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a b s t r a c t

Left invariant metrics induced by the p-norms of the trace in thematrix algebra are studied
on the general linear group. By means of the Euler–Lagrange equations, existence and
uniqueness of extremal paths for the length functional are established, and regularity
properties of these extremal paths are obtained. Minimizing paths in the group are shown
to have a velocity with constant singular values and multiplicity. In several special cases,
these geodesic paths are computed explicitly. In particular the Riemannian geodesics,
corresponding to the case p = 2, are characterized as the product of two one-parameter
groups. It is also shown that geodesics are one-parameter groups if and only if the initial
velocity is a normal matrix. These results are further extended to the context of compact
operators with p-summable spectrum, where a differential equation for the spectral
projections of the velocity vector of an extremal path is obtained.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The object of this paper is to study the Finslermetric in the general linear groupG = GL(N) given by left translation of the
p-norm induced by the trace in the space of N × N complex matrices. Namely, since GL(N) is open in the spaceMN(C), the
tangent space of GL(N) at any point identifies with MN(C), and if x ∈ MN(C) is regarded as a tangent vector at g ∈ GL(N),
then the metric we consider is given by

∥x∥g = ∥g−1x∥p = τ((x∗(g−1)∗g−1x)n)1/p,
where p = 2n is a fixed even integer, and τ is the normalized real part of the trace.

Thismetric is Riemannianwhen p = 2, and as noted by V.I. Arnold [1, Section 2], it is the naturalmetric in the study of the
Lie group of movements of the generalized rigid body problem. Thus the geodesics of this group obey the least action prin-
ciple for the kinetic energy of the body. In particular, one-parameter groups (which wewill show that correspond to normal
initial speeds in Section 2.1.2) are the rotations of the rigid body around its major axes in the moment of inertia ellipsoid.

If g(t), t ∈ [0, 1] is a smooth curve in G, the length functional is defined by

Lp(g) =

 1

0
∥g−1(t)ġ(t)∥pdt,
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and the distance between g, h ∈ GL(N) is defined as the infima of the lengths of piecewise smooth curves joining g, h in
GL(N).

Our goal is to characterize and establish the existence and uniqueness of smooth (C1, C∞, etc.) minimizing paths for this
metric, studying the Euler–Lagrange equation of the p-energy functional

Ep(g) =

 1

0
∥g−1(t)ġ(t)∥p

pdt,

for g(t) ∈ GL(N) a smooth curve parametrized in the interval [0, 1].
With the notable exception of the case p = 2 (which corresponds to the Riemannian situation), the p-energy and the

p-length functional are degenerate, in the sense that the second variation of each functional is nonnegative, but has
directions of degeneracy where it vanishes. In fact, for p > 2 and any initial condition v ∈ Mn(C), there are plenty of
directions of degeneracy, unless v is nonsingular (i.e. invertible). Thus this manifold lies beyond the reach of the standard
techniques of Finsler geometry, and in particular the existence of geodesic neighborhoods is not guaranteed.

This paper is divided into two main parts, concerning matrix algebras and compact operators on a separable complex
Hilbert space, and it is organized as follows. Suppose that a smooth curve g(t) ∈ G, t ∈ [0, 1] is given. Denote by

v(t) = g−1(t)ġ(t)

the left translation of the velocity vectors. In Section 2.1 it is shown that g is an extremal of the p-energy functional, if and
only if v satisfies the differential equation

d
dt

v(v∗v)n−1
= (v∗v)n − (vv∗)n,

which we call the Euler–Lagrange equation (of the p-metric). If p > 2 or if v is non-normal, this equation is difficult to deal
with. Using the one-to-one and smooth map

v → w := v(v∗v)n−1,

which we call the Legendre transformation, this equation becomes the Hamilton equation:

ẇ = (w∗w)q/2 − (ww∗)q/2 = |w|
q
− |w∗

|
q,

where 1
q +

1
p = 1 and |z| =

√
z∗z is the unique positive square root of the positive matrix z∗z. Solutions w of this equation

have the remarkable property that the eigenvalues andmultiplicities ofw∗w (and ofww∗) are constantwith respect to t . This
fact implies that the Hamilton equation has (unique) solutions defined for all t ∈ R. Thenwe reverse the Legendre transform
to prove that solutions v = v(t) exist for any initial data, they are unique and C∞. In Section 2.3, we establish some basic
facts concerning the rectifiable distance ℓp for continuous maps, and its relation with the p-length functional: rectifiable
arcs are almost everywhere differentiable, andminimal rectifiable arcs have constant speed (where it exists). Then, minimal
curves for the rectifiable distance areminimal points of the p-energy (a simple consequence of Hölder’s inequality) and thus
fulfill the Euler–Lagrange equation, which forces them to be C∞. By means of Cohn-Vossen’s theorem for locally compact
geodesic length spaces, we prove that for given g1, g2 ∈ G, there exists a unique C∞ curve of minimal length, such that the
left translation of its velocity vectors verifies the Euler–Lagrange equation. Under certain special conditions of the initial
speed, these curves are computed for any p = 2n. In Section 3, we study the classical Banach–Lie groups whose Banach–Lie
algebras are compact operators with p-summable singular values (p-Schatten operators), and we establish the smoothness
(C1 in this case) of the critical points of the rectifiable length, and obtain a differential equation of the spectral projections
of these extremal curves.

This research was partially supported by PIP 0757 CONICET and PICT 2478 ANPCyT.

2. Matrix algebras

In this section, we work in the algebra of N × N complex matrices A = MN(C), and we denote with G = GL(N) the
open subgroup of invertible matrices. Its tangent space at the identity (the Lie algebra) is identified with the full-matrix
algebra, and we consider several norms induced by the standard, normalized (τ(1) = 1) real part of the trace of the algebra,
τ : A → R. Consider

∥x∥p
p = τ |x|p for any p ≥ 1,

which is called the p-norm. In what follows, |x| =
√
x∗x. The uniform norm is given by ∥x∥ = ∥x∥∞ = max{∥xξ∥ : ξ ∈

CN , ∥ξ∥ ≤ 1}. It is also called the supremum norm, or the spectral norm. It is worth mentioning here, that for any x ∈ A,
and 1 ≤ r ≤ s, it holds that

∥x∥1 ≤ ∥x∥r ≤ ∥x∥s ≤ ∥x∥∞

and also that the uniform norm can be arbitrarily approximated by the p-norms for p sufficiently large.
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2.1. Euler–Lagrange equations and critical points

We establish the existence and uniqueness of extremal paths for the p-energy functional. The computations are only
carried out for even p. We postpone to Section 2.3 the relationshipwith the p-length functional, and the study ofminimizing
properties of the extremal curves.

2.1.1. Variational calculus for the p-norms
Let p ≥ 2 be an even integer and put n = p/2. Consider the p-energy functional

Ep(g) =

 1

0
∥v(t)∥p

pdt =

 1

0
τ(v(t)∗v(t))ndt,

for a smooth curve g(t) (0 ≤ t ≤ 1) in the group G, where we put v(t) = g−1(t)ġ(t), which is the left translation to the
identity of G, of the velocity vector of g .

This functional is invariant for the left action of G: if we put h(t) = kg(t) for some k ∈ G, we have ḣ(t) = kġ(t) and
h−1(t)ḣ(t) = g−1(t)ġ(t).

We assume that g = gs depends smoothly upon a parameter s ∈ (−ε, ε), and we will use the apostrophe ′ to denote
the derivative with respect to the s-parameter. Let w = g−1g ′ and v = g−1ġ . Now we compute ∂

∂sτ(v∗v)n, we will use the
formula

v′
= ẇ + [v, w],

that follows interchanging derivatives and using that dx−1
= −x−1(dx)x−1. Thus

(v′)∗ = ẇ∗
+ [w∗, v∗

].

We have

(τ (v∗v)n)′ = nτ(v∗v)n−1(v∗v)′,

so we compute

(v∗v)′ = (v′)∗v + v∗v′
= (ẇ∗

+ [w∗, v∗
])v + v∗(ẇ + [v, w])

= (ẇ∗v + v∗ẇ) + ([w∗, v∗
]v + v∗

[v, w]).

Finally,

ẇ∗v + v∗ẇ =
d
dt

(w∗v + v∗w) − (w∗v̇ + v̇∗w).

Note that, since τ indicates the real part of the trace, then τ(x) = τ(x∗). For the time being, we have three terms
1. 2nτ(v∗v)n−1v∗

[v, w]

2. −2nτ(v∗v)n−1w∗v̇
3. 2nτ(v∗v)n−1 d

dt (w
∗v).

The last term can be rewritten as follows:

3′. pτ(v∗v)n−1 d
dt

w∗v = p
d
dt

τ(v∗v)n−1w∗v − pτ


d
dt

(v∗v)n−1


w∗v.

If we put together the second term with this last expression, we get

−p
d
dt

τ(v∗v)n−1w∗v − pτ


d
dt

(v∗v)n−1


w∗v = −pτ


d
dt

v(v∗v)n−1


w∗.

Hence
1
p

∂

∂s
τ(v∗v)n =

d
dt

τ(v(v∗v)n−1)w∗
− τ


d
dt

v(v∗v)n−1


w∗
+ τ((v∗v)n − (vv∗)n)w∗.

The last term comes from the bracket and its adjoint. Now

∂

∂s
Ep(gs) = ⟨v(v∗v)n−1, w⟩

1
0
−

 1

0


d
dt

v(v∗v)n−1, w


dt +

 1

0
⟨(v∗v)n − (vv∗)n, w⟩dt,

where ⟨, ⟩ denotes the inner product of A induced by the (real part of) the trace

⟨x, y⟩ = τ(y∗x).

This is the first variation formula for the functional Ep. If we consider variations w(t, s) with fixed endpoints w(0, s) =

w(1, s) = 0, then the condition for g to be an extremal point is

d
dt

v(v∗v)n−1
= (v∗v)n − (vv∗)n. (1)
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This is the Euler–Lagrange equation of our variational problem. In order to deal with it, we shall rewrite it as follows. Let
1
q +

1
p = 1, i.e. q is the conjugate exponent of p (recall that p ≥ 2 is an even integer). Note that 2n

2n−1 =
p

p−1 = q.
Consider the Legendre transformation given by

v → w = v(v∗v)n−1 (2)

and note that

(v∗v)n = (w∗w)
n

2n−1 and (vv∗)n = (ww∗)
n

2n−1 . (3)

Then the Hamilton equation is

ẇ = |w|
q
− |w∗

|
q, (4)

where |w| =
√

w∗w and |w∗
| =

√
ww∗. In particular, ẇ is self-adjoint, or stated in other way, the skew-adjoint part of w

must be constant.
In order to establish existence and uniqueness of solutions of the Hamilton equation, it suffices to show that the map

a → |a|q is locally Lipschitz. Since we are interested in solving this equation in two contexts, we recall here a result which
covers both. The proof is based on results in [2,3] (see also [4]).

Remark 2.1. Let 1 < r < ∞, a, b ∈ A where A is either a matrix algebra or the (unitized) ideal of compact p-Schatten
operators (see Section 3). Then there exists a constant c(r, d) > 0, such that if ∥a∥r , ∥b∥r ≤ d, then

∥ |a|r − |b|r∥r ≤ c(r, d)∥a − b∥r .

Indeed, E.B. Davies proved in [2] that if a, b are operators such that a − b belongs to the r-Schatten class, then |a| − |b| also
belongs to this class, and there exists a constant c1(r) such that

∥ |a| − |b| ∥r ≤ c1(r)∥a − b∥r .

On the other hand, D. Potapov and F. Sukochev proved in [3] (see also [4]), that if f : R → R is a Lipschitz map, and x, y are
self-adjoint operators in the r-Schatten class, then f (x) − f (y) belongs to the r-Schatten class, and there exists a constant
c2(r) such that

∥f (x) − f (y)∥r ≤ c2(r)∥x − y∥r .

Our assertion follows considering the function fd : R → R given by

fd(t) =


|t|r if |t| ≤ d

dr
t
|t|

if |t| > d.

Clearly fd is a Lipschitz map, and if x ∈ B(H) verifies that ∥x∥r ≤ d, fd(|x|) = |x|r . Our claim therefore follows.

Note that, while in the matrix algebra A = MN(C) we are dealing with the topology induced by the uniform norm (all
norms being equivalent for fixed N), one obtains that a → |a|q is locally Lipschitz for the uniform norm, with a constant
depending only on p,N and the radius of the ball where one wishes to obtain the estimate.

By the remark above, the Hamilton equation (4) has a continuously differentiable local solutionw : (t−, t+) → A for any
initial condition w(0) ∈ A by the standard result for ODE’s on Banach spaces (see for instance [5, Chapter IV]). Moreover,
the flow of solutions is a Lipschitz map with respect to the initial condition w0.

2.1.2. Special case: normal speed
Eq. (4) shows that the extremals of the variational problems are the one-parameter groups g(t) = etv (v ∈ A) if and

only if v is a normal element of A. Indeed, if g(t) = etv , then v(t) = g−1(t)ġ(t) ≡ v, thus g is an extremal if and only if

(vv∗)n = (v∗v)n,

which is equivalent to vv∗
= v∗v. Note that the set of such speeds in the algebra A is closed, but not a submanifold, since

f (x) = x∗x − xx∗ has vanishing differential at x = 1.

2.1.3. Special case: partial isometries as speeds
If the initial condition v0 is a partial isometry, that is v0v

∗

0 and v∗

0v0 are projections, then for any p = 2n,

g(t) = g0etv
∗
0 et(v0−v∗

0 ), (5)

is the unique solution of the variational problem with g(0) = g0, ġ(0) = g0v0. Indeed, let v0 = x0 + iy0 with x0, y0
self-adjoint, and define

v(t) = g−1ġ(t) = e−t(v0−v∗
0 )v0et(v0−v∗

0 )
= e−2ity0v0e2ity0 = e−2ity0x0e2ity0 + iy0.
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Then, since v is a curve of partial isometries, (v∗v)n = v∗v, (vv∗)n = vv∗ and v(v∗v)n−1
= v. Hence a direct computation

shows that
v̇ = e−2ity0 [−2iy0, x0]e2ity0 = v∗v − vv∗

which implies that v is a solution of the Euler–Lagrange equation (1).
Note that the solution can be rewritten as

g(t) = g0et(x0−iy0)e2tiy0 .

2.1.4. The spectrum of the velocity vector
Returning to the general situation where v0 is not a normal operator nor a partial isometry, note that

(w∗w)̇ = (|w|
q
− |w∗

|
q)w + w∗(|w|

q
− |w∗

|
q)

= |w|
qw − w|w|

q
+ w∗

|w|
q
− |w|

qw∗
= 2 Sym[|w|

q, w],

where Sym(x) =
1
2 (x + x∗). Let k ∈ A be the skew-adjoint part of w, which as noted above, is constant. Then

Sym[|w|
q, w] = [|w|

q, k].
So, if we put a = |w|,

(a2)̇ = 2[aq, k].
Fix an element K ∗

= −K ∈ A. The following auxiliary equation will be useful:

ḃ = [bα, K ] = bαK − Kbα, (6)
where α = q/2. Note that if w is a solution of the Hamilton equation, then b = |w|

2 is a solution of (6) for K = 2k.

Lemma 2.2. If a continuously differentiable curve b(t) of positive elements of A is a solution of Eq. (6) and s ≥ 1, then ∥b(t)∥s
is constant and the eigenvalues and multiplicities of b(t) do not depend on t. In particular, ∥b(t)∥ is also constant.

Proof. For each n ∈ N0,
d
dt

τ(bn) = nτ(ḃbn−1) = nτ(bαKbn−1
− Kbαbn−1) = 0.

Therefore, if p is a polynomial, τ(p(b(t))) is constant. It follows that if f is any continuous function on the real line, then
τ(f (b(t))) is constant. Hence, for any s > 1, by considering f (t) = |t|s, we obtain

∥b(t)∥s
s = τ |b(t)|s = τ(f (b(t))) = τ(f (b(0))) = ∥b(0)∥s

for any t ∈ R such that solution b exists.
Let us show now that the spectrum of b(t) is constant. Indeed, suppose otherwise that λ ∈ σ(b(t0)) and λ ∉ σ(b(t1)).

Let f be a continuous function in the real line such that 0 ≤ f (t) ≤ 1, f (λ) = 1 and f is zero in the spectrum of b(t1). It
follows that

0 = τ(f (b(t1))) = τ(f (b(t0))).

Since f (b(t0)) ≥ 0, this implies that f (b(t0)) = 0. On the other hand, ∥f (b(t0))∥ = f (λ) = 1. Thus the spectrum is constant,
and if we recall that the spectral norm of a normal (in particular, positive) matrix x can be computed as the maximum of λi,
where λi are the eigenvalues of |x| =

√
x∗x, then clearly b(t) has constant uniform norm. �

Remark 2.3. The same conclusion follows, if one supposes that b(t) is a Lipschitz map (in particular, continuous and almost
everywhere differentiable) and an a.e.-solution of Eq. (6). Indeed, reasoning as above, one has that bn(t) is a.e.-differentiable,
and therefore τ(bn(t)) is constant for any n ≥ 0.

Theorem 2.4. The Hamilton equation (4)

ẇ = |w|
q
− |w∗

|
q, w(0) = w0

has a unique continuously differentiable solution defined for all t ∈ R.

Proof. Let w(t) be a local solution for this problem, defined for t ∈ (t1, t2). Then, by the computations leading to Eq. (6), it
follows that b(t) = w∗(t)w(t) is a continuously differentiable solution of Eq. (6). By the above lemma, this implies that

∥w(t)∥q
q = τ(|w(t)|q) = τ(|b(t)|q/2) = ∥b(t)∥q/2

q/2

is constant. Note that in the inequality of Remark 2.1, the Lipschitz constant of the map a → |a|q, depends on the q-norm of
the initial condition, and careful inspection of the proof of the theoremof existence and uniqueness (see [5, p. 66]) shows that
t1, t2 also depend only on it. Therefore, if we denotew1 = w(t1/2) and pose the Hamilton equation (4) with initial condition
w(t1/2) = w1, this solution is defined on an interval of the same length as the previous solution, because ∥w(0)∥q =

∥w(t1/2)∥q. Iterating this procedure, on both sides of the origin, one obtains a (unique) solution defined for all t ∈ R. �
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2.1.5. Reversing the Legendre transform
Wewould like to obtain solutions, defined for all time, of the original Euler–Lagrange equation. The problem here is that

the Legendre transformation

v → w = v(v∗v)n−1

is one-to-one and continuously differentiable, but not in general a diffeomorphism. Here, in the finite dimensional setting,
we could argue using invariance of domain and thus obtaining that t → v(t) is a continuous function, thus the differential
equations γ̇ = γ v will have a unique C1 solution γ for any initial data. But we can do better, we can explicitly reverse the
transform. In order to do it, the following remark will be useful. Let us denote with R(v) ⊂ CN the range subspace of v ∈ A.

Remark 2.5. With notations as in the previous section, let

w = Ω|w|

be the polar decomposition ofw,Ω the unique partial isometry from R(|w|) to R(w)with kernel equal to R(|w|)⊥ = N(|w|).
Then the polar decomposition of v is

v = Ω|w|
1

p−1 = Ω|w|
1

2n−1 .

Indeed,

|w| = (w∗w)1/2 = ((v∗v)2n−1)1/2 = |v|
2n−1

= |v|
p−1

and clearly N(v) = N(|v|) = N(|v|
2n−1) = N(w). Analogously,

|w∗
| = (ww∗)1/2 = (v(v∗v)2n−2v∗)1/2 = ((vv∗)2n−1)1/2 = |v∗

|
2n−1

= |v∗
|
p−1,

and thus R(v) = N(v∗)⊥ = N(|v∗
|
2n−1)⊥ = N(w∗)⊥ = R(w). Therefore the claim follows by the uniqueness property of

the polar decomposition.

As above, let v = Ω|v| be the polar decomposition of the solution v, and p0, p⊥

0 stand for the projections to the kernel
and range of |v|.

Theorem 2.6. Each of the curves |w|, p0, Ω(=Ωp⊥

0 ) and v are C∞ maps. In particular, the Euler–Lagrange equation (1) has a
unique continuously differentiable solution v(t) for t ∈ R, with v(0) = v0, which is in fact C∞.

Proof. Let b0 = |w0|
2, and recall that σ(b(t)) is constant. Now if f (λ) =

√
λ is the principal branch of the complex square

root, then

|w(t)| =
1

2π i


C

√
λ(λ − b(t))−1dλ

which shows that t → |w(t)| is C1, since b(t) = w∗w(t), and w is C1 by Theorem 2.4 (we picked any simple smooth
positively oriented path C around the non zero part of the spectrum of b(t)). Analogously, if λq

= exp(q log(λ)) denotes the
principal branch of the q-power, then

|w(t)|q =
1

2π i


C
λq(λ − |w(t)|)−1dλ,

where the curve C now is taken around the non zero part spectrum of |w(t)|. This shows that |w(t)|q is continuously
differentiable, and with the same arguments, |w(t)∗|, |w(t)∗|q, and |w(t)|

1
p−1 are continuously differentiable. Then

ẇ = |w|
q
− |w∗

|
q

is C1, i.e. w is a C2 map. Iterating this argument, it follows that w is a C∞ map, and the same holds for |w| and all its powers.
Since

p0(t)⊥ = 1 − p0(t) =
1

2π i


C
(λ − b(t))−1dλ

is the projection to the range of |w(t)|, the map t → p0(t) is C∞ and the same applies to t → p0(t)⊥. Then |w(t)| + p0(t)
is invertible and C∞. Let

µ(t) = (|w(t)| + p0(t))−1p0(t)⊥,

then µ is a C∞ map such that

|w|µ = (|w| + p0 − p0)(|w| + p0)−1p⊥

0 = p⊥

0 − 0 = p⊥

0 ,

hence

Ωp⊥

0 = Ω|w|µ = wµ,
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which is C∞ (where w = Ω|w| is the polar decomposition of w as before). Then

v = Ω|w|
1

p−1 = Ωp⊥

0 |w|
1

p−1 = wµ|w|
1

p−1

is C∞, and as noted before, the solution of Eq. (1). �

2.2. Evolution of the initial speed of an extremal curve

Since the spectra of |v| and |w| are constant and finite, one can describe these solutions by means of the action of the
unitary group, on positive matrices and on partial isometries. First we recall some basic facts.

Remark 2.7. 1. Let {λ1, . . . , λk} be the spectrum of |v(0)| \ {0} (if 0 belongs to the spectrum of |v(0)|, we denote it by λ0).
Put pi(t) the spectral projection of |v(t)| corresponding to λi. Then there exists a C∞ curve of unitaries u(t) such that
pi(t) = u(t)pi(0)u∗(t). There are many ways to construct u(t). For instance, with the same argument involving Riesz
integrals as above, it can be shown that the curves pi(t) are C∞. Thus one can define a C∞ curve of matrices

Λt = −

k
j=0

pjṗj.

Note that differentiating p2i (t) = pi(t), one obtains ṗipi + piṗi = ṗi. Also ṗ∗

i = ṗi. Combining these and the fact that
1 =

k
j=0 pi, one obtains that Λt is anti-Hermitian:

Λ∗

t = −

k
j=0

ṗjpj = −Λ.

Consider the linear differential equation inMN(C):
u̇(t) = Λtu(t)
u(0) = 1.

Apparently the unique solution is a curve of unitaries. Moreover,

(u∗piu)· = u∗Λpi + u∗ṗiu + u∗piΛu = u∗
{−ṗipi + ṗi − piṗipi}u = 0,

by the above identity (here we use that piΛ = −piṗi and Λ∗pi = −ṗipi). Thus,

u∗(t)pi(t)u(t) = pi(0),

and it follows that

|v(t)| =

k
j=1

λjpj(t) = u(t)|v(0)|u∗(t).

2. Accordingly, there exists a C∞ curve of unitary matrices ν(t), such that if v = Ω|v| is the polar decomposition of the
curve v, then

Ω(t) = ν(t)p⊥

0 (t).

To prove it, denote by I the set of partial isometries, and by P the set of projections. The unitary group UN(C), acts on
both sets, by means of the actions:

(u1, u2) · Ω = u1Ωu∗

2, u · p = upu∗,

for Ω ∈ I, p ∈ P , u1, u2, u ∈ UN(C). The orbits of these actions are connected components of I and P . In particular,
the connected components of I and P are C∞ submanifolds of MN(C). Note that the curve of partial isometries Ω(t) of
v(t) lies in one connected component, as does the curve of projections p⊥

0 (t). Denote from now on by I and P precisely
these components. Consider the map

UN(C) × P → I, (u, p) → up,

which is clearly C∞. We claim that it is a submersion. Indeed, in [6] it was shown that if v, v0 ∈ I, p0 = v∗

0v0 is the initial
projection of v0, and ∥v − v0∥∞ < 1/2, then there exist unitaries u1 and u2 (which are C∞-maps in the variables v and
v0) such that v = u1p0u∗

2 . Then it is easy to check that v → (u1u∗

2, u2p0u∗

2) is a C
∞-cross section for themap (u, p) → up,

defined in a neighborhood of v0. Therefore, the C∞ curveΩ(t) can be lifted to a pair of C∞ curves (ν(t), p(t)) inUN(C)×P
such that Ω(t) = ν(t)p(t), where p(t) = Ω∗(t)Ω(t) is the curve of initial projections, i.e. p(t) = p⊥

0 (t) in our current
notations.

3. Putting these facts together, we obtain that the solution v(t) of the Euler–Lagrange equation (1) can be written as

v(t) = ν(t)u(t)v(0)u∗(t)
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where ν, u are C∞ paths of unitary matrices with ν(0) = u(0) = 1. In particular, it follows that not only the spectrum
of |v| is constant, but also its multiplicity (i.e. the multiplicity of each eigenvalue).

2.3. The length functional and minimal paths

Let Lp denote the p-length of piecewise C1-paths in G,

Lp(α) =

 1

0
∥α−1α̇∥p,

and define the rectifiable distance as the infima of such paths joining given endpoints,
dp(h, k) = inf{Lp(α) : α(0) = h, α(1) = k}.

Recall the definition of the rectifiable metric,
ℓp(α) = sup

π


i

dp(α(ti), α(ti+1)),

where the supremum is taken over all partitions π of the interval [0, 1].
We say that path α is rectifiable, if it is continuous and ℓp(α) < ∞. We define the rectifiable distance as the infima of

rectifiable paths joining given endpoints,
dp(h, k) = inf{ℓp(α) : α(0) = h, α(1) = k}.

2.3.1. Rectifiable paths
By a standard argument (that we omit, see for instance [7, Chapter 1]), if α is a piecewise C1 path, then ℓp(α) ≤ Lp(α),

and moreover the metric space G is an inner metric space, that is dp = dp.
Since ℓp and Lp are invariant under re-parametrization, in this context we can assume that any rectifiable curve

α : [0, 1] → G is Lipschitz continuous, parametrized with constant speed. That is,
dp(α(t), α(s)) ≤ ℓp(α)|t − s|

for any t, s ∈ [0, 1], and moreover
ℓ(α|[t,t+s]) = sℓ(α). (7)

Remark 2.8. Since α is Lipschitz,

vα(t) = lim
h→0

dp(α(t + h), α(t))
|h|

exists almost everywhere, and moreover, the Lebesgue integral
 1
0 vα(t)dt exists and equals ℓp(α). See [8, Theorem 2.7.6]

for a proof.

We have
∥α(t) − α(s)∥p ≤ dp(α(t), α(s)) ≤ ℓp(α)|t − s|

for any t, s ∈ [0, 1]. Then (see [9, Section 8.1]) the usual derivative

α̇(t) = lim
h→0

α(t + h) − α(t)
h

exists almost everywhere.

Remark 2.9. We remark here that in the case of compact operators considered in Section 3, for 1 < p < ∞, the limit can
be taken in the norm topology induced by the p-norm, since this is a uniformly convex space. See [10, Proposition III.30] for
the details.

From here it follows easily that for any s, t ∈ [0, 1],

α(t) − α(s) =

 t

s
α̇(h)dh,

and moreover the Lebesgue integral

Lp(α) =

 1

0
∥α−1α̇∥p

is well-defined, and the same holds true for the energy functional. Note also that, due to Hölder’s inequality, for any
rectifiable path one has

Lp(α)p =

 1

0
∥α−1(t)α̇(t)∥pdt

p

≤

 1

0
∥α−1(t)α̇(t)∥p

pdt = Ep(α). (8)
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Remark 2.10. Assume that α is a rectifiable and minimizing curve for the length functional (since dp = dp, there is no
ambiguity here). We assume that α is parametrized with constant speed. Then it is easy to check that α is also minimizing
for both functionals, on any subinterval [s, s + h] ⊂ [0, 1]. Thus by Eq. (7),

1
s

 s+h

s
∥α̇(t)∥α(s) =

1
s
dp(α(s), α(s + h)) =

1
s
sℓp(α),

where again


denotes the Lebesgue integral. It follows that ∥α−1α̇(t)∥p = constant = ℓp(α) for any t ∈ [0, 1] where the
derivative exists.

2.3.2. Length and energy
When considering the relation between minima and critical points of the length and energy functionals,

Lp(γ ) =

 1

0
∥γ −1(t)γ̇ (t)∥pdt, Ep(γ ) =

 1

0
∥γ −1(t)γ̇ (t)∥p

pdt,

it is important to note that the length functional is invariant under re-parametrizations, while the energy functional is not.

Proposition 2.11. Let γ (t) be a curve in G, which is a Lipschitz map, t ∈ [0, 1].
1. If γ is a minimum of the length functional Lp, then its re-parametrization by arc-length is a minimum of Ep.
2. If γ is a critical point of Ep, then it is a critical point of Lp.
Proof. Let γ be a minimum of Lp, the same holds true for its re-parametrization by arc-length (which we still call γ ). By
Remark 2.10, ∥γ −1γ̇ ∥p = c a.e., thus

Lp(γ )p =

 1

0
∥γ −1(t)γ̇ (t)∥pdt

p

= cp = Ep(γ ).

If α is any other Lipschitz curve in G, by Hölder’s inequality (8),

Ep(γ ) = Lp(γ )p ≤ Lp(α)p ≤ Ep(α),

which proves the first claim.
Suppose now that γ is a critical point of Ep. Consider the energy functional with its Lagrangian

E(α) =

 1

0
E(α, α̇)dt,

where E(u, z) = ∥u−1z∥p
p = Tr[(u−1z)∗u−1z]n, E : G × A → R is a C1 map. Then γ is a weak-Lipschitz solution of

the Euler–Lagrange equation, with the same proof as in [11], Remark 2 in p. 40 and Proposition 2 in p. 41, [11]. That is,
d
dz E(γ (t), γ̇ (t)) is absolutely continuous and verifies the Euler–Lagrange equation

d
dt

d
dz

E(γ (t), γ̇ (t)) =
d
du

E(γ (t), γ̇ (t))

almost everywhere on [0, 1]. Calling ν = γ −1γ̇ , in our particular situation, we know that the Euler–Lagrange equation
reduces to

d
dt

ν(ν∗ν)n−1
= (ν∗ν)n − (νν∗)n.

Then β = ν∗ν is a Lipschitz map and an almost everywhere solution of Eq. (6). By Remark 2.3, this implies that β(t) has
constant spectrum. More precisely,

∥ν(t)∥p = ∥ |ν(t)| ∥p = ∥β(t)1/2∥p

is constant. Let γs(t) be a variation of γ0 = γ (i.e. for each s ∈ (−r, r), γs is a Lipschitz map with values in G, and it is
differentiable with respect to the parameter s). Put νs = γ −1

s γ̇s. Then

d
ds


s=0

Lp(γs) =

 1

0

d
ds


s=0

∥νs∥pdt.

Note that

p
d
ds

∥νs∥p = p
d
ds

(∥νs∥
p
p)

1/p
= ∥νs∥

1/p−1 d
ds

∥νs∥
p
p.

At s = 0, ∥ν0(t)∥p = ∥ν∥p = c is constant. Thus

p
d
ds


s=0

Lp(γs) = c1/p−1
 1

0

d
ds


s=0

∥νs∥
p
p = c1/p−1 d

ds


s=0

Ep(γs) = 0. �
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Remark 2.12. Let us emphasize, in the above proof, the fact that the partial derivative

d
dz

E(γ (t), γ̇ (t))

is absolutely continuous, when γ is a rectifiable minimizer. In our context this means that

[0, 1] ∋ t → ν(ν∗ν)n−1
= ω

is absolutely continuous. Then, ω∗ω is also continuous, and it has constant spectrum as wementioned earlier, and the same
applies to |ω|, since

ẇ = |w|
q
− |w∗

|
q.

It should be noted that the continuity of |ω| implies that ω is in fact a C1 map.

Combining the last remark with Theorem 2.6, we obtain the following characterization of minimal rectifiable arcs in G.

Corollary 2.13. If γ is a rectifiable and minimizing curve for the p-distance, then γ is C∞ in A, and the unique solution of the
Euler–Lagrange equation, for given initial conditions.

2.4. The Riemannian case

Choosing p = 2, we find ourselves in the realm of Riemannian geometry. Left-invariant metrics on Lie groups have been
extensively discussed; for instance we refer the reader to the beautiful appendix in the book by V.I. Arnol’d on classical
mechanics [1, Appendix 2]. Lie groups considered by Arnol’d are real, but since we are working with the real part of the
trace, his observations can be applied to our context with some caution. It is shown there that these equations of motion
correspond to the case of a (generalized) rigid body. In particular, the case of one-parameter groups (which, as we noted,
correspond to normal initial speeds) are the rotations of the rigid body around its major axes of the moment of inertia
ellipsoid. Some of the terms and remarks in this section are related to Arnol’d’s exposition.

Note that the Euler–Lagrange equation (1) of the variational problem becomes
v̇ = v∗v − vv∗.

The solutions in this case are locallyminimizing amongpiecewise smooth curves joining the sameendpoints, by the standard
argument of Riemannian geometry.

What is remarkable here, is that the solutions can be computed explicitly for any initial position g0 ∈ G and any initial
speed g0v0 ∈ A. This formula was also obtained in [12] with a different technique.

Theorem 2.14. Let g0 ∈ G, v0 ∈ A. Then the unique geodesic of the Levi-Civita connection induced by the trace inner-product
metric on the invertible group G of A, with initial position g0 and initial speed g0v0, is given by

g(t) = g0etv
∗
0 et(v0−v∗

0 ).

Proof. Recall the auxiliary equation (6) of the positive part b = |w|
2 given by

ḃ = b2k − 2kb,

and note that here v = w, that is, the Legendre transformation is the identity map. Recall also that the skew-adjoint part of
v = v(t) is constant, hence v(t) = h(t)+ ikwith h(t) smooth and self-adjoint. Note that 2bk−2kb = (R2k − L2k)(b), where
R and L denote right and left multiplication respectively; this yields

b(t) = e2tRke2tL−kb0 = e−2itkb0e2itk.

On the other hand, the proposed solution g(t) = g0et(h−ik)e2itk readily verifies the same equation. �

In this context, the Riemannian exponential map is given, for fixed g ∈ GL(N), by the expression

Exp(v) = gev∗

ev−v∗

,

and the exponential flow is certainly a smooth (C∞) map from R × A to G.

2.4.1. Metric connection, parallel transport and curvature
Note that, by the cyclic properties of the trace, the Riemannian metric in this group is given by

⟨x, y⟩g = τ(g−1x(g−1y)∗) = τ((gg∗)−1xy∗) = ⟨(gg∗)−1x, y⟩1. (9)

Then, the explicit map g → (gg∗)−1, which is called the angular momentum operator [1], enables a straightforward
computation of the Levi-Civita connection∇ on GL(N). Let X, Y be smooth vector fields considered asmaps X, Y : GL(N) →

A, and denote Xg = g−1X(g), the translation of the field X to the identity, likewise for Y . Then

∇XY (g) = DYg(Xg) −
1
2
g{XgYg + YgXg + X∗

g Yg + Y ∗

g Xg − XgY ∗

g − YgX∗

g }.
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Indeed, it is easy to check that if f : GL(N) → R is a smooth function, then

∇fXY = f∇XY , and ∇X (fY ) = X(f )Y + f∇XY .

Moreover, it is also easy to check that ∇ has no torsion. What is left, is to check the compatibility of ∇ with the metric

X⟨Y , Z⟩g = ⟨∇XY , Z⟩g + ⟨Y , ∇XZ⟩g .

But this is also straightforward, if we use Eq. (9), the cyclicity of the trace, and the fact that τ(a∗) = a for any a ∈ A.
Now, consider v, w ∈ A, V ,W the left-invariant vector fields given by Vg = gv, Wg = gw, and their adjoints defined

as V ∗
g = gv∗,W ∗

g = gw∗, and note that [V ,W ]g = g[v, w], where now [v, w] denotes the usual commutator of matrices.
Then, one obtains the following simple expression for the Levi-Civita connection:

∇VW (g) =
1
2
g{[v, w] + [v, w∗

] + [w, v∗
]}.

Proper formulas for the sectional curvature can be obtained fromhere, or can be adapted fromArnol’d’s book [1, Appendix 2].

2.5. Non Riemannian case

Consider the metric space (G, dp), where dp is the rectifiable distance induced by the left invariant metric. First, we
establish the following fact:

Lemma 2.15. The space (G, dp) is a complete metric space.

Proof. First, note that when p = 2, by Hopf–Rinow’s theorem (G, d2) is complete since the manifold G is geodesically
complete with the 2-metric (Theorem 2.14). Now, we claim that dp is equivalent to d2 for any p ≥ 2, a fact that will prove
the claim of the lemma. Indeed, at each tangent space of G (which identifies withA), the p-norm is equivalent to the 2-norm
with constants which depend only on the dimension of A. Examining the length functionals, it follows that the metrics are
equivalent, with the same constants. �

Since A is finite dimensional, (G, dp) is also locally compact. Thus, by Cohn-Vossen’s theorem (see [8, Theorem 2.5.28]),
given h, k ∈ G, there exists a short (continuous and rectifiable) path γ joining h, k. By changing the parameter, we may
assume that γ is parametrized with constant length, thus it is a Lipschitz map. We summarize our findings in the following
theorem.

Theorem 2.16. For each pair of elements g0, g1 ∈ G, there exists a curve γ in G, such that γ (0) = g0 and γ (1) = g1 which
has minimal length for the p-norm (p = 2n). This curve γ is of class C∞, and the unique minimizer in the class of continuous
rectifiable paths joining given endpoints. Moreover, v = γ −1γ̇ is the unique solution of the Euler–Lagrange equation with the
given initial conditions.

2.6. Local property of solutions

In this section we show that solutions of the Euler–Lagrange equation have a local minimality property for the p-energy
functional. To this effect, we recall several results from [13] concerning the Lagrangian Ep(x) = ∥x∥p

p. For v, y ∈ A, its second
differential

(D2Ep)v(x, y) =
d2

dsdt
Ep


s=t=0

(v + sx + ty)

was computed in [13] by Mata-Lorenzo and Recht:

Qv(z) = (D2Ep)v(z, z) = p∥ |z| |v|
n−1

∥
2
2 + n

n−2
k=0

|v|
n−k−2

|z∗v + v∗z| |v|
k


2

2

.

Let us collect some facts on this quadratic form in the following proposition, the proofs can be found in [13].

Proposition 2.17. Fix v ∈ A. Then Qv : A → R≥0. It is strictly positive if p = 2. For p > 2, z ∈ A is a direction of degeneracy
of Qv if and only if zv∗

= 0 = v∗z. In that case, E(s) = Ep(v + sz) = ∥v∥
p
p + sp∥z∥p

p.
In any case, there exists ϵ = ϵ(p) > 0 such that if z ∈ A and ∥z∥p < ϵ(p), then

E(s) ≥ E(0) + sE ′(0) + ∥z∥p
p|s|

p

for any s ∈ [−1, 1].

We remark that ϵ depends on v and p. By Remark 2.7, if v(t) is a solution of the Euler–Lagrange equation, there exist smooth
curves of unitaries νt , ut , such that v(t) = νtutv(0)u∗

t . Thus

∥v(t) + sz(t)∥p
p = ∥νtututv(0)u∗

t + sz(t)∥p
p = ∥v(0) + su∗

t ν
∗

t z(t)ut∥
p
p,

and since ∥u∗
t ν

∗
t z(t)ut∥

p
p = ∥z(t)∥p

p, this clearly implies that ϵ can be chosen uniformly along the solution v(t).
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Let γs be a variation of an extremal path γ , and put vs = γ −1
s γ̇s = v(t) + sx(s, t). Then the expression above reads

∥vs∥p ≥ ∥v(t)∥p + sDEv(t)(x(s, t)) + ∥x(s, t)∥p
p|s|

p,

provided ∥x(s, t)∥p < ϵ(p, v(0)).

Proposition 2.18. Let γ (t), t ∈ R, be a smooth curve in G, such that v(t) = γ −1(t)γ̇ (t) is a solution of the Euler–Lagrange
equation. Pick ϵ = ϵ(p, v(0)) as above. If µ(t), t ∈ I is a C1 curve in G, such that ∥µ−1(t)µ̇(t) − v(t)∥p < ϵ for t ∈ I , then

Ep(γ ) ≤ Ep(µ).

Proof. Denote by m(t) = µ−1(t)µ̇(t) and consider the variation of v given by vs(t) = v(t) + s[m(t) − v(t)]. By the result
cited above,

∥m(t)∥p
p = Ep(v(t) + (m(t) − v(t))) ≥ Ep(v(t)) + DEv(t)(m(t) − v(t)) + ∥m(t) − v(t)∥p

p,

for t ∈ I . Therefore

Ep(µ) =


I
∥m(t)∥p

pdt ≥


I
∥v(t)∥p

pdt +


I
DEv(t)(m(t) − v(t))dt

= Ep(γ ) +


I
DEv(t)(m(t) − v(t))dt.

The second integral on the right hand side vanishes, because v is a critical point of the p-energy functional. It follows that
Ep(µ) ≥ Ep(γ ). �

3. Classical linear Banach–Lie groups

Let H be a complex separable, infinite dimensional Hilbert space. In this section we examine the geometry of the left
invariant metric in the classical linear groups

Gp(H) = {g ∈ B(H) : g − 1 ∈ Bp(H)},

where Bp(H) is the p-Schatten ideal of B(H), 2 ≤ p = 2n < ∞ an even integer. The Banach–Lie algebra of Gp(H) is the

ideal Bp(H). The natural norm here is the p-norm ∥x∥p = Tr((x∗x)n)
1
p , with Tr the (possibly infinite) trace of B(H) given

by

Tr(x) =


j

⟨xξi, ξi⟩,

where ⟨, ⟩ denotes the inner product of H and (ξi)i≥1 is any orthonormal basis of H .
We consider smooth curves α : [0, 1] → Bp(H), that is, we use the topology induced by the p-norm.With this topology,

Bp(H) is a complete metric space.
The left invariant metric in the tangent bundle of Gp(H) is given as follows: if x is tangent at g ∈ Gp(H) (which means

that belongs to Bp(H)), then

∥x∥g = ∥g−1x∥p.

Many of the computations on this example are formally similar to the ones done in the previous sections, with certain small
modifications. If g(t) is a smooth curve in Gp(H), again we denote by v(t) = g−1(t) d

dt g(t), and consider the Euler–Lagrange
equation (1) of the variational problem for the p-energy functional,

d
dt

v(v∗v)n−1
+ ((vv∗)n − (v∗v)n) = 0.

The Legendre transformation in this context is a map among dual spaces

Bp(H) ∋ v → w = v(v∗v)n−1
∈ Bq(H),

where 1/p + 1/q = 1, and the Hamilton equation (4) is again given by

ẇ = |w|
q
− |w∗

|
q.

By Remark 2.1, the Hamilton equation has local solutions. As before, if w is a solution of this equation, then b(t) =

|w(t)|2 = w∗(t)w(t) is a solution of (6)

ḃ = [bα, K ] = bαK − Kbα, (10)

where K ∗
= −K is constant, and α = q/2.

The key to prove existence of solutions of the Hamilton equation for all t ∈ R is, as before, the invariance of the spectrum
over time. Recall the auxiliary equation (6), adapted to this context: for K ∗

= −K ∈ Bq(H) and α = q/2, consider

ḃ = [bα, K ].
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Lemma 3.1. Let b(t) in Bq(H) be a positive solution of ḃ = [bα, K ]. Then the eigenvalues of b(t), and their multiplicities, do
not depend on t.

Proof. Fix t0. Since b(t0) lies in Bq(H) and is positive, the non-nil part of its spectrum can be ordered as a (possibly finite)
decreasing sequence of positive numbers λk(t0). Pick one of these λk(t0) and let Ck be a circle centered at λk(t0) such that
no other eigenvalue of b(t0) lies inside Ck. By the semicontinuity property of the spectrum, there exists r > 0 such that for
|t − t0| < r , the spectrum of b(t) does not intersect Ck. For such t , let Ek(t) be the self-adjoint projection

Ek(t) =
1

2π i


Ck

(z − b(t))−1dz.

Note that b(t) and Ek(t) commute, and therefore b(t)Ek(t) is a positive operator. For any m ≥ 0, the power (b(t)Ek(t))m
(equal to b(t)mEk(t) ifm ≥ 1) has constant trace. Indeed, ifm ≥ 1,

d
dt

Tr(b(t)mEk(t)) = Tr(ḃ(t)b(t)m−1Ek(t)) +
1

2π i


Ck

Tr(b(t)m(z − b(t))−1ḃ(t)(z − b(t))−1)dz.

The first term equals

Tr

[b(t)α, K ]b(t)m−1Ek(t)


= Tr


[b(t)α+m−1Ek(t), K ]


= 0.

And in the second term,
Ck

Tr

b(t)m(z − b(t))−1

[b(t)α, K ](z − b(t))−1 dz =


Ck

Tr

[b(t)α+m(z − b(t))−2, K ]


dz = 0.

It follows that if f is a continuous function in the real line, then Tr(f (b(t)Ek(t))) is constant. Therefore the spectrum of
b(t)Ek(t) is constant. At t = t0 it consists of 0 and λk(t0). It follows that the spectrum of b(t) is locally constant, and thus
constant. Moreover, take f a continuous function which takes the value 1

λk
in a neighborhood on λk, and is zero on λj for

j ≠ k. Then

Tr(f (b(t)Ek(t))) = Tr(Ek(t))

is constant, i.e. the multiplicity of λk is independent of t . �

Then we have the following result, analogous to Theorem 2.4, with essentially the same proof, which we omit. We note that
local existence is guaranteed because the map x → |x|q is Lipschitz in Bq(H), as remarked before.

Theorem 3.2. In the present context, the Hamilton equation (4)
ẇ = |w|

q
− |w∗

|
q

w(0) = w0
(11)

has a unique C1 solution for any initial condition w0 ∈ Bq(H), defined for all t ∈ R,

3.1. Reversing the Legendre transform

Letw be the solution of (4)withw(0) = w0. Let |w0| =


i≥1 λ
1
2
i pi, forλi > 0. The invariance of the spectrum implies that

b(t) = |w(t)|2 =


i≥1

λipi(t),

with pi(0) = pi. Since b(t) is continuously differentiable in Bq(H), and each pi(t) can be obtained as a Riesz integral of b(t),
it follows that pi(t) are continuously differentiable in the parameter t . Therefore it is apparent that finite sums of the pi(t) are
continuously differentiable maps. Though it is not clear if p0(t), the kernel projections (or equivalently, p⊥

0 (t) =


i≥1 pi(t))
are continuously differentiable, if the spectrum of |w0| is infinite.

Remark 3.3. With the above notations, if w = Ω|w| is the polar decomposition of w, then

w(t) =


i≥1

λ
1/2
i Ω(t)pi(t) = R(t) + K/2

with K ∗
= −K constant and R(t)∗ = R(t). Note that if we denote


i≥1 pi(t) = p0(t)⊥ = 1−p0(t), with p0(t) the projection

onto the kernel of w(t), then

w(t)p⊥

0 (t) = w(t) and |w(t)|p⊥

0 (t) = |w(t)|.

Since p0(t)w(t) = 0, then p0 commutes with R and K , and moreover

p0R = Rp0 = Kp0 = p0K = 0.
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By Remark 2.5, the reversed Legendre transform of w (and candidate of solution for the Euler–Lagrange equation (1)) is
therefore

v(t) =


i≥1

λ
1

2(2n−1)
i Ω(t)pi(t). (12)

Finally, note that the derivative of w equals

ẇ(t) = |w(t)|q − |w(t)∗|q =


i≥1

λα
i (pi(t) − Ω(t)pi(t)Ω∗(t))

where α = q/2 as before.

Proposition 3.4. With the above notations, v(t) ∈ Bp(H) given by Eq. (12) is the Legendre anti-transform of w, and it is
continuous in R.

Proof. That for each t , v(t) is the Legendre anti-transform of w was established in the previous remark. Let us show that it
is continuous. For each j ≥ 1, the map pj(t) is continuous for t ∈ R. Therefore

w(t)pj(t) = λjΩ(t)pj(t),

is continuous. Then the partial sums of the series
i≥1

λ
1

2(2n−1)
i Ω(t)pi(t)

are continuous in t . This series is uniformly convergent in Bp(H). Indeed, if

Sk =


i≥k

λ
1

2(2n−1)
i Ω(t)pi(t),

then

(S∗

k Sk)
n

=


i≥k

λ
1

2n−1
i Ω(t)pj(t)Ω∗(t)

n

.

Since Ω∗(t)Ω(t) = p⊥

0 , the projections Ω(t)pj(t)Ω∗(t) are pairwise orthogonal:

Ω(t)pj(t)Ω∗(t)Ω(t)pl(t)Ω∗(t) = Ω(t)pj(t)p⊥

0 pl(t)Ω
∗(t) = Ω(t)pj(t)pl(t)Ω∗(t)

= δj,lΩ(t)pj(t)Ω∗(t).

Then

(S∗

k Sk)
n

=


i≥k

λ
n

2n−1
i Ω(t)pj(t)Ω∗(t).

Thus

∥Sk∥p
p =


i≥k

λ
n

2n−1
i Tr(Ω(t)pj(t)Ω∗(t)) =


i≥k

λα
i rj,

where rj is the constant Tr(pj(t)). This series is convergent, it equals the α-power of the α-norm of the tail of the series
b(t) =


i≥1 λipi(t), which is uniformly convergent in Bα(H). Therefore v is continuous. �

Remark 3.5. Note that if γ is any rectifiable arc, defined as in Section 2.3, any minimizer of the p-length in this setting is
also a critical point for the p-energy functional, with the same proof as in Proposition 2.11.

Moreover, as in Remark 2.12, if we put ν = γ −1γ̇ , and ω = ν(ν∗ν)n−1, then t → ω(t) is absolutely continuous, thus it
is also a C1 map.

By combining the previous results, we obtain a characterization of minimizing arcs.

Corollary 3.6. If γ is an extremal of the p-energy functional (in particular, if γ is a rectifiable minimizer for the p-length), then
γ is C1, v = γ −1γ̇ is a solution of the Euler–Lagrange equation.

3.2. A differential equation for the spectral projections

As before, let b(t) =


λipi(t) stand for the smooth solution of the differential equation (10), that is b(t) = |w(t)|2,
wherew(t) is a solution of the Euler–Lagrange equation (11). Then 0 < λi ∈ R are the singular values ofw, thus {λi}i≥1 ∈ ℓα ,
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with α = q/2. Since the spectrum of |w(t)| is constant and discrete (accumulating only, eventually, at λ0 = 0). Let Ci be a
circle centered at λi, with no other eigenvalue λj in its interior. Then

pi = pi(t) =
1

2π i


Ci
(z − b)−1dz

ṗi =
1

2π i


Ci
(z − b)−1ḃ(z − b)−1dz =

1
2π i


Ci
(z − b)−1

[K , bα
](z − b)−1dz = Ibα

− bα I,

with

I =
1

2π i


Ci
(z − b)−1K(z − b)−1dz.

Now since

(z − b)−1
=


z(p0 + p⊥

0 ) −


i≥1

λipi

−1

= z−1
+


i≥1

λi

z(z − λi)
pi,

a straightforward computation shows that, for each i ≥ 1,

ṗi = λα−1
i


[K , pi] +


l≠i

λ1−α
i − λ1−α

l

λi − λl
λα
l {piKpl − plKpi}


(13)

provided the sum over l converges in Bq(H). This is the purpose of the next lemmas:

Lemma 3.7. Let α ∈ (1/2, 1], let {λi}i≥1 be a decreasing sequence of strictly positive numbers. Then for each i ≥ 1,

sup
l≠i

λ1−α
i − λ1−α

l

λi − λl
λα
l ≤ 1.

Proof. For given α ∈ (1/2, 1], and a > 0, consider the real function fa : [0, +∞) → R given by

fa(t) = tα
t1−α

− a1−α

t − a
.

Note that fa(0) = 0 and that fa is continuous (we let fa(a) = limt→a fa(t) = 1 − α). On the other hand, it is easy to check
that limt→+∞ fa(t) = 1. We will show that fa is increasing, which will prove the lemma. To this end, write

fa(t) = 1 − a1−αg(t),

with g(t) =
tα−aα
t−a , where g(a) = αaα−1 and g : [0, +∞) → R is again continuous. It suffices to show that g is decreasing;

since

g ′(t) =
(α − 1)tα − αatα−1

+ aα

(t − a)2

we only need to check that

a−α
{(α − 1)tα − αatα−1

+ aα
} = (α − 1)(t/a)α − α(t/a)α−1

+ 1 (14)

is non-positive. Consider h(z) = (α − 1)zα
− αzα−1

+ 1 and note that h(0+) = −∞, h(1) = 0. Since

h′(z) = α(α − 1)z1−α(1 − z),

it follows that h has a global maximum at z = 1, and then h ≤ 0; clearly this implies that (14) is non-positive. �

Then, to show the convergence of (13), it suffices to show the convergence in Bq(H) of the sum
l

Kpl,

since ∥piKpl∥q ≤ ∥Kpl∥q = ∥plK∥q and similarly for the term ∥plKpi∥q. To prove that the above sum is convergent, we recall
the following result (see for instance [14, Theorem 2.16]):

Let an, a, b ∈ B(H), with b ≥ 0. Suppose that |an| ≤ b and |a∗
n| ≤ b for all n, |a| ≤ b, |a∗

| ≤ b and an → a weakly. If
p < ∞ and b ∈ Bp(H), then ∥a − an∥p → 0.

Corollary 3.8. If K , {pi} are as in Remark 3.3, then


i≥1 Kpi → Kp⊥

0 = K in Bq(H).

Proof. Apply the result above to an =
n

i=1 Kpi, a = K , b = |K |, and then recall that Kp0 = 0 thus Kp⊥

0 = K . �
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Corollary 3.9. For each i ≥ 1, the expression for ṗi given in (13) is convergent in Bp(H).

We may use these facts to prove regularity results for b(t) and |w(t)|. First note that since b ∈ Bα(H) and α < 1, then
b ∈ B1(H). Moreover ḃ = [bα, K ], implies that also ḃ ∈ B1(H).

Proposition 3.10. The map b(t) = |w(t)|2 is continuously differentiable in B1(H), and

ḃ(t) =


i≥1

λiṗi(t)

with the series convergent in B1(H).

Proof. It follows from (13), that if we denote

γi,l =
λ1−α
i − λ1−α

l

λi − λl
λα
l

and

gi =


l≠i

γi,lpl,

then
k

i=1

λiṗi =


K ,

k
i=1

λα
i pi


+

k
i=1

λα
i piKgi −

k
i=1

λα
i giKpi.

Note that, by Lemma 3.7

∥gi∥ = sup
l≠i

|γi,l| ≤ 1.

The first term above is a partial sum of the series [K ,


i≥1 λα
i pi] = [K , bα

] which converges absolutely and uniformly in
B1(H). The second sum is bounded by k

i=1

λα
i piKgi


1

≤

k
i=1

λα
i ∥pi∥1∥Kgi∥ ≤

k
i=1

λα
i ∥pi∥1 < ∞.

The third term is dealt analogously. Then


i≥1 λiṗi converges absolutely and uniformly in B1(H). Since b(t) =


i=1 λipi
also converges absolutely and uniformly inB1(H), it follows that b is differentiable inB1(H) and its derivative is


i≥1 λiṗi,

which is clearly continuous. �

Note that the operators gi in the above proof are positive and belong to Bα(H). Indeed, in the notations of Lemma 3.7

gi =


l≠i

fλi(λl)pl,

where fλi is continuous in R≥0 with fλi(0) = 0, and clearly

fλi(t) =
t − tαλ1−α

i

λi − t
∼ o(tα),

i.e. fλi(λl) ∼ o(λα
l ).
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