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Abstract

The rate of evolution varies among sites within proteins. In enzymes, two rate gradients are observed: rate decreases with
increasing local packing and it increases with increasing distance from catalytic residues. The rate-packing gradient
would be mainly due to stability constraints and is well reproduced by biophysical models with selection for protein
stability. However, stability constraints are unlikely to account for the rate-distance gradient. Here, to explore the
mechanistic underpinnings of the rate gradients observed in enzymes, I propose a stability–activity model of enzyme
evolution, MSA. This model is based on a two-dimensional fitness function that depends on stability, quantified by DG,
the enzyme’s folding free energy, and activity, quantified by DG�, the activation energy barrier of the enzymatic reaction.
I test MSA on a diverse data set of enzymes, comparing it with two simpler models: MS, which depends only on DG, and
MA, which depends only on DG�. I found that MSA clearly outperforms both MS and MA and it accounts for both the rate-
packing and rate-distance gradients. Thus, MSA captures the distribution of stability and activity constraints within
enzymes, explaining the resulting patterns of rate variation among sites.
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Introduction
It has long been known that the rate of evolution varies
among sites within proteins. Ever since the early days of
Molecular Evolution, this rate variation has been typically inter-
preted in terms of purifying selection to maintain function and
structure: slowly evolving sites are those where mutations are
more likely to be discarded by natural selection because they
perturb the protein’s structure or function too much; rate
would be determined by so called structural and functional
constraints (Perutz et al. 1965; Kimura and Ohta 1974).

Further insight into structural constraints came from work
that studied the dependence of evolutionary rate on various
properties of the local environment of protein sites. Rate
increases with decreasing local packing density (Franzosa
and Xia 2009; Yeh, Huang, et al. 2014; Yeh, Liu, et al. 2014;
Marcos and Echave 2015; Shahmoradi and Wilke 2016; Sharir-
Ivry and Xia 2017); rate increases with increasing solvent ac-
cessibility (Dean et al. 2002; Franzosa and Xia 2009; Ramsey
et al. 2011; Scherrer et al. 2012; Franzosa and Xia 2012); and
rate increases with increasing local flexibility (Liao et al. 2005;
Liu and Bahar 2012; Nevin Gerek et al. 2013; Marsh and
Teichmann 2014; Huang et al. 2014; Shahmoradi et al.
2014). These findings led to the view that the rate of evolution
is mainly determined by protein structure, increasing from a
slowly evolving, buried, tightly packed, and rigid protein core,
toward a rapidly evolving, solvent-exposed, loosely packed,
flexible surface (Echave et al. 2016).

In the previous view, functional constraints play only a
minor role, affecting the conservation of just a few sites,

such as enzyme catalytic residues and some of their imme-
diate neighbors (Bartlett et al. 2002; Torrance et al. 2005;
Echave et al. 2016). However, in enzymes, site-specific
rates depend not only on local structural properties,
but also on distance from active residues (Dean et al.
2002). Site-specific substitution rates increase rather
slowly with increasing distance, so that enzyme active
sites seem to influence evolutionary rates at long distan-
ces, affecting most protein sites (Jack et al. 2016).

Summarizing, within enzymes there are two clear evolu-
tionary rate gradients. First, rate increases with decreasing
local packing density, which I will call the rate-packing gradi-
ent. (The rate-packing gradient also represents the depen-
dence of rate on solvent accessibility and local flexibility,
because these properties strongly correlate with packing.)
Second, rate increases with distance from the active site,
which I will call the rate-distance gradient. To understand
the biophysical origin of these gradients beyond the useful
but vague notions of structural and functional constraints,
necessitates mechanistic models grounded as much as possi-
ble on first principles of Molecular Evolution and Protein
Biophysics.

Most biophysical models developed so far assume that
protein fitness depends on stability (Echave and Wilke
2017). Such stability-based models account for much of the
observed variation of evolutionary rates among sites (Huang
et al. 2014; Echave et al. 2015; Marcos and Echave 2015;
Goldstein and Pollock 2017; Jimenez et al. 2018). More im-
portantly, stability-based models account for the rate-packing
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gradient, which would, therefore, reflect stability constraints
(Huang et al. 2014; Marcos and Echave 2015). However, sta-
bility constraints are unlikely to account for the rate-distance
gradient, which would more likely reflect activity constraints
(Jack et al. 2016).

To the best of my knowledge, none of the biophysical
models developed so far can be used to explain the rate-
distance gradient found in enzymes. There are a few biophys-
ical models with selection on activity, but they are based on
ligand binding rather than catalysis (Echave and Wilke 2017).
While these models do predict rates depending on distance
from the binding site (Nelson and Grishin 2016), they are not
suitable for enzymes because the key to enzymatic activity is
not improving ligand binding but lowering the activation
energy barrier of the catalyzed reaction. Therefore, advancing
our understanding of enzyme evolution demands the devel-
opment of new biophysical models based on realistic princi-
ples of enzymatic catalysis.

Here, I propose a mechanistic biophysical stability–activity
model of enzyme evolution, MSA, that includes explicitly se-
lection on stability and activity. I will show that MSA captures
the distribution of stability and activity constraints within
enzymes, explaining both the rate-packing and the rate-
distance gradients.

New Approach
In this section, I briefly describe the most important assump-
tions and formulas of the MSA model of enzyme evolution. A
sketch of the key model elements is shown in figure 1. For a
detailed derivation of MSA see Supplementary Material
online.

Fitness, Fixation Probability, and Substitution Rate
I model fitness as a two-dimensional step function (fig. 1A):

FðDG;DG�Þ ¼
1 if DG < DGthr and DG� < DG�thr;

0 if DG >¼ DGthr or DG� >¼ DG�thr;

(

(1)

where DG is the folding free energy, quantifying stability, and
DG� is the activation free energy, quantifying activity. DGthr

and DG�thr are stability and activity thresholds.
In the limit of rare mutations, evolution can be modeled as

an origination–fixation process (McCandlish and Stoltzfus
2014). Consider a monoclonal population of N individuals
with common wild type genotype with stability DG and ac-
tivation energy DG� somewhere within the viable F¼ 1 re-
gion of the fitness landscape. A mutant arises with stability
DGmut ¼ DGþ DDG and activation energy
DG�mut ¼ DG� þ DDG�. The mutation will be either neutral,
if the mutant remains in the viable F¼ 1 region of the fitness
landscape, or lethal, if the mutant falls into the F¼ 0 region. A
neutral mutation may become fixed with fixation probability
pfix ¼ 1=N; a lethal mutation becomes lost (pfix ¼ 0).

For computational tractability, I further simplify the rate
prediction problem using a mean field approximation (Bloom
and Glassman 2009; Echave et al. 2015). Briefly,

this approximation consists of 1) assuming that DDG
and DDG� are independent of the sequence background
and 2) assuming that at evolutionary equilibrium stability
and activity are distributed according to qðDG;DG�Þ ¼ aS

eaSðDG�DGthrÞ � aAeaAðDG��DG�thrÞ (fig. 1B). Then, averaging pfix

over DG and DG� leads to (fig. 1C):

pfix DDG;DDG�ð Þ ¼ 1

N
min 1; e�aSDDG
� �

�min 1; e�aADDG�
� �

: (2)

This mean field fixation probability depends on DDG and
DDG�, and on two positive parameters aS and aA. Since
increasing either of these parameters decreases pfix, they
can be interpreted as quantifying the degree of selection
pressure.

Knowing the fixation probability, we can calculate the rate
of evolution. The rate of i! j substitutions (i.e., fixed muta-
tions) at a protein site r is given by

Qr
ji ¼ NMjip

fixðDDGji;r;DDG�ji;rÞ; (3)

where N is population size, Mji is the rate of i! j mutations,
and pfix, given by equation (2), depends on DDGji;r and
DDG�ji;r , the stability and activation energy changes due to
the i! j mutation at site r. The average substitution rate of
site r is given by

Kr ¼
X

i

X
j6¼i

Qr
jip

r
i ; (4)

where Qr
ji is given by equation (3) and pr

i is the equilibrium
probability of finding amino acid i at site r.

Mutational Change of Stability and Activation Energy
To calculate DDG and DDG�, I used the Linearly Forced
Elastic Network Model (LFENM; Echave 2008; Echave and
Fern�andez 2010; Huang et al. 2014; Marcos and Echave
2015). The LFENM model represents a given protein as an
elastic network of nodes (amino acids) connected by har-
monic springs (interactions) and models mutations as ran-
dom perturbations of the lengths of the springs that connect
the mutated site to other sites. The elastic network has a
quadratic energy function with a single minimum at the
equilibrium conformation. (A protein conformation is repre-
sented by r, the vector of Cartesian coordinates of all network
nodes.) Given a wild type protein with energy VwtðrÞ with
minimum at r0

wt and a mutant with energy VmutðrÞ with
minimum at r0

mut, it is possible to derive:

DDG ¼ Vmutðr0
mutÞ � Vwtðr0

wtÞ
¼ 1

2

X
ij

kijdl2ij �
1

2
ðr0

mut � r0
wtÞ

TKðr0
mut � r0

wtÞ; (5)

where kij is the force constant of the spring connecting sites i
and j, dlij is the change of the length of spring ij due to the
mutation, and K is the Hessian matrix common to VmutðrÞ
and VwtðrÞ. DDG given by equation (5) is the difference
between the mutant’s and wild-type’s minimum energies
(see fig. 1D).
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To calculate DDG� I made the following considerations.
First, at low substrate concentrations, the activation en-
ergy barrier is the free energy difference between the tran-
sition state ES� and enzyme E and substrate S free in
solution: DG� ¼ GðES�Þ � GðEÞ � GðSÞ (Schowen 1978).
Second, DG� can be written as the sum of two contribu-
tions, a distortion energy, which is the energy necessary for
the enzyme and substrate to adopt their transition state
conformations, E� and S�, plus a vertical binding energy,
which is the energy released when E� and S� bind to
form ES� (Schowen 1978; Stein 2011). Third, I assume
that mutations have no effect on the vertical binding en-
ergy or the substrate distortion, but affect only the
enzyme’s distortion free energy: DDG� ¼ DGðE! E�Þ.
Finally, I assume that the wild-type has a preorganized
active site with a conformation which is identical to the
transition state conformation. Using these assumptions
and the LFENM model, I derived that DDG� is the energy
needed to distort the mutant’s active site from the
mutant’s conformation r0

a;mut to the wild type conforma-
tion r0

a;wt (fig. 1D):

DDG� ¼ 1

2
ðr0

a;wt � r0
a;mutÞ

TKeff
aaðr0

a;wt � r0
a;mutÞ; (6)

where Keff
aa is a matrix that allows the calculation of the effec-

tive energy of distortions within the conformational subspace
spanned by active residue coordinates ra.

By construction, LFENM assumes that the wild type pro-
tein used to build the elastic network is the most stable pro-
tein. Thus, the energy change from wild type state k¼ 0 to
any other state k 6¼ 0 obtained using equation (5) will have a
positive DDGk0. Similarly, due to the assumption that
the wild type has an ideally preorganized active site, the
DDG�k0 calculated using equation (6) are all positive.
However, DDGji ¼ DDGj0 � DDGi0 and DDG�ji ¼ DDG�j0
�DDG�i0 may be positive or negative.

Note, finally, that LFENM energy functions depend only on
network topology and not on the specific amino acids rep-
resented by the network nodes. Therefore, LFENM
“mutations” do not correspond to actual amino acid muta-
tions. In other words, possible LFENM node states are not
actual amino acids. However, rates averaged over LFENM
states do vary among sites in the same way as rates averaged
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FIG. 1. The stability–activity model MSA. (A) Fitness is a 2D step function: enzymes are viable (F¼ 1) and may become fixed (pfix ¼ 1=N, N being
population size) only if their folding free energy DG is more negative than a threshold energy DGthr and if their activation energy barrier DG� is
lower than a threshold DG�thr. (B) Distribution of DG and DG� at evolutionary equilibrium. (C) A mean field pfix that depends only on DDG
(mutational change of stability) and DDG� (mutational change of activation energy) is obtained by integrating the pfix of A over the distribution of
B. (D) DDG is the difference between energy minima; DDG� is the energy needed to distort the mutant from its equilibrium conformation mut0 to
the active conformation mut� (the wild type’s active site is assumed preorganized in the active conformation: wt0 ¼ wt�).
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over amino acid substitutions, as I will show and discuss
below.

Results
I tested the MSA model on a data set of 163 monomeric
enzymes with diverse sizes, functions, and structures. In ad-
dition to MSA, I considered a stability model MS, dependent
only on DDG, and an activity model MA, dependent on
DDG�. I obtained site-specific rates predicted by the models,
KMSA

; KMS
, and KMA

, by fitting the models’ parameters to
observed rates Kobs, which are rate estimates obtained from
protein sequence alignments (see Materials and Methods).

MSA Outperforms MS and MA

First, I considered which model provides the best rate pre-
dictions. Results are shown in figure 2. According to the
Akaike Information Criterion AIC (see Materials and
Methods), MSA outperforms MS for 151 out of the 163
enzymes studied (fig. 2A) and it outperforms MA for 162/
163 enzymes (fig. 2B). Thus, rate variation among protein sites
is influenced by constraints on stability and activity.

MSA Accounts for the Rate-packing and Rate-distance
Gradients
Beyond the overall goodness of fit, I am particularly interested
in whether the models account for the rate gradients ob-
served in enzymes. To this end, I studied the dependence
of observed and model rates on WCN, the Weighted
Contact Number, a metric of local packing, and on dactive,
the distance from the closest active residue. For clarity, in
figure 3, I explicitly show one example (phosphomannose
isomerase of Candida albicans, which has pdb code 1PMI).
For this case, MS fits the Kobs � WCN gradient reasonably
well, but it fails to account for the Kobs � dactive gradient
(fig. 3A). Conversely, MA fails to fit Kobs � WCN, but fits
well the Kobs � dactive gradient (fig. 3B). MSA reproduces al-
most perfectly the Kobs � WCN dependence and it fits very
well the Kobs � dactive dependence. Thus, the one-
dimensional models MS and MA reproduce well either one
gradient or the other, but not both. In contrast, the two-
dimensional model MSA accounts for both the rate-packing
and the rate-distance gradients.

To generalize the previous analysis, I repeated it for each of
the enzymes of the data set. Results are shown in figure 4.
From the MSA versus MS comparison (fig. 4A), MSA outper-
forms MS in reproducing both gradients: the rate-packing
gradient for 123/163 cases and the rate-distance gradient
for all 163/163 cases. From the MSA versus MA comparison
(fig. 4B), MSA also outperforms MA in reproducing both gra-
dients: the rate-packing gradient for 160/163 cases and the
rate-distance gradient for 139/163 cases. Thus, MSA accounts
for both the rate-packing gradient, for which MA fails, and the
rate-distance gradient, for which MS fails.

Discussion
I proposed the MSA model of enzyme evolution with selection
on stability and activity. I derived all the formulas needed to

calculate site-specific substitution rates from mutational
changes of stability, DDG, and activation energy, DDG�.
Further, I derived the equations needed to calculate DDG
and DDG� using a LFENM. For comparison, I also considered
a stability-based model MS and an activity-based model MA.

I tested MSA in comparison with MS and MA on a diverse
data set of monomeric enzymes. I found that MSA fits ob-
served rates better than both MS and MA for most proteins
studied. More importantly, MSA is the only model that
accounts for both gradients observed in enzymes: the rate-
packing K � WCN gradient and the rate-distance K � dactive

gradient. In contrast, MS fails to account for the rate-distance
gradient and MA fails to account for the rate-packing gradi-
ent. Taken together, these findings suggest that these rate
gradients reflect the distribution of stability and activity con-
straints within enzymes.

To further support the model, I run some extra tests (see
Supplementary Material online). Briefly, I found that the use
of LFENM to calculate DDG is validated by the fact that using
an all-atom energy function to calculate DDG gives similar
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FIG. 2. MSA fits observed rates better than MS and MA do for almost all
enzymes. R2ðMÞ ¼ R2ðKM;KobsÞ is the square correlation coefficient
between model rates and observed rates. Each point corresponds to
one protein. The y¼ x line is shown for reference. Point types indicate
which of the two compared models is the best model according to the
Akaike Information Criterion AIC. (A) MSA versus MS. (B) MSA versus
MA.

Echave . doi:10.1093/molbev/msy244 MBE

616

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/36/3/613/5261347 by  jechave@
unsam

.edu.ar on 02 M
arch 2019

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy244#supplementary-data


rate predictions. Second, the preorganized-active-site as-
sumption used to calculate DDG� is supported by the
finding that model rates are insensitive to whether the
enzyme form used to build the LFENM is free or com-
plexed. Finally, I found that a major part of the KMSA

–Kobs

lack of fit is due to poor accuracy of Kobs estimates, so that
better fit will more likely come from better data rather
than model improvements.

Having shown that MSA is a good model to explain rate
variation among sites, I discuss some possible caveats related
to the model’s assumptions. One caveat is the assumption
that DDG and DDG� are independent of the precise se-
quence background in which mutations occur. This assump-
tion may have to be removed to study some epistatic
phenomena such as, for instance, the co-evolution of sites
in contact. However, the background-independence assump-
tion is reasonable for the calculation of single-site properties
such as estimating site-specific free energy changes from pro-
tein alignments (Bloom and Glassman 2009) and predicting
site-specific rates(Echave et al. 2015). The present results fur-
ther support to this assumption.

A second caveat is the assumption that mutations affect
only the distortion energy contribution to the activation en-
ergy barrier. This assumption will be invalid for some sites:
mutating catalytic or ligand-binding residues will also af-
fect the binding energy contribution to DDG�. However,
that DDG� is due to distortion is valid for most sites,
which are not directly involved in binding. This is proba-
bly why MSA successfully reproduces the overall pattern of
rate variation among sites.

A third issue is that LFENM models mutations as pertur-
bations that cannot be mapped to actual mutations.
Accordingly, LFENM matrix elements Qr

ji (eq. 3) represent
rates of interchange between node states rather than rates
of substitution between specific amino acids. Therefore,
LFENM cannot be used to predict substitution rates between
actual amino acids. This limitation, however, does not prevent
the calculation of average site-specific rates Kr. Importantly,
the good fit between these rates and observed rates means
that they depend more on the on the topology of the net-
work of amino acids than on their specific identity.

A final caveat is that since LFENM node states are not
actual amino acids, it is not clear how to choose mutational
rates Mji. For this reason, here I assumed a single mutational
rate Mji ¼ l. A priori, this assumption seems unrealistic be-
cause it would not account for the possible effect on site-
specific rates of mutational biases (e.g., due to the structure of
the genetic code). Yet, MSA rates do fit observed rates and
reproduce the gradients found in enzymes. This suggests that
relative rates are insensitive to the mutational pattern, which
is consistent with recent work that found that relative rate
estimates at codon level or amino-acid level are very similar
(Sydykova and Wilke 2017) and that rate estimates are insen-
sitive to the substitution model (Spielman and Pond 2018).

To finish, I point out some possible future applications of
this work. I believe the MSA model will be helpful to explore
several fundamental issues and to develop applications. For
example, MSA might be helpful to explain why proteins evolve
to be moderately efficient (Bar-Even et al. 2011, 2015), just as
stability-based models have explained why proteins are
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FIG. 3. MSA accounts for the rate-packing and rate-distance gradients for 1PMI. Observed and predicted rate-packing gradient (K � WCN, left
panels) and rate-distance gradient (K � dactive, right panels) for example case 1PMI. The rate-property lines shown were obtained fitting rate-
property scatter plots using local polynomial regression (see Materials and Methods). The shaded area represents the error of the smooth fit for the
case of Kobs. (A) MSA versus MS. (B) MSA versus MA. MS fails to reproduce the Kobs � dactive dependence; MA fails to reproduce the Kobs � WCN
dependence; MSA accounts for both gradients.
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marginally stable (Taverna and Goldstein 2002; GoldStein
2011). Another classical issue that may be explored using
MSA is the evolutionary implications of a trade-off between
stability and activity (Miller 2017). On the applied side, MSA

could be used to improve active site prediction (Jack et al.
2016). Another application would be to add activity con-
straints, as modeled by MSA, to improve probabilistic evolu-
tion models used for phylogenetic inference purposes
(Rodrigue and Lartillot 2017). In general, I expect that devel-
oping biophysical models of protein evolution that consider
selection on stability and activity, such as MSA, is a promising
research endeavor that will advance our understanding of
protein evolution and impact many areas of evolutionary
biology.

Materials and Methods

Data Set and Empirical Rates
I tested the models on a data set of 163 enzymes, a subset of
the 524 enzymes used in Jack et al. (2016). Specifically, I kept

only monomeric enzymes and removed those that had miss-
ing amino acids or broken chains, which could result in wrong
elastic network models. Catalytic residue information was
obtained from the Catalytic Site Atlas (Furnham et al.
2014). The structures of these proteins were obtained from
the RCSB protein database (Berman et al. 2000). The data set
is diverse: no two enzymes have>25% sequence identity and
there are representatives of the main SCOP structural classes
(Murzin et al. 1995) and of the six main EC functional classes
(Webb 1992). For some details of the data set, see
Supplementary Material online.

Site-specific “observed” rates Kobs for these enzymes have
been calculated before (Shih et al. 2012; Echave et al. 2015;
Jack et al. 2016). Briefly, estimating Kobs involves finding ho-
mologous sequences, aligning them, inferring a phylogeny,
and using the sequence alignment and phylogeny as input
for the program rate4site to estimate the substitution
rate of each site (Mayrose et al. 2004). Here, I have mostly
used the rates of Echave et al. (2015), but to assess possible
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FIG. 4. MSA accounts for the rate-packing and the rate-distance gradients. Dissimilarity (error) between model and observed K � WCN gradients
(left panels) and K � dactive gradients (right panels). (For the error metric see Materials and Methods.) Each point represents one protein. The y¼ x
line is shown as reference. Point types represent which of the models compared fits the given gradient best (has lower error). (A) MSA versus MS; (B)
MSA versus MA. MS fails to predict the rate-distance gradient (A, right panel) and MA fails to predict the rate-packing gradient (B, left panel). In
general, MSA outperforms MS and MA in all panels, reproducing well both the rate-packing and rate-distance gradients.
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estimation errors I compared them also with the rates of Jack
et al. (2016).

Model Parameters
Mutation Matrix
I assume that all mutations have the same probability, thus
Mji ¼ l in equation (3).

Elastic Network Model
There is a large variety of ENMs (Fugebakk et al. 2013; Bastolla
2014; L�opez-Blanco and Chac�on 2016). Here, I used the ENM
of Ming and Wall (2005): amino acids are represented by
single nodes; nodes are connected if they are within
R0 ¼ 10:5Å; lij is the distance between the nodes in the
pdb structure; the force constants are kij ¼ 189 kcal=mol
for sequence neighbors and kij ¼ 4:5 kcal=mol otherwise. I
placed nodes at the side-chain geometric centers (except for
glycine, which has no side chain, for which I used Ca

coordinates).

LFENM Perturbations
A mutation is emulated by perturbing independently each of
the springs that connect to the mutated site by adding per-
turbations dlij. Here, I used dlij � Nð0; r ¼ 0:3ÅÞ.

Protein-dependent Parameters
To calculate model rates for a given protein, I started by
performing a full mutational scan. For each enzyme, I used
its pdb structure to build the ENM. Then, at each site I in-
troduced N¼ 19 LFENM mutations and, for each mutation, I
calculated DDG (eq. 5) and DDG� (eq. 6). Then, for each
model M ¼ MSA;MS;MA, I calculated model rates KMðaÞ
using equations (2)–(4). I further normalized KM so that
hKMi ¼ 1, so that rates are relative to the protein average,
which is the normalization of Kobs. Finally, I found the
model parameters a by minimizing the Residual Sum of
Squares RSS ¼

P
rðKr

obs � Kr
MðaÞÞ

2 using the general pur-
pose optimization function optim of R package stats. Since
models are fit independently, aSðMSÞ 6¼ aSðMSAÞ and
aAðMAÞ 6¼ aAðMSAÞ.

Assessing Whether Models Fit Observed Rates
To quantify model-data fit I used R2 and AIC. R2ðKM; KobsÞ,
the square Pearson correlation coefficient, is the most fre-
quently used goodness-of-fit measure. I have used it quan-
tify the degree of improvement provided by MSA over MS or
MA. However, R2 is not adequate for selecting among alter-
native nonlinear models (Spiess and Neumeyer 2010). To
this end, I used the Akaike Information Criterion
AIC ¼ 2k� 2lnL, where k is the number of parameters
and L is the maximum likelihood. AIC is smaller for larger
likelihoods and less parameters; the best model is that with
the smallest AIC. Assuming normally distributed residuals
lnL ¼ �n=2½lnð2pRSS=nÞ þ 1�, n being the number of sites
and RSS the minimum residual sum of squares.

Assessing Whether Models Account for the Rate-
packing and Rate-distance Gradients
To describe the dependence of site-specific rate K on a metric
X, I obtained smooth fits to the K versus X scatter plots, using
local polynomial regression using the function loess of R pack-
age stats. Specifically, for each protein, I obtained the loess
functions K̂observedðXÞ and K̂MðXÞ for M ¼ MSA;MS;MA and
X ¼ WCN; dactive. Then, I calculated Root Mean Square
Errors: RMSE M; Xð Þ ¼ 1=n

Pn
i K̂observed Xið Þ � K̂MðXiÞ
� �2

,
where Xi are n evenly spaced points that cover the range
of X. The lower RMSEðM; XÞ, the better M accounts for the
Kobs � X dependence.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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