oxidative stress condition; and several types of amino acids
(branched, aromatics, etc.) emerged as potential bioindicators.
Transcriptomics is useful in field-based studies to differentiate
individuals collected at contaminated sites from those collected
at pristine sites, in addition to providing insights into the
mechanisms of action underlying changes at higher levels of
biological organization (Everroad et al. 2012; Jordan et al. 2012;
Softeland et al. 2016). The determination of transcription levels
of target genes involved in essential cellular functions and
pathways could be of great interest in evaluating the molecular
responses to CECs. Proteomics has also become a useful tool to
identify and understand processes involved in the bioactivity of
CECs because it provides unique evidence about structure,
function, posttranslational modifications, interactions, and
abundance of proteins (Gouveia et al. 2017; S�anchez-Mar�n
et al. 2017). Benzotriazole and its associated derivatives—as
emphasized by proteomics—exhibit hepatotoxicity in the rare
Chinese adult male minnow (Gobiocypris rarus) and the
underlying mechanism associated with the damage (Liang
et al. 2017). Proteomics also has the potential to determine
the mechanisms of action of CECs on aquatic vertebrates during
the early developmental period (Parolini et al. 2018).
�C 2018 SETAC
The role that omics technologies can play in the establish-
ment of sublethal effects of CECs and the identification of
biomarkers is unquestionable. However, improvements are
needed to produce quantitative and reproducible omics data
(Simons 2018). Furthermore, there is no consensus as yet on
whichmolecular responses are relevant indicators of exposure or
recovery (Choudhuri et al. 2018), especially in field-based
transcriptomics studies that are challenged by the influence of
confounding factors (Giraudo et al. 2017b). Thus it is crucial to
develop guidelines for interpreting field omics data that will
allow researchers to better isolate omics signatures responsive
to confounding environmental factors from those responsive to
CECs.

To address the challenge of understanding sublethal effects
of CECs on a wide range of aquatic organisms, several
knowledge gaps will need to be addressed. Understanding
interspecific differences regarding the chemical mode of action
is a formidable challenge to establish sublethal effects of CECs
because species can vary widely in their susceptibilities to
chemicals (Brodin et al. 2014; Giraudo et al. 2017a). Under-
standing the sublethal effects of chronic exposure to low doses
of CECs is still incomplete. Immunological responses of aquatic
organisms exposed to CECs are not well known. There is a
notable disconnect between the generation of omics data and
its incorporation to risk assessment strategies. Finally, there is an
urgent need for ecotoxicologists and computational scientists
to develop easy-to-operate adverse outcome pathway (AOP)
models for effective synthesis of omics data to predict
population-level effects and support quantitative ecological
risk assessment.
CHALLENGE 3: DURATION OF CEC
EXPOSURE WITHIN AND ACROSS
GENERATIONS IN AQUATIC SPECIES

Life cycle and multigenerational exposures have long been
recognized standards in toxicological studies (Organisation for
Economic Co-operation and Development 2012); however, the
costs and logistical difficulties associated with rearing and
maintaining aquatic organisms for months or even years under
constant exposure conditions are daunting. Nevertheless,
mounting evidence suggests that life cycle (embryonic to
maturity continuous exposure) and multigenerational exposures
(exposures extending beyond one life cycle) are required to fully
assess the effects of CECs on aquatic life (reviewed in Parrott
et al. 2017). The significance of extending exposures past a
generation was underscored by the 17a-ethinylestradiol (EE2)
exposure study in the Canadian Experimental Lakes Area
leading to the population collapse of a fathead minnow
population after exposure of 2 generations (Kidd et al. 2007).
Because the collapse was associated with a lack of young-of-the-
year recruitment, this effect would not have been evident
without the prolonged duration (3 consecutive summers) of the
exposure. Even beyond the immediate effect of the exposure,
food web consequences became apparent only after several
years of exposure (Palace et al. 2009). Similarly, Schwindt et al.
(2014) documented population-level disruption in mesocosm
wileyonlinelibrary.com/ETC



Challenges assessing contaminants of emerging concern—Environmental Toxicology and Chemistry, 2019;38:46–60 51
exposure experiments in which fathead minnows were exposed
to EE2 over 3 generations.

Twodiscrete questions related to the effects of CECexposure
of a population require long-term contact to be answered: 1) To
what extent are exposure effects discontinuous across ontog-
eny? and 2) How does species sensitivity change over
generations? The first question encompasses exposure out-
comes that may occur as a result of contact during discrete
vulnerable life stages such as development, migration, or
maturation and may impact survival and reproductive output
at a later time. The second question incorporates epigenetic and
evolutionary changes in the exposed organisms that do not
manifest themselves until subsequent generations. In addition,
both questions contain underlying methodological challenges
related to sensitive windows of exposure (Van Aerle et al. 2002;
Burggreen and Mueller 2015), mechanistically linking delayed
effects to original exposure (Mihaich et al. 2017) and extrapolat-
ing from individual (and often laboratory) exposure effects to
population consequences (Parrott and Blunt 2005; Miller et al.
2007; Schwindt and Winkelman 2016).

Ontogenetic disconnect between exposure occurrence and
effect has been a hallmark of many EDCs (Parrott et al. 2017).
Parrott et al. (2017) found that changes in organ development or
organ differentiation in embryonic and larval organisms result in
reduced survival and fitness toward and during maturity. Biased
sex ratios, a commonly reported outcome of exposure to
estrogenic CECs during embryonic organogenesis or larval
sexual differentiation, may reduce fitness in adults, often
independent of the continuation of exposure past a sensitive
window (Van Aerle et al. 2002; Burggreen and Mueller 2015).
Fetal development, a time at which receptor sensitivity is
heightened, appears to be a particularly sensitive window for
enhanced effects of CEC exposure (Kopras et al. 2014).
Nonetheless, establishing sensitive windows of exposure has
been complicated by the diversity of life history strategies
among aquatic species (Palace et al. 2009). For example, species
that migrate seasonally between habitats may experience
exposure during the sensitive developmental periods; however,
this exposure may be temporally and geographically discontin-
uous to effects observed later in ontogeny (Bangsgaard et al.
2006). Similarly, asynchronous spawners may produce offspring
during a broad range of environmental conditions that may
impact bioavailability of pollutants. Thus timing, duration, dose,
and developmental stage all influence the severity of observed
adverse effects (Patisaul and Adewale 2009). Bioaccumulation
resulting in maternal transfer and direct effects on offspring
ontogeny appears to be a less common phenomenon for CECs
than reported for many legacy contaminants. However, PFOS
has been known to bioaccumulate in aquatic organisms (Du et al.
2009; Haddad et al. 2017) and may lead to adverse outcome for
first filial generation offspring of exposed parental organisms
(Du et al. 2009). Similarly, some pharmaceuticals have been
reported to bioaccumulate in tissues with little knowledge of
the long-term consequences (Zhao et al. (2017)). Given the
chemical diversity of pharmaceuticals, it is not surprising that
bioaccumulation varies for these CECs. For example, the
antidepressant sertraline and its metabolite (norsertraline)
wileyonlinelibrary.com/ETC
bioaccumulate in fish tissues (Schultz et al. 2011; Arnnok et al.
2017), whereas the antidepressant venlafaxine does not (Schultz
et al. 2011). In this context, bioaccumulation must be assessed
on both a compound and tissue-specific level. To illustrate,
bioaccumulation of antidepressants in whole-body preparations
may be less predictive of adverse effects than the knowledge
that they bioaccumulate in the pharmaceuticals’ target tissue—
the central nervous system (Schultz et al. 2011; Arnnok et al.
2017). Similarly, Zhao et al. (2017) reported bioconcentration for
several pharmaceuticals to be highest in the liver and the brain
and lower inmuscle tissues. An understanding of pharmaceutical
bioaccumulation across size classes of organisms displaying
ontogenetic feeding shifts is lacking (Haddad et al. 2017). This
may be of concern when CECs are incorporated into the gamete
through maternal transfer and impact the developing embryo
through its nutrient source. For example, turtle sex ratios are
dependent on environmental temperature and shifts in critical
sex-determining temperatures have been linked to maternal
estrogenic exposure and transfer to the developing gamete (Bull
et al. 1988). Similarly, malformations in zebrafish embryos were
linked tomaternal PFOS transfer to embryological development
(Du et al. 2009). Little is known about maternal transfer of
pharmaceuticals but several studies have reported bioaccumu-
lation of these CECs in exposed organisms (Schultz et al. 2011;
Clairardin et al. 2013; Zhao et al. (2017)), suggesting that
maternal transfer to eggs is plausible and has been observed for
other pollutants (Marsh-Matthews et al. 2001).

A review of recent studies on endocrine-active CECs
concludes that there is little expectation that organisms would
become more sensitive in subsequent exposure generations
(Parrott et al. 2017). However, in some instances, multigenera-
tional (more than 2 generations) studies have documented
exacerbated adverse effects in the second and third generations
of exposure. For example, exposures to estrogenic CECs
including 4-nonylphenol (Yokota et al. 2001; Watanabe et al.
2017), 17b-estradiol (Cripe et al. 2009, 2010), and EE2 (Nash
et al. 2004) resulted in histopathological changes to reproduc-
tive organs with increasing severity in the second exposed
generation and ultimate reproductive failure (Nash et al. 2004).

Organismal plasticity (i.e., phenotypic alterations during
development to better suit environmental needs) and epige-
netic changes as a result of CEC exposure have been reported in
the literature (reviewed by Rissman and Adli 2014; Wilkinson
et al. 2015); however, their linkagewith adverse population-level
outcomes that may affect the trophic cascade are far from
certain. Epigenetic effects are related to changes in gene
expression, may persist beyond the exposed generation
(Skinner et al. 2011; Singh and Li 2012), and are distinct from
mutagenic effects where genetic information is altered directly.
Du et al. (2009) showedepigenetic changes in offspring of PFOS-
exposed zebrafish that persisted into the second filial generation
despite a lack of exposure.

Whereas epigenetic changes may be reversible after several
generations of reduced pollutant exposure, adaptive changes in
response to persistently polluted environments may irreversibly
alter exposed species (Bridges and Semlitsch 2001;Matson et al.
2006; Bickham2011). Adaptive changes have beendocumented
�C 2018 SETAC
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previously for environmental pollutants such as nitrogenous
compounds (Egea-Serrano et al. 2009), polyaromatic hydro-
carbons (Diamond et al. 1995) and pesticides (Cothran et al.
2013; Hua et al. 2015). A whole genome analysis of multiple
resident killifish populations along the Eastern Seaboard of the
United States (Reid et al. (2016)) identified multiple populations
that developed tolerance to persistent industrial pollutant
mixtures independently and repeatedly. Adaptive tolerance
was linked to the aryl hydrocarbon receptor-based signaling
pathway and incurred likely adverse changes to other pathways
including estrogen and hypoxia signaling. Reid et al. (2016)
suggested that the ability for species to develop adaptive
tolerance may scale with population size, positioning many
aquatic organisms near the base of the aquatic food web in
particular danger.

The adequate assessment of the environmental impacts of
CECs across generations will require multigenerational exposure
studies in controlled laboratory and field settings. Rigorous
laboratory research using the established Organisation for
Economic Co-operation and Development (2012) framework
may provide a starting point for experimental designs well suited
to test the long-term exposure effects of CECs individually and in
mixtures. Common garden experiments (Egea-Serrano and
Tejedo 2014), mesocosm studies (Elliott et al. 2014; Schwindt
et al. 2014), and staged environmental analyses (Reid et al. 2016)
may need to be combined to address issues of adaptive changes
in exposed populations and cross-species effects of CEC
exposures. Advancements in molecular tools such as in vitro
cell-based testing platforms for gene expression in liver tissue
(Rodd et al. 2017) may provide new avenues to assess long-term
adaptive responses in organisms over time. These tools are in the
early stages of development and their applicability to environ-
mentally realistic scenarios remains tobeexploredandevaluated.
CHALLENGE 4: INTEGRATION OF MULTIPLE
STRESSORS WITH CEC EXPOSURE IN
AQUATIC SYSTEMS

Aquatic organisms reside in waters receiving both point (e.g.,
STP effluent) and nonpoint (e.g., agricultural and storm water
runoff) sources of CECs, thereby encounteringmultiple stressors
either simultaneously or sequentially (Eggen et al. 2004). These
stressors include exposure to complexmixtures of contaminants,
as previously discussed in theChallenge 1 section, and changing
environmental conditions such as rising temperatures, altered
stream flows, increased radiation, varying pH, low oxygen
concentrations, turbidity, salinity, diseases, and parasites,
among others. Consideration of the combined effects of
multiple stressors is needed to gain understanding of the full
extent of CEC effects on aquatic food webs.

Although more attention has been focused on traditional
contaminants, there are a few examples of studies assessing the
interplay between exposure to CECs and physical stressors.
Exposures to chemical surfactants combined with heat stress
and desiccation were shown to have synergistic effects (i.e.,
greater than the sum of individual effects) in earthworms
(Dendrobaena octaedra) and springtail (Folsomia candida)
�C 2018 SETAC
(Holmstrup et al. 2010). The toxicity to D. magna of a
pharmaceutical mixture was found to be pH-dependent—such
that site-specific pH measurements were needed to avoid
overestimation or underestimation of environmental toxicity of
mixtures of ionizable pharmaceuticals in natural aquatic environ-
ments (Bostr€om and Berglund 2015)—and was temperature-
and radiation-dependent (Kim et al. 2010) under controlled
laboratory conditions. Triclosan exposure and grazing pressure
were observed to have negative synergistic effects on diatom-
size class and mortality because the effects of triclosan were
higher than expected when periphyton were subject to grazing
by snails (Radix ovata) (Guasch et al. 2016). Toxicities of mixtures
toChironomus dilutuswere tested at different temperatures in a
controlled setting (Harwood et al. 2009). The combined stress of
exposure to both a pharmaceutical mixture and to elevated
nitrate concentrations was negatively correlated with abundan-
ces of aquatic invertebrate species including snails (Lithoglyphus
naticoides), the Diptera species Polypedilum nubeculosum, and
the crustacean Limnomysis benedeni in the Danube River (Rico
et al. 2016). Biodegradation of venlafaxine by stream biofilms
was found to be hindered by the presence of amixture of 4 CECs
(erythromycin, sulfisoxazole, diclofenac, and imidacloprid)
under constant stream flows in an artificial stream facility (Acuna
and Petrovic 2018). Interestingly, the reduction in biodegrada-
tion capacity in the presence of a CEC mixture was less acute
under intermittent stream flows compared with constant stream
flows. HenceAcuna and Petrovic (2018) found a combined effect
of water flow conditions and CEC exposure on biodegradation.
In another study, a combination of chemical analysis of more
than 400 compounds, bioanalysis using 8 different biological
endpoints, and mixture toxicity modeling was used to assess
effects of a complex mixture of wastewater-derived CECs on
zebrafish embryos under low flow conditions (Neale et al. 2017).
This type ofmultifaceted approach is rare and provides a deeper
understanding of a system than using a single device for
bioassessment, and could be expanded to study multiple
organisms within a food web.

Climate change may alter contaminant toxicity directly
through variations in temperature (M€uller et al. 2012), pH, and
oxygen (Carere et al. 2011) and/or by increased concentrations
ofmicropollutants causedby lower streamflows and subsequent
decreased dilution of STP effluents (Bundschuh et al. 2011).
Indirect effects can result from actions taken to adapt to a
changing climate (Stahl et al. 2013) such as increased pesticide
applications (Delcour et al. 2015). Elevated water temperatures
can increase the biotransformation of contaminants to either
more bioactivemetabolites or less toxicmetabolites (Escher and
Fenner 2011), and enhanced air temperatures can lead to
increases in concentrations and transport of airborne contam-
inants (Noyes et al. 2009). In parallel, chemical exposures can
impair the response and adaptation of species to physical
stressors related to climate change, especially for populations
occupying the fringes of their physiological tolerance range
(Noyes et al. 2009). The combination of stressors related to
climate change and contaminant exposure poses significant
extinction risks, particularly for small populations with relatively
few individuals (Brown et al. 2015).
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One important data gap in comprehendingmultiple stressors
is the consideration of human-induced habitat changes in
concert with contamination. The few studies on this topic are
mostly focused on legacy contaminants but results could transfer
to understanding the effects of CECs as well. For example,
accumulation of legacy EDCs such as polychlorinated biphenyls
(PCBs) in impoundments behind dams has been shown to
negatively impact fish reproductive health (Feist et al. 2005), and
the same could be true for CECs. Concomitant effects of dam
impoundments such as changes in water temperatures and total
dissolved gas should be considered in concert with toxicity.
Contaminant transport after dam removal can affect down-
stream food webs (Davis et al. 2017) and should be examined as
part of any dam removal proposal. Coho salmon (Oncorhynchus
kisutch) spawner mortality has been attributed to chemical
contaminants in land-based runoff that may contain CECs to
urban streams in Puget Sound, along the northwestern US state
of Washington (Spromberg and Scholz 2011). Spatial analyses
found a strong positive correlation of chemically induced Coho
salmon spawner mortality with land cover including roads,
impervious surfaces, and commercial property within a water-
shed (Feist et al. 2011). Chemical stressors—especially CECs in
combination with human-induced habitat changes caused by,
among other occurrences, water withdrawals, deforestation,
and dam operations/removal—have rarely been taken into
account.

To comprehensively assess the effects ofmultiple stressors on
aquatic food webs, novel tools, models, and innovative study
designs need to be developed. Although early attempts to
assess effects of multiple stressors on aquatic organisms relied
on weight-of-evidence approaches (Lowell et al. 2000), steady-
state and non–steady-state bioaccumulationmodels are needed
to understand how multiple stressors alter trophic structure and
feeding ecology (McLeod et al. 2016). Segner et al. (2014) posit
that to assess the effects of multiple stressors, study designmust
shift from a focus on stressor characteristics to a focus on the
properties of the biological receptor (i.e., the fish or aquatic
invertebrate being studied). Future research could employ this
strategy to test the interplay among multiple stressors such as
climate factors, bioavailability, and toxicity of CECs—with an
emphasis on the properties of the aquatic species being studied.
The use of outdoor flow-through mesocosms that approximate
realistic ecological conditions, while allowing for control of
multiple stressors, provides a powerful tool to examine indirect
multiple stressor effects and biotic interactions (e.g.,Moran et al.
2010; Magbanua et al. 2016; Bruder et al. 2017). Eco-
epidemiological analysis of existing monitoring datasets has
been shown to quantify multiple stressor effects on aquatic
ecosystems (Posthuma et al. 2016). New high-throughput
screening techniques may address some of the difficulties with
low concentrations, complex mixtures, and variable environ-
mental conditions encountered when using current mixture
models (Rodea-Palomares et al. 2016). Manciocco et al. (2014)
recommended an international “open-access” database for
tissue contamination and temperature. Cross-disciplinary efforts
are needed to design the tools to improve understanding of the
mechanisms and modes of action of effects of multiple stressors
wileyonlinelibrary.com/ETC
on aquatic species and food webs. This type of repository
containing data for multiple stressors could stimulate global
cooperation in pursuit of understanding effects of multiple
stressors.
CHALLENGE 5: TROPHIC CONSEQUENCES
OF CEC EXPOSURE ACROSS AQUATIC
FOOD WEBS

Effectively evaluating the direct and indirect trophic con-
sequences of CECs requires the extrapolation of toxicity data
across different levels of biological organization from the
individual, to the population, to the community, and finally to
the ecosystem. Limited knowledge is available on the effects of
CECs at broader ecological scales (Boxall et al. 2012; Windsor
et al. 2017) caused, in part, by the complexity of environmental
mixtures, the incomplete information on effects at multiple
trophic levels, the interactions between CECs and other
stressors, and the importance of bottom-up food web pro-
cesses. Recently, studies have filled some data gaps in
predicting toxicity of EE2 at several levels of the food web
(Hallgren et al. 2014; Kidd et al. 2014). In these 2 studies, prey
fish biomass decreased in response to EE2, which resulted in an
increase in zooplankton. Kidd et al. (2014) also reported a
decline in biomass of the top predator (lake trout) most likely
because of an indirect effect from EE2 reduction of prey
abundance. These studies indicate that CECs have the potential
to directly and indirectly alter the structure and function of
food webs. To advance our knowledge of food web interactions,
the exposure and potential indirect effects of CECs should be
addressed, including community-level interactions such as
predator–prey relationships, resource competition, successional
processes, and trophic cascades (Kramer et al. 2011; Windsor
et al. 2017).

To move beyond effects at the individual species level,
scientists have begun to bridge the gap between individual
effects and food web responses by utilizing a combination of
mechanistic toxicology (effects at the individual level) and
conservation biology (bottom-up or top-down food web
interactions; Ankley et al. 2010; Macneale et al. (2010); Kramer
et al. 2011). Macneale et al. (2010) combined such disciplines to
highlight information gaps and to discuss how future research
should assess the effects of pesticides on aquatic food webs in
support of Pacific salmon conservation. These authors examined
multiple lines of evidence that indicated pesticides can impact
primary productivity, invertebrate abundance, and prey com-
munity structure by eliminating energetically favorable species;
nevertheless, they were unable to unequivocally link the bottom-
up effects of pesticide mixtures to higher predators such as
salmon. Kidd et al. (2014) found a significant reduction in forage
fish abundance resulting in a decline in the top predator.
Notably this was the first and currently only study to address the
indirect effects of a CEC on the aquatic food web. However, as
with toxicity studies, single contaminant exposures do not
represent real-world scenarios. Understanding trophic conse-
quences involves the incorporation of population dynamic
modeling into toxicity assessments allowing the exploration of
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the relationships among species life histories, exposure patterns,
and sensitivities to CECs (Forbes et al. 2016).

Approaches such as the application of eco-epidemiological
models that link chemical stressors to effects on assemblages
(De Zwart et al. 2006; Posthuma et al. 2016), the use of modern
molecular and genetic tools (Van Straalen 2003; Eggen et al.
2004), the AOP concept (Ankley et al. 2010; Kramer et al. 2011),
energy allocation models (Fischer et al. 2013), and/or principles
in community ecotoxicology (Rohr et al. 2006; Clements and
Rohr 2009) all show promise in connecting responses within and
across biological levels of organization. The eco-epidemiologi-
cal framework described by De Zwart et al. (2006) provides a
measure of impact and statistical estimates of potential stressor
effects on fish assemblages using a combination of exposure
and population modeling. Adverse outcome pathways offer a
unique structure for organizing information, identifying uncer-
tainties and research priorities, and improving the avenues
necessary to advance our understanding of CECs at multiple
levels of organization (Ankley et al. 2010). Modeling the effects
at the individual level using AOPs can provide the key that links
toxicity information to top-down processes including effects on
population dynamics, community diversity, and ecosystem
responses (Kramer et al. 2011). Community ecotoxicology is
focused on the movement of contaminants across ecosystems
and their subsequent impacts on communities (e.g., species
richness and diversity), which have the potential to incorporate
food web responses at different levels of organization. Gessner
and Tlili (2016) characterize these types of approaches as simply
incorporating ecological principles into the design and execu-
tion of ecotoxicological studies, which echoes the conclusions of
Rosi-Marshall and Royer (2012).

The current risk assessment paradigm has little ecological
relevance to the population, the community, or the ecosystem
for most contaminants including CECs because of the limited
data on direct and indirect effects of CECs on multiple levels of
biological organization. The scarcity of information on trophic
consequences and effects beyond the individual can yield
inaccurate estimates of risk to sensitive populations or commu-
nities (Forbes et al. 2011). Unfortunately, assessments on
individuals do not drive regulatory action or societal change;
tools must evolve to model effects at higher levels of biological
structure (Arnold et al. 2014). Existing population models
integrate potential effects of exposure on individual survival,
growth, and reproduction, in combination with life histories, to
predict impacts beyond the individual. Population models have
been used extensively to answer conservation biology and
resource management questions but their use in chemical risk
assessments is unfortunately limited (Forbes et al. 2016).
However, there is a continued need for increased long-term
monitoring of populations of interest for different regions, taxa,
and exposure potential to increase confidence and applicability
at multiple trophic levels.

To truly understand risks to the food web we must look
beyond sublethal effects of single compounds or simple
mixtures at the individual level and incorporate all pathways
from the source to the receptor, including a detailed compre-
hension of environmentally relevant chemical mixtures as well as
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food web structure and dynamics. This also includes an
understanding of the impacts of CECs relative to other stressors
at multiple levels of organization. Extrapolating from individual-
level effects in laboratory tests to population effects and
community responses is challenging. For example, small fish
models offer utility for pharmaceutical risk assessments for
regulatory decision-making; however, they are not considered
protective of all fish because of differences in physiologies,
behaviors, and life histories (Brown et al. 2015) and cannot be
extrapolated to a food web. Toxicity data of this type are also
limited to a handful of species. Sublethal endpoints relative to
populationmodelingmust includemeasures of survival, growth,
and fecundity (Kramer et al. 2011; Chambers et al. 2014) but
more information is required to identify the mechanistic causes
of CEC toxicities. Furthermore, environmental reservoirs host
complex mixtures of CECs and other contaminants making
toxicity information for key species beneficial to help prioritize
chemicals that could pose the greatest threat no matter the
trophic level (Boxall et al. 2012). At present, the only data on
effects at the population level occur as a result of “sudden and
catastrophic events,” according to Arnold et al. (2014).

The available toxicity information and sublethal responses to
CECs are biased toward the freshwater environment, with
limited data available on the marine and terrestrial ecosystems
(Gerbersdorf et al. 2015). To further complicate matters,
movement of persistent CECs across ecosystem boundaries
(i.e., between freshwater and terrestrial/marine environments)
should also be considered. Anadromous fish have the potential
to accumulate CECs in the ocean and deposit them in freshwater
environments during spawning. For instance, sockeye salmon
(Oncorhynchus nerka) transport hydrophobic contaminants such
as PCBs upstream after spawning, where these pollutants may
affect multiple trophic positions including their offspring
(Krummel et al. 2003). If contaminant transport can be related
to energy flows between ecosystem boundaries, additional
information is needed beyond the aquatic environment.

To understand the trophic consequences of exposure to
CECs, a transdisciplinary approach must be conceived encom-
passing chemistry, toxicology, conservation biology, and
community ecology to develop the tools and avenues necessary
to scale up beyond the individual To establish links between
CEC exposure, indirect effects, and bottom-up or top-down
cascades, a research emphasis needs to be placed on several
key hypotheses including: 1) altered behavior at any level leads
to survival variations and changes in trophic structure; 2) changes
in sex ratios, fecundity, and fertility of lower trophic level species
result in declines at higher trophic levels; 3) overt (lethal) toxicity
at lower trophic levels (invertebrates) reduces food availability,
subsequently reducing population size at higher trophic levels;
and 4) bioaccumulation and biomagnification can decrease
fecundity and fertility, creating adverse health outcomes at
higher trophic levels.
CONCLUSIONS

Proliferation of synthetic chemicals in the environment is
driving global change at a faster rate than other more commonly
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cited stressors such as rising atmospheric CO2 concentrations,
nutrient pollution, habitat destruction, and biodiversity loss
(Bernhardt et al. 2017). In the present review, we propose 5
grand challenges that need to be addressed to advance our
understanding of CECs from single-exposure events to multi-
species aquatic food web interactions. Limited information is
available on the effects of CECs at broader ecological scales in
part because of the complexity of environmental mixtures, the
incomplete data on effects at multiple trophic levels, the lack of
multigenerational studies, the interactions between CECs and
other stressors, and the importance of bottom-up food web
processes. The knowledge gaps can seem daunting; however,
novel tools, models, and innovative study designs are being
developed to comprehensively assess the effects CECs and
other stressors on aquatic food webs, and ecological principles
can drive improved design and execution of ecotoxicological
research. Breakthroughs in analytical and high-throughput
screening techniques can serve as powerful tools to face
challenges presented by low doses, complex mixtures, and
variable environmental conditions. Newmodeling strategies can
assist in prediction of food web transfer and fate of CEC
mixtures. Omics approaches may help unravel interspecific
differences regarding chemical mode of action to understand
sublethal effects of CECs and species susceptibilities to
chemicals—and many of these techniques have untapped
potential. Several examples have shown that some of the
most extreme effects of CECs cannot be resolved without
employing longer duration, multigenerational exposure experi-
ments under laboratory conditions. Finally, we must utilize
innovative methods designed to extrapolate toxicity data across
multiple trophic levels to evaluate the direct and indirect trophic
consequences of CECs from the individual, to the population, to
the community, and to the ecosystem. The greatest challenges
in these experiments are linking delayed effects with the original
exposure and extrapolating effects on individuals to population-
level consequences, given the diversity of life history strategies.
To address these grand challenges, future CEC research will
incorporate transdisciplinary, multidisciplinary systems to move
beyond the individual compounds and receptors to include
numerous levels of biological organization in concert with
multiple stressors over a range of exposure durations and life
histories. We have the tools and creativity to accomplish these
ambitious goals as a scientific community, and to achieve a
broader understanding of the effects of CECs on aquatic food
webs.
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