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Abstract Proton Transfer Reaction-Mass Spectrometry

(PTR-MS) in its recently developed implementation based

on a time-of-flight mass spectrometer (PTR-ToF-MS) has

been evaluated as a possible tool for rapid non-destructive

investigation of the volatile compounds present in the

metabolome of apple cultivars and clones. Clone charac-

terization is a cutting-edge problem in technical manage-

ment and royalty application, not only for apple, aiming at

unveiling real properties which differentiate the mutated

individuals. We show that PTR-ToF-MS coupled with mul-

tivariate and data mining methods may successfully be

employed to obtain accurate varietal and clonal apple finger-

print. In particular, we studied the VOC emission profile of

five different clones belonging to three well known apple

cultivars, such as ‘Fuji’, ‘Golden Delicious’ and ‘Gala’. In all

three cases it was possible to set classification models which

can distinguish all cultivars and some of the clones considered

in this study. Furthermore, in the case of ‘Gala’ we also

identified estragole and hexyl 2-methyl butanoate contribut-

ing to such clone characterization. Beside its applied rele-

vance, no data on the volatile profiling of apple clones are

available so far, our study indicates the general viability of a

metabolomic approach for volatile compounds in fruit based

on rapid PTR-ToF-MS fingerprinting.

Keywords Proton transfer reaction-mass spectrometry �
Apple (Malus domestica) � Cultivars � Clones �
Chemometrics � Data mining � Marker identification

1 Introduction

Comprehensive metabolomics approaches are mostly based

on hyphenated methods where chromatographic separation

is followed by mass spectrometry (Dunn and Ellis 2005).

The need, intrinsic to metabolomics, of high-throughput

methods is however driving the development and applica-

tion of more rapid, chromatography-free techniques that,

on one side, allow screening larger sample-sets and, on the

other, reduce the possible artefacts related to the extraction

and concentration procedures (Han et al. 2009). Among the

possible alternative methods, direct infusion mass spec-

trometry is one of the most widely investigated in the case

of liquid samples and has been used with different ioni-

sation methods and mass analysers: see for instance (Favé

et al. 2011; Højer-Pedersen et al. 2008; Mattoli et al. 2010;

McDougall et al. 2008). The main drawback of this

approach is the so called ‘‘ion suppression’’ (Annesley

2003; Sterner et al. 2000): the most abundant ions gener-

ated by the ionization methods used are those exhibiting

the highest yield and this necessarily leads to a suppression

effect for the other less abundant molecular species thereby
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providing a not completely reliable metabolite profiling

(Mattoli et al. 2010).

Among the different classes of secondary metabolites,

volatile compounds are a particularly interesting group. In

fact, they can be measured without previous derivatisation

and thus provide a rapid and non-invasive tool for meta-

bolomic investigation, an advantage that may be even

necessary in research fields as for instance breath analysis

(Herbig et al. 2009; Španěl and Smith 2011) or plant

physiology (Tholl et al. 2006). Moreover they have a high

economic and fundamental relevance in fields as diverse as

fruit appreciation by consumers (Taylor 2000), breath

marker of important diseases (Greenwald et al. 2010) or

atmospheric chemistry because, e.g., of plant emissions

(Peñuelas and Staudt 2010).

For these and other reasons, i.e. monitoring of fast

dynamic processes, direct injection mass spectrometry

(DIMS) for volatile compound detection and quantification

has recently being investigated and several methods have

been proposed and applied in different fields like envi-

ronmental monitoring, health sciences, food science and

technology (Biasioli et al. 2011b) but little has been done

in metabolomics and this only very recently. See for

instance (Cajka et al. 2010; Gu et al. 2011). A particularly

promising DIMS method for volatile compound detection

is proton transfer reaction-mass spectrometry (PTR-MS)

and in particular its recent version based on a Time-of-

Flight (ToF) mass analyser (PTR-ToF-MS) that, while

preserving ultrahigh sensitivity (parts per trillion by vol-

ume), increases rapidity and analytical information: a sin-

gle spectrum can be obtained in a split second and in most

cases the sum formula of the observed peaks can be

determined (Cappellin et al. 2010a). Compared to standard

GC/MS, PTR-MS allows to reduce of approximately 100

times the measurement time required to characterize a

sample headspace. PTR-MS has been successfully applied

for characterization of fresh and processed foods (Aprea

et al. 2009; Aprea et al. 2006; Biasioli et al. 2006; Fabris

et al. 2010) and identification of origin (Aprea et al. 2007;

Araghipour et al. 2008) and has been reviewed by (Blake

et al. 2009; De Gouw and Warneke 2007) and for food

applications by (Biasioli et al. 2011a). Thanks to its time

resolution it has been used also for the on-line monitoring

of VOC headspace in several model and real food systems

(Soukoulis et al. 2010). The basic idea of PTR-MS is the

chemical ionization of VOCs having proton affinity higher

than water by means of reaction with hydronium ions

(H3O?). PTR-MS is characterized by a large dynamic

range, being sensitive from the low pptv region (parts per

trillion by volume) up to several ppmv (Cappellin et al.

2011b): this is a very important aspect for applications in

metabolomics dealing with metabolites whose abundance

can vary by many orders of magnitude (Dunn et al. 2005).

PTR-MS precision and accuracy have been evaluated in

several works for a large number of compounds; typical

values are lower than 2–5%, respectively (De Gouw et al.

2003). The limitations of the quadrupole version of PTR-

MS (PTR-QUAD-MS), which is characterized by a unit

mass resolution and a relatively slow spectra acquisition

have been recently overcome by coupling PTR-MS with a

Time-of-Flight (ToF) mass analyser (Jordan et al. 2009).

This offers several advantages including higher mass res-

olution (m/Dm up to 8,000) and higher time resolution

(0.1 s). The very first applications of PTR-ToF-MS in

environmental sciences (Müller et al. 2010), in food sci-

ence and technology (Fabris et al. 2010; Soukoulis et al.

2010) and in health sciences (Herbig et al. 2009) were

recently published.

Recent literature addresses also the challenges related to

PTR-ToF-MS applications, mostly in data handling and

analysis (Cappellin et al. 2011a), and indicates the use-

fulness of the application of multivariate and data mining

methods to PTR-ToF-MS rapid fingerprinting. Moreover

we have indication that the PTR-QUAD-MS fingerprint,

can be used to efficiently discriminate fruits of different

cultivars over several years (Granitto et al. 2007a) and that

can be related to molecular information (Zini et al. 2005).

All these developments and results suggest that PTR-

ToF-MS can be a valuable tool for fruit metabolomic. The

present work aims at demonstrating this by investigating,

as a relevant case study, the possibility of applying a

metabolomic approach based on the rapid and non invasive

PTR-ToF-MS fingerprinting for the classification of apple

cultivars and clones.

In standard apple nursery management, trees are vege-

tatively propagated, enabling the mitosis as the sole process

to replicate their genetic material. This is accomplished for

two main reasons, the first is to produce a set of identical

individuals (clone), otherwise impossible to obtain by

crossing due to the heterozygous nature of the apple gen-

ome, and the second is to reduce the juvenile unproductive

phase. However, some differences have been observed in

specific cultivars because of their attitude to generate clo-

nal variation caused by mutation events which are able to

induce stable genetic changes (Forneck 2005). Such

mutations have been largely identified specifically for

vegetative habit or fruit colour. These two phenomena

(easy to detect visually) have also a great impact in the

productive system, affecting plant canopy management and

fruit quality properties. However, the specific character-

ization of this variation is normally very difficult because it

might depend on a change in a single nucleotide within the

entire genome, and most molecular marker techniques

which are available nowadays are not efficient and cost-

effective for an exhaustive clonal fingerprinting (Venturi

et al. 2005). Because it is difficult to determine if an
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observed difference can be attributed to a true genetic

mutation event (clone variability) or just to an environ-

mental effect, there is a considerable interest in this field,

especially for apple where some of the most cultivated

varieties such as ‘Gala’ (White 1991), ‘Braeburn’ and

‘Fuji’, have generated important clones. Grapevine (Vitis

ssp. L.) is another example were clone characterization

plays a major role in improving genetic variation. Apple

and grape, both relying on vegetative propagation, are thus

two excellent case of study for clonal variation (Forneck

2005). The possibility of employing a high resolution

technology to detect physiological changes among differ-

ent clones will represent a great methodological improve-

ment to support their characterization and better define and

control their features.

Published results on fingerprinting of apple clones are

mainly based on biochemical composition (Sedov and Mak-

arkina 2008) and genetic polymorphism (e.g. employing

sequence specific amplifying polymorphism (Venturi et al.

2005)), but, to the best of our knowledge, there are not pub-

lished studies considering the differences of volatile emission

profiles. We consider thus the description of apple cultivars

and clones by rapid and non invasive volatile compounds

phenotyping an interesting benchmark application.

In this study the analytical capabilities provided by PTR-

ToF-MS are initially employed to rapidly and non-invasively

investigate the volatile compound emission profile of three

commercial apple cultivars (‘Gala’, ‘Fuji’ and ‘Golden Deli-

cious’), and then to investigate the possibility of classifying 5

clones for each cultivar. SPME-GC/MS was used to support

and confirm identification of the compounds.

2 Materials and methods

2.1 Samples

The fruits used in this study were collected from trees

grown in the same plot located in the experimental orchard

of the Fondazione Edmund Mach (Trento, Italy). Plants

were maintained following regular agronomical practice of

pruning, thinning and chemical treatment to prevent fungal

disease and insect attack.

We considered 5 clones of three different cultivars:

‘Gala’, ‘Golden Delicious’ and ‘Fuji’ (Table 1). For each

sample (thought as a clone) 10 fruits from three plants of

the same clone were harvested.

Fruit collection was carried out based on the commercial

harvest decided on the optimal ripening stage established

by evaluating colour change, fruit firmness, total sugar

content and starch index. The ten fruits per each clone,

without any visible damage, were selected in order to have

homogeneous shape and colour.

Prior to analysis, fruit were kept at room temperature

(*20�C) for 7 days in order to perform the volatile

assessment during the climacteric phase, coincident with

the ethylene burst.

It is in fact known that in commercially harvested apples

the production of ethylene is completed during the post-

harvest ripening (Costa et al. 2010a, b) and, recently, a

genomic approach has revealed that the final steps of the

biochemical pathways involved in aroma production in

apple are regulated by the amount of the hormone ethylene

(Schaffer et al. 2007).

All samples have been measured by PTR-ToF-MS while

only selected samples have been evaluated by GC–MS in

order to support compounds identification.

2.2 Proton transfer reaction time of flight mass

spectrometry (PTR-ToF-MS) analysis

For the analysis of volatile compounds, each single fruit

was placed in glass jars (1,000 mL, 30�C) provided with

two Teflon/silicone septa on opposite sides. To standardise

the measurements all samples were equilibrated at 37�C for

30 min in a water bath prior to analysis. VOCs were then

measured by direct injection of the head space mixture into

the PTR-ToF-MS drift tube via a heated (110�C) peek inlet

for 30 s, allowing the acquisition of 30 average spectra.

Measurements were carried out following the procedure

described in previous works for other food samples (Fabris

et al. 2010; Soukoulis et al. 2010) using a commercial

PTR-ToF-MS 8000 apparatus (Ionicon Analytik GmbH,

Innsbruck, Austria), in its standard configuration (V mode).

The sampling time per channel of ToF acquisition is 0.1 ns,

amounting to 350,000 channels for a mass spectrum

ranging up to m/z = 400, with the following conditions in

the drift tube: drift voltage 600 V, temperature 110�C and

pressure 2.25 mbar. Every single spectrum is the sum of

28,600 acquisitions lasting for 35 ls each.

2.3 Spectra analysis

The external calibration automatically done by the acqui-

sition program provided a poor mass accuracy, thus inter-

nal calibration of ToF spectra was performed off-line

Table 1 List of considered clones

‘Gala’ ‘Fuji’ ‘Golden Delicious’

1. Brookfield Fujiko Clone B

2. Cherry Fubrox Golden 2000

3. Galaxy Kiku 8 Smoothee 764

4. Schniga Aztec Quemoni

5. Venus Spike Leratess

PTR-ToF-MS and data mining 763
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(Cappellin et al. 2010a). Signal losses caused by the

detector dead time and duty cycle were corrected for

(Cappellin et al. 2011b). Data pre-processing on ToF

spectra was carried out to remove the baseline and noise

reduction was achieved by averaging over the 30 conse-

quent ToF spectra corresponding to the same sample,

thereby allowing the improvement of the signal-to-noise

ratio by about five times. Peak identification and area

extraction then followed the procedure described in details

by (Cappellin et al. 2011a). Throughout this paper we

report experimental m/z values up to the third decimal and

the expected exact m/z values up to the fourth, VOC con-

centration is expressed in ppbv (part per billion by volume)

and has been calculated from peak areas according to the

formula described by (Lindinger et al. 1998), using a

constant value for the reaction rate coefficient

(kR = 2 9 10-9 cm3/s). This introduces a systematic error

for the absolute concentration for each compound that in

most cases is below 30% and can be accounted for if the

actual rate constant is available (Cappellin et al. 2010b).

The obtained concentration data for each apple sample

were then normalized by the total emission of that apple

(Aprea et al. 2006; Granitto et al. 2007a).

2.4 SPME/GC–MS analysis

For GC analysis the same procedure used for PTR-Tof-MS

analysis was adopted. Each selected fruit was placed in

glass jars (1,000 mL, 30�C) provided with two Teflon/sil-

icone septa on opposite sides and kept at room temperature

for 30 min prior volatile compounds collection. Headspace

volatile compounds were extracted and concentrated on a

2 cm Solid Phase Microextration fibre coated with divi-

nylbenzene/carboxen/polydimethylsiloxane 50/30 lm

(DBV/CAR/PDMS, Supelco, Bellefonte, PA, USA) using a

manual holder (Supelco, Bellefonte, PA, USA). The fibre

was exposed to the apple headspace for 30 min. Volatile

compounds adsorbed on the SPME fibre were desorbed at

250�C in the injector port of a GC interfaced with a mass

detector which operates in electron ionization mode (EI,

internal ionization source; 70 eV) with a scan range from

m/z 35–300 (GC Clarus 500, PerkinElmer, Norwalk CT,

USA). Separation was achieved on a HP-Innowax fused-

silica capillary column (30 m, 0.32 mm ID, 0.5 lm film

thickness; Agilent Technologies, Palo Alto, CA, USA).

The GC oven temperature program consisted in 40�C for

3 min, then 40–220�C at 4�C min-1, stable at 220�C for

1 min, and then 220–250 at 10�C min-1, and finally 250�C

for 1 min. Helium was used as carrier gas with a constant

column flow rate of 2 mL min-1. Compounds identifica-

tion was based on mass spectra matching with the standard

NIST05/Wiley98 libraries and retention indices (RI) of

authentic reference standards.

2.5 Statistical analysis

Our dataset was organized in a matrix with 150 rows,

corresponding to the 150 analysed apple samples (3 culti-

vars 9 5 clones 9 10 biological replicates), and 727 col-

umns, each corresponding to an identified PTR-ToF-MS

peak, containing the normalized intensity of the peaks.

Data analysis follows the procedure explained in details

in previous studies (Cappellin et al. 2011a) and will only be

briefly reviewed here. Principal component analysis (Jol-

liffe 2002) was used as a graphical tool to have a first

insight on the data. Supervised classification methods were

employed to actually assess the separability of the classes.

Random Forest (RF) (Breiman 2001), Penalized Discrim-

inant Analysis (PDA) (Wold et al. 2001), Discriminant

Partial Least Squares (dPLS) (Wold et al. 2001) and Sup-

port Vector Machines (SVM) (Vapnik 1995), were applied

according to (Granitto et al. 2007a) and its recent imple-

mentation for PTR-ToF-MS data. A leave-one-out (LOO)

procedure and confusion matrices were used to evaluate the

results of the classification methods (Aprea et al. 2011;

Westerhuis et al. 2008). In order to complement PCA, RF

was also used to analyse the data set in a graphical way

(Granitto et al. 2007b). The most relevant peaks for the

classification problem were obtained via an appropriate

feature selection method as described in (Cappellin et al.

2011a), but with a simple modification: instead of the RF-

RFE method (Granitto et al. 2006), we applied the PDA-

RFE selection method, in which we used a PDA classifier

in order to rank peaks into the RFE loop. We used PDA-

RFE because, as we show in the next section, PDA usually

produces the best discrimination results for the data sets

considered.

3 Results and discussion

3.1 Classification of apple cultivars

A first insight into the data is provided by the PCA in

Fig. 1a. The first and the second principal components

explain 23.9 and 20.1% of the total variance, respectively.

It is clear that the three cultivars are well separated, with a

very marked discrimination between ‘Gala’ and the other

two cultivars. This preliminary result confirms that PTR-

ToF-MS is capable of distinguishing the different VOC

profile in the headspace of diverse apple cultivars as it was

already pointed out (Cappellin et al. 2011a). The use of a

supervised classification method such as Random Forest

stresses the discrimination between the considered culti-

vars (Fig. 1b). Leave-One-Out cross validation confirms

that the cultivars can be unambiguously classified (data not

shown). Figure 1a shows the capacity of PTR-ToF–MS to

764 L. Cappellin et al.
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characterize different cultivars based on their volatile

emission rather than their genetic relationship. In fact,

‘Gala’ and ‘Golden Delicious’ are well clustered in the

plot, even if they are more genetically related than ‘Fuji’.

3.2 Classification of apple clones

The possibility of discriminating different cultivars by

rapid and non-invasive analysis is interesting but somehow

trivial and will not be discussed further. In fact, the present

work addresses a more challenging question: can PTR-

ToF-MS analysis unveil significant differences in the VOC

emission profiles of the considered clones of the same

cultivar. In terms of classification capability this would

mean that an accurate classification of the clones would be

possible using the PTR-ToF-MS fingerprints. To address

this issue we focus on each individual cultivar separately.

Table 2 reports the classification error of the clones by

the supervised methods RF, PDA, SVM and dPLS. For

‘Golden Delicious’ and ‘Fuji’ the classification errors are

very high and similar to the random choice level (0.80) for

all methods, suggesting that PTR-ToF-MS fingerprints

cannot discriminate the five clones at the same time. ‘Gala’

clones, on the other side, displays a relatively lower

classification error for all discriminant methods and in

particular for PDA.

A deeper insight in the performances of the classifica-

tion models is provided by the confusion matrices reported

in Table 3. For brevity only the confusion matrices corre-

sponding to PDA are reported. In the case of ‘Golden

Delicious’ and ‘Fuji’ all clones are confused and no evi-

dence of class separation appears.

The confusion matrix of ‘Gala’ clones indicates that

‘Gala’ Venus samples are correctly classified in 9 cases out

of 10 cases, indicating that this clone has a significant and

robust difference in the VOC profile compared to the other

‘Gala’ clones. A standard and unsupervised PCA analysis

graphically suggests such a separation and the RF graph

shows it clearly (see Fig. 2a). For other clones the sepa-

ration is less clear but evidently better than random choice

(Tables 3, 4). Table 4 compares the classification results of

the different methods, showing that Venus samples are in

general correctly classified independently of the method

employed.

The graphical representation of the ‘Gala’ clone classi-

fication by RF highlights once more the separation of

‘Gala’ Venus. Moreover, both graphical analyses suggest

the presence of three groups, represented by Venus,

Schniga and Galaxy. We therefore refine our analysis by

only considering these three clones.

The confusion matrices obtained with the prediction

models that consider only Galaxy, Schniga and Venus are

reported in Table 5. The presence of three classes is well

confirmed; in particular PDA and SVM provide very good

predictions with only 3 misclassified samples (13%). As

expected from Fig. 2, there is some overlap between Gal-

axy and Schniga clones that is evident for all discriminant

methods.

Fig. 1 a First and second component of the PCA analysis of the PTR-TOF-MS spectral data of all samples. b Random Forest graphical output

for the discriminant analysis of the PTR-ToF-MS spectral data of all samples

Table 2 Classification errors for the clones of ‘Gala’, ‘Golden

Delicious’ and ‘Fuji’

‘Gala’ ‘Fuji’ ‘Golden Delicious’

RF 0.52 0.6 0.82

PDAA 0.44 0.82 0.78

SVM 0.48 0.88 0.76

dPLS 0.56 0.76 0.82

PTR-ToF-MS and data mining 765
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Concerning the other two cultivars it is interesting to

point out that a PCA/RF analysis of ‘Fuji’ clones, similar to

Fig. 2 (not shown), suggests that three of the clones should

be distinguishable, namely Aztec, Fubrox and Fujiko. The

confusion matrices (not shown) for our four discriminant

methods on this reduced problem show that RF have the

best performance in this problem with 8 errors over the 30

samples (27%) evenly distributed among the three classes.

The other discriminant methods have lower performances

in this problem. In the case of ‘Golden Delicious’ clones,

only two classes (Golden 2000 and Quemoni) can be dis-

criminated with some accuracy. The RF classifier in this

case leads to 5 errors over 20 samples (25%).

3.3 Feature selection

Returning to the ‘Gala’ case, the selection of the peaks that

are more relevant to separate the clone classes is done in

two steps. First, the behaviour of the mean discrimination

error of PDA as a function of the number of masses in the

Table 3 Confusion matrices for the classification by PDA of considered apple cultivar clones

‘Gala’ 1 2 3 4 5 ‘Golden Delicious’ 1 2 3 4 5 ‘Fuji’ 1 2 3 4 5
1 4 1 3 1 1 1 1 4 2 0 3 1 2 2 0 1 5
2 2 3 2 3 0 2 1 2 1 4 2 2 1 2 1 4 2
3 3 1 5 1 0 3 1 1 5 2 1 3 1 1 1 6 1
4 1 2 1 6 0 4 0 5 0 2 3 4 1 2 3 1 3
5 1 0 0 0 9 5 1 5 0 3 1 5 4 1 1 2 2

Rows correspond to the true classes and columns to the predicted ones

Fig. 2 a. First and third component of the PCA analysis of the PTR-

ToF-MS spectral data of all ‘Gala’ samples. The components explain

22.3–3.7% of the total variance, respectively. b Random Forest

graphical output for the discriminant analysis of the PTR-ToF-MS

spectral data of all ‘Gala’ samples

Table 4 Confusion matrices for the classification by RF, SVM and dPLS (see Table 3 for PDA) of considered ‘Gala’ clones

RF 1 2 3 4 5 SVM 1 2 3 4 5 dPLS 1 2 3 4 5
1 6 1 0 2 1 1 3 2 3 1 1 1 2 1 4 1 2
2 2 0 1 7 0 2 2 2 1 5 0 2 3 3 2 2 0
3 0 1 6 2 1 3 1 0 7 2 0 3 2 1 5 1 1
4 1 6 0 3 0 4 1 2 1 6 0 4 2 2 2 4 0
5 2 0 0 0 8 5 2 0 0 0 8 5 1 0 0 0 9

766 L. Cappellin et al.
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problem is analysed (Fig. 3). In our case a good trade-off is

provided by four masses. In a second step, we asses which

are the most important peaks for models constructed by

PDA using only 4 masses. Figure 4 reports how often the

listed masses are selected among the 4 most relevant peaks

by PDA, over the 30 LOO replicated PDA experiments.

Two peaks, namely m/z = 149.098 and m/z = 187.170,

turn out to be particularly relevant, being selected more

than 90% of the times and can be considered as potential

markers for clone differentiation. The achieved mass

accuracy (Cappellin et al. 2010a) allows us to classify these

peaks as corresponding to the sum formulas C10H13O? and

C11H23O2
?, respectively. In order to identify the actual

compounds, the headspace of the three samples for Venus

‘Gala’ clone were analysed by SPME GC–MS. Among the

acquired chromatographic peaks, the only peak that can

possibly contribute to the signal at m/z 149.098 is the one

eluting at 22.37 min (see Fig. 5). The peak at 25.00 min is

a-Farnesene. The mass spectrum of peak at 22.37 min

matches the estragole spectra reported in the NIST05/

Wiley98 MS libraries. Estragole has been reported as one

of the compounds contributing to the apple aroma and is

thought to be synthesized from the phenylpropanoid path-

way (Schaffer et al. 2007).

For m/z 187.170, and thus for a compound having a

molecular weight of 186 amu, we identified three peaks

matching with hexyl 2-methyl butanoate (rt 15.74 min), butyl

heptanoate (rt 18.27 min) and propyl octanoate (rt 18.49 min)

respectively. ((Young et al. 2004) and reference therein)

report 6 compounds with a nominal mass of 186 but only the

three mentioned above have a relatively large signal at m/

z 186. Butyl heptanoate and propyl octanoate, when present,

are reported at low concentration ((Young et al. 2004) and

reference therein). Furthermore, hexyl 2-methyl butanoate

gives the highest signal at m/z 186 (Fig. 6, lower panel) thus

we conclude that the signal m/z 187.170 corresponds mostly to

this compound that has a typical apple-like aroma and is

reported to improve the quality of ‘Golden Delicious’ apples

(Paillard 1990). Red Delicious is also reported for the capacity

to synthesize 2-Methylbutanoate esters, including hexyl

2-methylbutanoate (Rowan et al. 1996).

4 Conclusions

We investigated the possibility to apply PTR-ToF-MS as a

metabolomic tool for the rapid and non invasive analysis of

Table 5 Confusion matrices for the classification by RF, PDA, PLS and SVM of three ‘Gala’ clones (30 samples)

RF 3 4 5 PDA 3 4 5 SVM 3 4 5 dPLS 3 4 5
3 6 3 1 3 8 2 0 3 8 2 0 3 5 5 0
4 1 9 0 4 1 9 0 4 1 9 0 4 1 9 0
5 0 0 10 5 1 0 9 5 1 0 9 5 1 0 9

Classification errors are 0.17 (RF), 0.13 (PDA), 0.13 (SVM), 0.23 (PLS)

3 Galaxy, 4 Schniga, 5 Venus
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apple cultivars and clones. Our methodology can easily

differentiate among different apple cultivars. The differ-

entiation and characterization of clones is generally a more

difficult problem, given their extremely similar genetic

profile. In fact, standard genetic analyses based on

molecular markers usually do not differentiate among them
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and the use of less rapid and cost effective methods, such

as complete genome re-sequencing, could be required. In

the present study we investigated whether differences in

volatile compounds released from 5 different clones of

‘Golden Delicious’, ‘Gala’ and ‘Fuji’ could be rapidly and

non-invasively detected by the newly available technique

PTR-ToF-MS. Beside that, this novel technique was also

applied in order to analyze the different volatile com-

pounds pattern for the clones under investigation. Relevant

differences were found for the considered clones of ‘Gala’,

‘Golden Delicious’ and ‘Fuji’. In particular, three ‘Fuji’

clones and two ‘Golden Delicious’ clones can be dis-

criminated with good accuracy. In the case of ‘Gala’ the

clones clustered in three different classes, with Venus

remarkably showing a clear separation from the other four

‘Gala’ clones. The employed feature selection method

identified two mass peaks as primarily important for the

construction of the multivariate calibration models high-

lighting the separation. Further SPME-GC/MS analysis on

few selected samples supported the identification of the

compounds related to these peaks: estragole and hexyl

2-methyl butanoate. Estragole in particular is a very

important constituent of apple flavour profile.

In conclusion PTR-ToF-MS provides a new tool for

metabolomics studies that can rapidly and non-invasively

fingerprint the volatile compounds profile of single apple

fruits. Data mining methods allow setting classification

models that easily distinguish different cultivars. In some

cases even clones of the same cultivar can be correctly

identified. Moreover the characteristics of PTR-ToF-MS

allow gathering some analytical information that has been

confirmed or supported by GC/MS headspace analysis

allowing the full identification of the selected markers.
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