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Abstract

Stochastic parameterizations are increasingly being used to represent the
uncertainty associated with model errors in ensemble forecasting and data
assimilation. One of the challenges associated with the use of these
parameterizations is the optimization of the properties of the stochastic forcings
within their formulation. In this work a hierarchical data assimilation approach
based on two nested ensemble Kalman filters is proposed for inferring parameters
associated with a stochastic parameterization. The proposed technique is based on
the Rao-Blackwellization of the parameter estimation problem. The technique
consists in using an ensemble of ensemble Kalman filters, each of them using a
different set of stochastic parameter values. We show the ability of the technique to
infer parameters related to the covariance structure of stochastic representations of
model error in the Lorenz-96 dynamical system. The evaluation is conducted with
stochastic twin experiments and imperfect model experiments with unresolved
physics in the forecast model. The proposed technique performs successfully under
different model error covariance structures. The technique is proposed to be applied
offline as part of an a priori optimization of the data assimilation system and could
in principle be extended to the estimation of other hyperparameters of a data
assimilation system.

Keywords: Stochastic parameters inference, model error, stochastic parameterization,
nested ensemble Kalman filters
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1 Introduction

Model error treatment has become a key ingredient for data assimilation systems. The
most significant sources of the so-called model errors in numerical geophysical models are
a consequence of simplifications in the representation of the dynamics, such as errors
associated to the discretization of large-scale dynamics and unresolved or under-resolved
physical processes represented by parameterizations. When combining observations and
forecasts in data assimilation systems, a proper account of both observational and forecast
model errors is crucial for a successful state estimation. In data assimilation, model errors
are usually separated into two components: systematic model error and random model
errors. Systematic model errors are considered as the mean model error over a sufficiently
long time window, while random model errors are the departures from said mean.

The conventional approach for systematic model error treatment involves the
estimation of a forecast bias term, which is augmented to the state vector during the data
assimilation process (Dee and Da Silva, 1998; Griffith and Nichols, 2000; Danforth et al.,
2007). In addition to explicit bias estimation, a random error term can also be
incorporated to the state variables before the data assimilation step. The probability
distribution of these errors can be inferred, for example, using innovation statistics from
previous assimilation cycles (e.g. Zupanski, 1997; Dee, 1995).

In the context of the ensemble Kalman filter, neglecting random model errors usually
results in an underestimation of the forecast error covariances. Houtekamer et al. (2009)
gives a review of operational approaches to deal with these issues. The strategies typically
involve a representation of model uncertainties either as an ad-hoc inflation of the forecast
errors covariance matrix, multi-model and multi-parameterization ensembles or the use of
stochastic parameterizations. The role of covariance inflation to compensate for model
errors has been widely studied (Hamill and Whitaker, 2005, 2011; Anderson, 2009). The
inflation can be incorporated either as a random noise added to the different states of the
ensemble, known as additive inflation (Mitchell and Houtekamer , 2000;
Hamill and Whitaker, 2011), or by amplifying the ensemble members deviations from the
mean state, referred to as multiplicative inflation (Anderson and Anderson, 1999;
Miyoshi, 2011). The latter approach however assumes that the model errors have the
same structure as the dynamically evolved internal errors (Li et al., 2009). While this
hypothesis does not hold for most of the atmospheric numerical models, the multiplicative
inflation approach has been rather successfully used for this purpose as well as for dealing
with sampling errors due to the small ensemble sizes used operationally. The combination
of parametric model error treatments with additive and multiplicative inflation was
examined by Ruiz and Pulido (2015). A significant improvement in analysis error was
found when compared to using each of them separately.
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Explicit representation of random model errors typically require an estimate of their
spatio-temporal covariance structure, which can be either constructed arbitrarily, or
parameterized as a function of free parameters. Several algorithms have been proposed to
infer these type of parameters. Mitchell and Houtekamer (2000) used innovation
statistics to estimate horizontal decorrelation length scale of model error and vertical
covariances on a three-level quasi-geostrophic model. An iterative implementation of the
expectation-maximization algorithm combined with an ensemble Kalman filter was
successfully applied by Dreano et al. (2017) to infer different forms of covariance matrices
of an additive Gaussian model error in a nonlinear state-space model. On a similar model
scenario, Stroud et al. (2018) proposed a Bayesian framework to explicitly account for the
marginal posterior distribution of parameters, by either an exhaustive grid-based
exploration of the parameter space or using a particle filter approximation. This scheme
can be combined with the ensemble Kalman filter to produce sequential estimations of
state and parameters. Maximum likelihood estimators based on expectation-maximization
and Newton-Raphson minimization were presented by (Pulido et al., 2018). These
methods allow for the simultaneous estimation of deterministic parameters and
parameters associated to stochastic processes representing model error.

The use of stochastic parameterizations represents a promising approach for model
error treatment in ensemble forecasting and data assimilation. These parameterizations
introduce stochastic processes directly to the model evolution, either as a random
perturbation added at every time step of the model integration, or by stochastically
perturbing the physical parameterizations tendencies. Stochastic parameterizations may
account for a physically consistent representation of subgrid processes (Leutbecher et al.,
2017) and so, a state-dependent representation of model errors. The use of stochastic
parameterizations impacts positively on ensemble prediction skill as shown by Shutts
(2005) and Christensen et al. (2015). Stochastic parameterizations are particularly
successful in triggering noise-induced transitions (e.g. Birner and Williams, 2008). When
the spatial and temporal correlation structures are properly tuned, stochastic
parameterizations may potentially provide a more consistent representation of the
interactions between the resolved dynamics and the subgrid parameterizations
(Palmer and Weisheimer, 2011). Within a mesoscale data assimilation system, Ha et al.
(2015) showed that the use of a stochastic backscatter scheme consistently outperformed
the multiplicative covariance inflation scheme and the multiphysics ensemble approach.
However, stochastic parameterizations require a careful tuning of the properties of the
stochastic forcings in order to account for the model uncertainties. The parameters that
characterize the covariance matrix of the stochastic process are referred to as stochastic

parameters from now on. Whereas estimation of deterministic parameters of the
dynamical model is straightforward within the ensemble Kalman filter using state
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augmentation (Annan et al., 2005; Ruiz et al., 2013a), stochastic parameters cannot be
estimated in this way. Previous studies on the use of the augmented state approach in the
ensemble Kalman filter showed that the lack of correlation between the mean of the
ensemble of state variables and the stochastic parameters may lead to unreliable
estimations (DelSole and Yang, 2010; Santitissadeekorn and Jones, 2015).

To overcome the lack of sensitivity of the forecast mean state to stochastic parameters,
here we propose the application of a hierarchical Bayesian framework based on two nested
ensemble Kalman filters. The model state is estimated with an ensemble Kalman filter in an
inner cycle, as in any conventional ensemble Kalman filter implementation. However, the
filtering process is applied over different independent ensembles, each of them integrated
using a different set of stochastic parameters. Hence, an ensemble of ensemble Kalman
filters is assimilated in an outer filter cycle. The outer cycle is used for the estimation of
the stochastic parameters. Stochastic parameters have a direct impact on the forecast error
covariances, thus playing a critical role on the state analysis quality on the inner cycle. In
order to increase the sensitivity of the analysis to stochastic parameters, we propose the use
of a longer assimilation window in the outer cycle, composed of several internal cycles. In
this way, the information in the outer filter for parameter estimation includes an ensemble
of trajectories of analysed model states which is expected to be sensitive to the stochastic
parameters.

Whereas few stochastic parameters can be tuned using an exhaustive exploration of the
parameter space, the proposed technique can be used to simultaneously estimate several
stochastic parameters. Its main advantage lays, indeed, in the ability to explicitly estimate
multiple elements of the covariance matrix used in the stochastic parameterization, at a
computational cost that is comparable to the state-of-the art expectation-maximization
algorithms (e.g. Dreano et al., 2017) and schemes based on nesting sequential Monte Carlo
algorithms (Chopin et al., 2013). It should be remarked that the proposed methodology
based on nested ensemble Kalman filters is intended to be applied offline, as an optimization
tool for both the stochastic dynamical model and the data assimilation system.

In Section 2 the stochastic parameter estimation based on the nested ensemble
Kalman filters is introduced under a Bayesian framework. The dynamical model used in
the experiments is described on Section 3. Section 4 describes the experimental setup and
the different covariance matrix structures, which are evaluated in the experiments.
Results from stochastic twin experiments and from imperfect model experiments are
shown in Section 5. We conclude with a brief summary and discussions in Section 6.
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2 Methodology

To avoid the limitations of the conventional augmented state approach for ensemble based
stochastic parameter estimation (DelSole and Yang, 2010; Santitissadeekorn and Jones,
2015; Pulido et al., 2018), the proposed hierarchical inference technique is conducted
using an ensemble of NJ data assimilation systems, each of them using a different set of
stochastic parameter values. The technique involves two nested data assimilation cycles.
Firstly, the state estimation is performed independently by each data assimilation system
with a set of fixed stochastic parameter values, using the ensemble Kalman filter. This
step is referred to as inner cycle. Secondly, parameter estimation is performed using the
resulting mean forecast states of the inner cycles as a priori states. Thus, the mean a
priori states are in turn the members of an ensemble that describes the density of the
state conditioned to the parameter values. The Kalman filter equations are applied to this
stochastic parameter ensemble to update their values. This step will be referred as outer

cycle. This procedure is repeated sequentially.
The assimilation window of the parameter estimation cycle (i.e. the outer cycle) is

composed by K state estimation cycles (inner cycles). Since stochastic parameters are
assumed to change slowly with time, parameters are assumed static within the outer cycle
and are denoted as θl, which means that the stochastic parameters will be updated only
every K state estimation cycles to increase the identifiability of the stochastic parameters
(Koyama and Watanabe, 2010).

At a given time, xl,k denotes the model state at the k-th state estimation cycle during the
l-th parameter estimation cycle and θl denotes the parameters. For simplicity, we denote
any quantity at time (l, 0) with a single subindex l, so for example xl,0 = xl−1,K = xl. A
schematic representation of time indexes is shown in Fig. 1.

Given an initial prior joint density of the model state variables and parameters
p(x0, θ0), the inference goal is to sequentially obtain the posterior density of the
augmented state at time l given K observation sets distributed in time from (l, 1) to
(l, K), this is p(xl+1, θl+1|yl,1:K). Model state is then estimated every time at which
observations are available, while the augmented state is estimated every K state
assimilation cycles. Using the definition of conditional density, the joint parameter–state
inference is given by

p(xl+1, θl+1|yl,1:K) = p(xl+1|θl+1,yl,1:K)p(θl+1|yl,1:K). (1)

The posterior density of the augmented state at the final time of a set of observations is
given by the posterior density of the state conditioned to the value of the parameters and the
observations multiplied by the posterior density of the parameters given the observations.
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Figure 1: Time indexes for the state variables and parameters through inner and outer
cycles. See text for details.

The first term in the RHS of (1) is determined through the sequential process

p(xl,k|θl+1,yl,1:k) =

p(yl,k|xl,k, θl+1,yl,1:k−1)p(xl,k|θl+1,yl,1:k−1)

p(yl,k|yl,1:k−1)
(2)

from k = 1 to k = K. In practice, (2) corresponds to the application of a Kalman filter for
the model state given a certain set of parameters and observations at time k.

The parameter posterior density, the second term in the RHS of (1), is rewritten through
a sequential conditioning process as

p(θl+1|yl,1:K) ∝ p(θl+1|yl−1,1:K)
K
∏

k=1

p(yl,k|yl,1:k−1, θl+1), (3)

where p(yl,1|yl,1:0, θl+1)
.
= p(yl,1|θl+1) and p(θl+1|yl−1,1:K) is the prior density of the

parameters, given the previous observations: yl−1,1:K . Note that we leave implicit the
conditioning to observations from previous outer cycles. As mentioned before, we have
assumed parameters are static within an outer cycle. Alternatively, a random walk or any
Markov process could also be considered, in that case
p(θl+1|yl−1,1:K) =

∫

p(θl+1|θl)p(θl|yl−1,1:K)dθl. The parameters are assumed to be
updated immediately after the k-th state assimilation cycle.

Since the parameters are not directly observed, their likelihood to a new observation
yl,k is taken into account through the marginalization of the model state,

p(yl,k|yl,k−1, θl+1) =

∫

p(yl,k|xl,k, θl+1)p(xl,k|yl,1:k−1, θl+1)dxl,k. (4)
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Equation (4) involves a prediction density given the previous estimated state and the
observation likelihood given the parameters, θl+1, which are then integrated along the model
state. This marginalization is over the full model state and it is likely to produce errors if it
is conducted directly through Monte Carlo sampling (e.g. using samples of a particle filter
or an ensemble Kalman filter). Instead of using a direct sampling from the joint density, we
take a Gaussian assumption for both the prediction density and the observation likelihood.
Under this assumption, the sufficient statistics E(xl,k|θl+1,yl,1:k−1), is used to assimilate
the observations in (4), where E(·) denotes the expectation operator. As it is known from
the Rao-Blackwell theorem, the use of sufficient statistics in the estimator is expected to
improve the inference of parameters. The Gaussian assumption is of course also taken for
the ensemble Kalman filter that we use, so this assumption is coherent with the filter and
does not imply an additional hypothesis.

Following the derivation of the sequential marginalized observation likelihood from
Pulido et al. (2018), the observation likelihood conditioned on θl+1 is therefore

p(yl,k|xl,k, θl+1) ∝ exp
[

(yl,k −H(xl,k))
TR−1(yl,k −Hl,k(xl,k))

]

, (5)

where H is the observation operator that transforms from model to ovservational space.
Observational errors are assumed additive and Gaussian with covariance R. In coherence
with the assumption taken in the ensemble Kalman filter, we now assume that the forecast
density can be represented approximately by a Gaussian density, namely,

p(xl,k|yl,1:k−1, θl+1) ∝

exp

[

(

xl,k − xf
l,k(θl+1)

)T

Pl,k(θl+1)
−1(xl,k − xf

l,k(θl+1))

]

, (6)

where xf
l,k(θl+1)

.
= E(xl,k|yl,1:k−1, θl+1)

.
=

∫

xl,kp(xl,k|yl,1:k−1, θl+1)dxl,k is the mean forecast
state conditioned on θl+1 and Pl,k(θl+1) is the forecast error covariance given θl+1. In what
follows, The dependencies on θl+1 are dropped to reduce notation and defining Hl,k as the

linearized observation operator at xf
l,k, the resulting approximated observation likelihood

in the time interval (l, 1) to (l, K) is

K
∏

k=1

p(yl,k|yl,k−1,θl+1) ∝

K
∏

k=1

exp
[

(yl,k −Hl,k(x
f
l,k))

T(Hl,kPl,kH
T
l,k +R)−1(yl,k −Hl,k(x

f
l,k))

]

, (7)
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which is equivalent to the approximated observation likelihood obtained in
Pulido et al. (2018). That work also constrains the values of the statistical parameters
within a time interval where K observation sets are available. However, a point
estimation of the parameters is conducted there through maximization of the logarithm of
the approximated observation likelihood. On the other hand, here we assume a Bayesian
framework, see (3), in which an inference of the density of the parameters conditioned to
the set of observations is obtained given some prior knowledge of the parameters. Our
procedure resembles the Rao-Blacwellized particle filter (Doucet et al., 2000), where NJ

ensemble Kalman filters are conducted in order to marginalize the parameters posterior
distribution.

In this work, the parameters to be estimated are assumed to be associated with an
additive Gaussian model error. We also assume that parameters follow a Gaussian
distribution. While the latter hypothesis is not warranted, it allows us to treat the
state-parameter estimation problem by using two nested ensemble Kalman filters.

Let us consider an ensemble of initial parameters θ
(j)
0 , with j = 1, · · · , NJ , sampled

from p(θ0). Each parameter θ
(j)
0 is associated with an ensemble of NI model states

{

x
(j,i)
0 , i = 1, · · · , NI

}

. Therefore, a set of NJ ensembles is initialized and each of them

represents different values of the parameters θ. The updates to the ensemble state
members are determined in the inner cycles with ensemble Kalman filters. The filters
should be identical to the data assimilation system for which parameters are being
estimated, e.g. same physical parameterizations, number of ensemble members. Note that
the the NJ ensembles are assumed to evolve independently, hence the state update
neglects any correlation between the ensembles. The mean state of the j-th ensemble is
given by

x
a(j)
l,k = x

f(j)
l,k +P

(j)
l,kH

T(Hl,kP
(j)
l,kH

T
l,k +R)−1[yl,k −Hl,k(x

f(j)
l,k )], (8)

where xa(j), xf(j) and P(j) denote the analysed state, forecasted state and the forecast
covariance matrix of the j-th ensemble respectively.

Next, the parameter posterior density conditioned to the observations, p(θl+1|yl,1:K), is
inferred using (3). In this sense, Equation (3) can be interpreted as the serial assimilation
of observations along the l-th state assimilation window. Under the already taken
assumptions, the likelihood function and the forecast density are assumed Gaussian in (3).
Therefore, in the “outer” cycle we apply the ensemble Kalman filter to infer p(θl+1|yl,1:K).
Because the initial condition of the hidden state is not known with complete certainty, the
observational error for the inference of the parameter posterior density increases with the
forecast error covariance matrix of the hidden state (see Eq. 7) . Thus, an increased

“observational” error covariance matrix for the assimilation of parameters is obtained in
(7), HPl,k(θl)H

T +R.
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The application of the Kalman filter to the ensemble representing the parameter
distribution (3) with (7) results in the analyzed mean parameters given by

θ
a

l+1 = θ
f

l+1+

K
∑

k=1

Pθx
l,kH

T
[

H(Pl,k +Pxx

l,k )H
T +R

]−1
[yl,k −H(x

f
l,k)], (9)

where x
f

l,k is the average of ensemble forecast mean states at time (l, k) over the NJ

ensembles. The covariance matrices Pl, P
xx

l,k and Pθx
l are defined empirically as follows

Pl,k =
1

NJ

NJ
∑

j=1

P
(j)
l,k (10)

is the sample forecast state covariance averaged among the NJ ensembles,

Pxx

l,k =
1

NJ − 1

NJ
∑

j=1

(x
f(j)
l,k − x

f

l,k)(x
f(j)
l,k − x

f

l,k)
T (11)

is the sample covariance of the NJ ensembles, and similarly,

Pθx
l,k =

1

NJ − 1

NJ
∑

j

(θ
f(j)
l+1 − θ

f

l+1)(x
f(j)
l,k − x

f

l,k)
T (12)

is the parameter-state covariance matrix.
Note that the forecast state error covariance for the parameter estimation in the outer

cycle is the sum of the mean covariance of the NJ ensembles and the covariance of the outer
ensemble. Equation (9) shows that parameters are estimated using ensemble mean states
of the inner cycle as individual state members in the outer cycle. This formulation defines
a parameter-state covariance matrix that is able to transfer model state innovations to
statistical parameters. This is a key difference between the nested ensemble Kalman filters
and the standard state augmentation approach for parameter estimation, since the impact
of stochastic parameters is accounted from an ensemble mean, and not over individual
members.

2.1 Implementation details

The implementation of the inner cycles and the outer cycles are both based on the
Ensemble Transform Kalman Filter (ETKF, Hunt et al., 2007). For the outer cycles, the
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parameter update equation (9) is implemented as an asynchronous ETKF (see
Hunt et al., 2007; Harlim and Hunt, 2007). For this purpose, an aggregated vector is
constructed by column-wise concatenating observations yl,1:k in a single observation
vector y∗

l . A similar concatenation is performed with the ensemble members in the state
and in the observational spaces. The aggregated observational error covariance matrices
R∗

l and mean covariance P∗

l are constructed with the k-th diagonal block Rl,k and Pl,k

respectively. The main steps of the nested ensemble transform Kalman filters in this work
are implemented as follows:

1. Given NJ parameters θ
(1:NJ )
0 and NJ independent ensembles of NI state members,

x
(1:NJ ,1:NI)
0 , and (L×K) observations y1:L,1:K.

2. State estimation: For each assimilation cycle l, (with l = 1, · · · , L) do:

2.1. For each inner assimilation cycle k, (with k = 1, · · · , K) do:

2.1.1. Calculate the ensembles of analysed states x
a(j,i)
l,k performing NJ -EnKFs

independently.

2.1.2. Store Hl,k(x̄
f(j)
l,k ) for each ensemble and the average of the forecast error

covariance matrix in the observational space over the NJ ensembles
HPl,kH

T.

2.2. Parameter estimation: Obtain the ensemble of estimated parameters:

2.2.1. Concatenate the K mean predicted observations Hl,k(x̄
f(j)
l,1:K) to construct an

(nx ×K)-dimensional ensemble of NJ members.

2.2.2. Construct the agreggated observation vector y∗

l = [yl,1, · · · ,yl,K ]
T and the

tangent linear observation operator H∗

l = [Hl,1,Hl,2, · · · ,Hl,K]
T

2.2.3. Construct the block diagonal extended observational error covariance matrix
R∗

l , whose k-th diagonal block is R∗

l,k = HT
l,kP̄l,kHl,k +R.

2.2.4. Obtain the updated parameter ensemble mean and perturbation ETKF
using the aggregated matrices calculated in steps 2.2.2.-2.2.3.

Since the experiments were conducted in a low-dimensional dynamical system (see
Section 3.1), the use of covariance localization is not explored in this work. Localization
may become mandatory for systems in which the number of state-space dimensions
exceeds the number of ensemble members, as occurs in numerical forecast models.
Additionally, we have assumed that sampling errors of the filter can be partially
accounted by the stochastic parameterization so that multiplicative covariance inflation of
state variables is not included in most of the experiments. As has been described in
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Aksoy et al. (2006) and Ruiz et al. (2013b) assuming a persistence model for the
parameters can result in the collapse of the parameter ensemble spread and divergence of
the parameter estimation. However, in our experiments, such mechanisms were not
needed to increase parameter ensemble spread.

3 Description of the experiments

3.1 The Lorenz-96 dynamical model

The two-scale Lorenz-96 dynamical model has been extensively used as a testbed model for
the development of data assimilation schemes due to its reduced computational cost and its
ability to mimic specific properties of the atmospheric predictability (Lorenz, 1996; Smith,
2001; Orrell, 2003). It represents the dynamics of a cyclical set of large-scale variables
over a circle of latitude, each coupled to a set of high-frequency small-scale variables. Each
model equation contains terms that represent non-linear advection, dissipation and external
forcings. The small-scale variables are coupled to the large-scale variables through an
additive forcing term.

The set of equations of the two-scale Lorenz-96 dynamical model is given by large-scale
variable equations,

dxn

dt
= −xn−1(xn−2 − xn+1)− xn + F −

hc

b

Mn
∑

m=M(n−1)+1

ym, (13)

and small scale variable equations,

dym

dt
= −cbym+1(xm+2 − xm−1)− cym +

hc

b
x1+int[m−1

M
], (14)

where n = 1, · · · , N and m = 1, · · · ,MN .
Both sets of variables have cyclic boundaries conditions: xn+N = xn and ym+MN = ym.

In this work, the coupling and scale parameters are set to the standard values of h = 1,
b = 10 and c = 10 as in Pulido et al. (2016) and Wilks (2005). The number of large-
scale variables was set to N = 8, each coupled to M = 32 small-scale variables y, so that
MN = 256. To achieve a chaotic solution, the external forcing is set to F = 20 for all the
experiments.

In the imperfect model experiments, the small-scale variables can be interpreted as
unknown physical processes which cannot be explicitly resolved in numerical models, so
that only the dynamics of large-scale variables are represented by the model. The effect of
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the small-scale variables is introduced as a parametrization that is a function of the
resolved large-scale variables only. This mimics in a very simple way model errors
associated with the parametrization of unresolved processes in realistic atmospheric or
oceanic numerical models. The Lorenz-96 system results particularly suitable for
proof-of-concept experiments involving subgrid model error representation and
parameterizations (Wilks, 2005; Crommelin and Vanden-Eijnden, 2008; Arnold et al.,
2013; Pulido et al., 2016). The truncated version of the model can be expressed as

dxn

dt
= −xn−1(xn−2 − xn+1)− xn − U(xn), (15)

where U(xn) represents the parameterization of small-scale processes. The forcing term F

is also assumed to be part of the parameterization U . In this work, the parameterization
is of the form

U(xn) = a0 + a1xn + en(t). (16)

The first two terms represent a deterministic forcing that is a function of only the resolved
variable xn. The coefficients a0 and a1 can be estimated via a least-squares fitting using
an integration of the complete system (Eqs. 13-14) as in Wilks (2005), or inferred via data
assimilation using only noisy observations of the resolved variables of the full system (see
Pulido et al., 2016).

The processes that cannot be accounted by a deterministic function of the state
variables, are included as a state-independent red-noise stochastic forcing, discretized as
the realization of a zero mean first-order autoregressive process (AR(1)),

e(t) = φ e(t−∆t) + (1− φ2)
1

2 η. (17)

The coefficient φ represents the lag-1 autocorrelation of e(t), and ∆t is the model
integration timestep. The vector η ∼ N (0,Σ) represents a random draw from a
zero-mean Gaussian distribution with covariance Σ. The adequacy of a stochastic
parametrization for model error representation in the Lorenz-96 model was proved by
Wilks (2005), Arnold et al. (2013) and by Pulido et al. (2018).

3.2 Experimental setup

We first evaluate the nested ensemble Kalman filters using twin experiments. In these
experiments, the “true” integration consists of an integration of the truncated model
(15)-(17) with a stochastic forcing generated using a prescribed covariance structure. The
same model and covariance structure are then used as forecast model, but with uncertain

12



parameters. Since stochastic processes are present in both “true” and forecast models, it
is not possible to replicate the true integration using the forecast model, even when using
identical initial conditions and parameter configuration. Hence, these experiments are
referred to as “stochastic twin experiments”.

The truncated Lorenz-96 dynamical system was integrated with a fourth-order Runge-
Kutta scheme. The system was initialized after a spinup of 1460 dimensionless model time
units, which is roughly equivalent to 20 years of atmospheric evolution. The nature run
was generated integrating the “true model” for 250 model time units (i.e. 50000∆t) with a
timestep of ∆t = 0.005. The coefficients a0 and a1 were set to a0 = 19.169 and a1 = −0.813.
These values were estimated via least square fitting using an integration of the two-scale
Lorenz-96 system with F=20. The structure and specific values of stochastic parameters
used in the experiments are specified below. Synthetic observations are then generated by
perturbing the nature run with zero-mean Gaussian uncorrelated noise of variance R = σ2

RI
and σ2

R = 1, where I is the identity matrix. All the variables are observed simultaneously,
with a frequency of δt = 10∆t = 0.05.

In the experiments, ensembles ofNI = 30 members are used for the inner cycles, whereas
for the outer cycle, NJ = 15 independent ensembles are considered. Initial conditions for
the states of the ensembles were randomly chosen between uncorrelated states from the true
model integration. The number of inner cycles within each outer cycle is set to K = 5. This
value was chosen to balance the parameter convergence speed, precision and computational
cost, through preliminary sensitivity experiments.

Imperfect model experiments are conducted using the two-scale Lorenz-96 model as the
true state evolution. In this case, the model was integrated during 250 model time units,
with a time step of ∆t = 0.001. Observations are generated using the same observational
error and operator as in the stochastic twin experiments. Note that only the large-scale
variables are observed in these experiments. The truncated Lorenz-96 model is used as
forecast model, with the same integration scheme as in the stochastic twin experiments.

To evaluate the sensitivity of the estimations to observational sampling errors, each of
the proposed assimilation experiments is repeated 10 times, with different realizations of
observational error and stochastic forcing, and changing the ensemble of initial states and
parameters. The computation of verification scores excludes the first 200 state assimilation
cycles to avoid the effect of the filter spinup.

3.3 Model error covariance structure

An explicit estimation of the stochastic processes covariance matrix might result
intractable for geophysical models. In practice, several assumptions and simplifications
can be considered in an attempt to replicate the structure of said covariances. In this
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work, the nested ensemble Kalman filters are used to estimate parameters related to
different structures of the covariance matrix Σ. The proposed parameterizations of the
covariance matrix represent different hypothesis of the behavior of the model error which
are usually assumed in practice (i.e. Gaussian errors, spatially symmetric covariances,
isotropy). In this work, parameters for the following covariance matrix structures Σ are
estimated:

I Isotropic non-correlated: In this case the covariance matrix is expressed as Σ = σ2 I
where I is the identity matrix. This model assumes that the model error variance
is the same for all the resolved variables and that model errors for different model
variables are uncorrelated. In this case, the standard deviation σ is the only parameter
to be estimated.

II Isotropic exponential covariance: The covariance is parameterized as
Σi,j = σ2 e−ρdi,j , where di,j is the minimum distance between variables xi and xj ,
indicating an exponential spatial decrease of covariances. This approach assumes
again that the variance of the model error is the same for all the variables, but it
incorporates an a priori spatial covariance structure. Smaller values of ρ are
associated with longer model error spatial correlations. In this case, the parameters
to estimate are the standard deviation σ and the spatial scale parameter ρ.

III Horizontally symmetric homogeneous covariance matrix Σ: All the variables are
assumed to have the same spatial covariance structure and that covariances are
horizontally symmetric (namely Σn,n−i = Σn,n+i). The stochastic parameters to
estimate in this case are the variance σ2 and the model error neighbouring
covariances (in our model only 5 parameters).

IV Non-isotropic non-correlated : This covariance structure ignores spatial correlations
but assumes that the stochastic forcing associated to each variable has a different
standard deviation. In this case the covariance matrix is represented as
Σ = diag(σ2

1, σ
2
2, · · · , σ

2
N ) representing a spatially heterogeneous model error

distribution and the parameters {σ2
1 , σ

2
2, · · · , σ

2
N} are estimated independently.

The temporal autocorrelation parameter in the experiments was fixed to φ = 0.984, as
in Wilks (2005), representing a persistent stochastic forcing. Although the autocorrelation
parameter could be included for estimation, it has been found that the optimal solution
is not unique. There is a wide range of optimal combinations, in terms of root mean
squared error and ignorance skill scores, between the stochastic forcing amplitude and the
autocorrelation time parameter (Arnold et al., 2013; Buizza et al., 1999; Pulido and Rosso,
2017).
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4 Results from stochastic twin experiments

4.1 Isotropic non-correlated stochastic noise

The nature run for the first experiment uses the isotropic non-correlated covariance
structure (case I) with σnat = 2. This configuration of the stochastic forcing mimics the
2-scales Lorenz-96 model Arnold et al. (2013). The only parameter to estimate is the
standard deviation σ. The initial values for parameter σ were drawn from a N (1.5, 0.52)
distribution.

Estimation results for parameter σ are shown in Fig. 2a. In all the experiments, the
parameter values converge rapidly during the first 10 (50) outer (inner) assimilation
cycles. Independently of the values used in the parameter prior distribution at time l = 0,
estimated parameters converge toward a narrow range of values after approximately 250
parameter assimilation cycles (1250 state assimilation cycles). Though different
experiments do not converge to an identical parameter value, final estimations in the
different experiments have a small relative standard deviation of less than 1.2%. Figure
2b shows the parameter ensemble evolution during the first 100 parameter assimilation
cycles for one of the experiments shown in Fig. 2a. After the short assimilation spinup
period, parameter updates are small and the parameter ensemble spread remains
relatively stable throughout the duration of these experiments.

The mean estimation of σ averaged among different experiments is σa = 2.2, which is
slightly larger than the parameter used in the nature integration σnat = 2. To analyze the
validity of the inferred parameter, we conducted an exhaustive sampling of the parameter
space. For this purpose, we performed data assimilation experiments in which only the
state variables were assimilated and different fixed values of the parameter σ were used
during the entire assimilation experiment. Values of σ were evenly distributed, covering
the range [1.25, 3.25] (with ∆σ = 0.05). Each data assimilation experiment consisted of
2300 assimilation cycles, excluding an initial spinup of 200 assimilation cycles. To avoid
sampling issues, the experiments were repeated 25 times for each parameter value using
different observational errors and ensemble of initial conditions for the first assimilation
cycle. The mean over space, time and different experiment realizations of the analyzed
state RMSE is shown in Fig. 3. A clear global minimum is found in the experiments. The
cost function has an overall convex geometry, with increased sensitivity towards smaller
values of σ. The optimal standard deviation parameter found through exhaustive parameter
evaluation was σex = 2.15, which is also larger than σnat. The discrepancy found between
σex and σnat is expected to be a consequence of the usage of a finite ensemble size without
using multiplicative or additive covariance inflation in the data assimilation process. Hence,
the larger stochastic noise amplitude attempts to correct sampling errors due to the finite
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Figure 2: Estimated σ as a function of time. a) Estimated parameter ensemble mean
as a function of time for different repetitions of the experiment for different instances
of observational error and initial parameters. b) Parameter values for different ensemble
members as a function of time for one of the experiments shown in panel (a). The dashed
line indicates the optimal parameter value found through exhaustive search of parameters
space.

16



1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
σ

0.410

0.415

0.420

0.425

0.430

0.435

0.440

An
al
yz
ed

 st
at
e 
RM

SE

Figure 3: Mean analyzed state RMSE for state only assimilation experiments as a function
of σ. Instantaneous final parameter values estimated using the nested ensemble Kalman
filters from the different experiments and their associated RMSE averaged over an equivalent
period of time are shown with dots.
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ensemble size. As shown in Fig. 3, the values of σ estimated with the nested ensemble
Kalman filters is rather coherent with this cost function.

4.2 Parameterized spatial correlations

In these experiments, stochastic parameterizations of the true model and the forecast model
use the isotropic double exponential covariance structure (Case II) with a decaying function.

The parameters to estimate in these experiments are σ and ρ. In the nature
integration, the standard deviation of the process is set to σnat = 2, and the decorrelation
scale parameter is set to ρnat = 0.3. The latter leads to a moderate decaying rate, i.e. the
covariance between the most distant variables is Qi,i+4 ≈ 0.3σ2. Initial values for
parameter σ are again drawn from a N (1.5, 0.52) distribution, while a N (0.5, 0.152)
distribution was used for parameter ρ.

Results from simultaneous estimations of σ and ρ are shown in Fig. 4. Assuming
complete ignorance of the parameter values used in the nature integration, on average, the
estimations converge to parameter values σa = 2.12 and ρa = 0.29. The estimated values
for σ are on average at least 5% larger than the value used in the nature integration. It
is worth reminding that no inflation is being added to the state ensemble, so the variance
overestimation may also be associated to the requirement of additional covariance inflation
to alleviate the effect of sampling errors.

The optimal parameter combination obtained through exhaustive search that minimizes
RMSE is σex = 2.15 and ρex = 0.36. Therefore, the optimal values estimated with the nested
filters are slightly biased towards lower values of both parameters. Smaller values of ρ are
associated with larger covariances between distant variables, hence the experiment with
exhaustive evaluation of the parameter space suggests weaker spatial correlations and an
inflated variance. The RMSE cost function is again convex and asymmetric, especially for
ρ (Fig. 5). However, all the estimates lay close to the set of parameter values that produce
the minimum RMSE (blue dots in Fig. 5). The RMSE associated with these estimations
is at most 1% larger than the minimum RMSE.

The ETKF implementation of the nested ensemble Kalman filters requires the
inversion of matrix R∗ = HP̄HT +R in every outer cycle. A significant reduction of the
computational cost is obtained if P̄l,k can be assumed diagonal for R∗ computation.
Results for different repetitions of the experiment considering a diagonal P̄l,k are marked
with stars in Fig. 5. Slight differences in the estimated parameters are found when this
assumption is considered. On average, the parameter σ is approximately 1% larger than
when using off-diagonal elements of P̄l,k, while the difference in ρ is almost negligible (i.e.
about 0.5% smaller). The effect on the analyzed state RMSE is rather small (< 0.01%).
The practical tweak of assuming a diagonal matrix P̄l,k does not degrade significantly the
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Figure 4: Estimated parameters ρ and σ as a function of time for different experiments with
independent observational error samples and initial parameters. The optimal parameter
values obtained through exhaustive exploration are shown in dashed lines.

quality of estimation, while reducing its computational cost. Note that if a non-square
root ensemble Kalman filter was used in the outer cycle, there would be no computational
benefits in assuming P̄l,k to be diagonal, since such schemes would require computation of
(HP̃xxH+HP̄H+R)−1.

4.3 Non-isotropic variance estimation

In state-of-the-art geophysical models, model error is usually non isotropic since each
physical variable at each location might be affected differently by model errors. It is
interesting to study if the proposed technique can retrieve the structure of Σ when
removing the isotropic assumption (i.e. using covariance model III). With this purpose,
an idealized experiment was conducted in which the stochastic parameterization is driven
by an uncorrelated zero-mean Gaussian process, with variances σ2

1 = σ2
4 = 2.52 and the

rest of the variances set to 1.52. The number of parameters to be estimated in this case is
8. The initial values of parameters were sampled from N (2; 0.52).

Figures 6a,b show the estimation of the parameters σ2
1 and σ2

2 as a function of time for
independent experiment repetitions. In most experiments, estimated parameters are larger
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Figure 6: Estimated parameters σ2
1 (a) and σ2

2 (b) with the nested ensemble Kalman filters
as a function of time in the stochastic twin experiments with covariance model III. c)
Boxplot of instantaneous estimated parameters during the last 200 outer cycles through 20
independent experiments.

than the the values used in the nature integration, with a net difference of up to +0.5.
Similar results were found for the remaining parameters (Fig. 6c). The overestimation is
expected to compensate for the limited ensemble size in the state ensemble. In spite of
the noise, estimations on most experiments converged to the same parameter range after a
spin-up period of around 300 outer cycles.

Under this experimental setting, the number of parameters to estimate is equivalent to
the number of state variables. This is the experiment with the largest number of estimated
parameters, therefore it is important to evaluate the impact of the parameter ensemble size
upon the quality of the estimations. Table 1 shows the temporal standard deviation of the
estimated parameters over the last 300 parameter assimilation cycles for experiments using
different number of ensemble members in the outer cycle. Values were averaged over 25
experiments with different observational error realizations and initial parameter ensembles.
The variability of the estimated parameters has some dependence with the number of
ensembles used in the outer cycle. In particular, an improved convergence is found when
the number of ensembles is increased. In the case with NJ = 5 ensembles, as expected the
parameter estimations show large variations among experiments. This suggests that for
larger dimensional systems, the use of covariance localization in the parameter space may
become mandatory. Note, however, that the RMSE of these experiments in average does
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NJ = 5 NJ = 8 NJ = 15 NJ = 30 NJ = 60
Mean σ2

1 2.38 2.58 2.58 2.58 2.54
Mean σ2

2 1.89 1.75 1.77 1.78 1.79
Std. dev. σ2

1 0.409 0.267 0.156 0.116 0.110
Std. dev. σ2

2 0.324 0.265 0.122 0.153 0.131
State RMSE 0.403 0.399 0.399 0.400 0.400

Table 1: Comparison of parameter estimations and its associated state RMSE, on
experiments with different outer cycles ensemble sizes.

not improve significantly when using more than NJ = 15 ensembles for a parameter space
with 8 degrees of freedom.

5 Results from imperfect model experiments

In these experiments, the two-scale Lorenz-96 model is used to generate the nature run. In
the first set of experiments, the stochastic forcing used in the truncated model has covariance
structure I, then, the only parameter to estimate is σ. Figure 7a shows estimation results
for independent experiments with different realizations of observational errors, stochastic
forcing and initial conditions. In most cases, convergence is achieved during the first 300
parameter assimilation cycles. The mean estimated value is σa = 1.92. These estimations
are compared with exhaustive evaluation of the parameter space (Fig. 7b). The minimum
value found through exhaustive search corresponds to σex = 1.95, which is very close to
the mean estimated value and also within the range of the estimated parameters in the
different realizations of the estimation experiments.

Unlike the experiments in the previous section, the optimal structure of the covariance
matrix Σ for the imperfect model scenario is not known and the covariance structure I may
result in a suboptimal representation of the model error. Thus, we inferred empirically, and
offline, the characteristics of the covariance matrix that best fits the truncated model to
the two-scale Lorenz-96 system. For these diagnostics, the true state evolution is assumed
known including the evolution of the small-scale variables, contrary to the data assimilation
experiments in which we assume that we only know a set of noisy observations of the large-
scale variables. A large integration of 10000 model time units of the two-scale Lorenz-96
system was conducted. Using the least-squares deterministic parameters a0 and a1, the
covariance of the residuals are given by

r(xn, t) = [Udet(xn, t)−F(xn, t)],
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Figure 7: a) Estimated parameter σ for the imperfect model experiment with the nested
ensemble Kalman filters as a function of time through several experiments with different
error instances. b) Mean analyzed state RMSE for state only assimilation experiments for
different values of σ.

where Udet is the forcing estimated by the deterministic parametrization (first two terms in
(16)) and F is the forcing obtained in the two-scale Lorenz-96 system (last two terms in
Eq. 13)

F(xn, t) = F −
hc

b

Mn
∑

m=M(n−1)+1

ym (18)

The covariance of the residuals r(x, â0, â1, t) can be seen as an approximation of the
model error covariance matrix Σ of the truncated Lorenz-96 model when using only the
deterministic part of the parameterization. Figure 8a shows the covariance of the residuals.
Model errors have a variance of σ∗2 = 4.93±0.07, while the covariances between neighboring
variables are σ∗

i,i±1 ≈ −0.55 and σ∗

i,i±2. ≈ 0.7. Similar model error covariance structures were
found for other configurations of the two-scale Lorenz-96 system (i.e. Mitchell and Carrassi,
2015). Inferring this type of intricate covariance structure is not straightforward.

These results are compared with parameters estimations calculated via exhaustive
sampling of the parameter space. For this case, 10 independent experiments were
performed, using different observational errors. Since the computational cost grows
exponentially in this methodology, the parameter space was explored with a spatial grid
of ∆σ = 0.125 and a 5-dimensional guess given by the nested ensemble Kalman filters.
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Figure 8: a) Covariance of residuals of the two-scale Lorenz-96 model with respect to
the truncated Lorenz-96 model with a linear deterministic parameterization. b) Optimal
paramaters for covariance matrix Σ that minimize the analysis RMSE in the truncated
Lorenz-96 model (solid), and covariance of residuals calculated with the offline approach

While both cases have a similar variance (σ∗2 ≈ 4.93 and σ2
ex ≈ 4.25), the optimal

stochastic forcing covariance between distant variables is significantly larger than the ones
estimated offline (Fig. 8b). However the offline estimated parameters are not expected to
be optimal in an RMSE sense for a data assimilation system (Pulido et al., 2016). The
covariances estimated with the nested ensemble Kalman filters are expected to be similar
to the ones found through the costly exhaustive exploration.

We evaluate the potential of the nested ensemble Kalman filters to uncover the
covariance structure using covariance model III. This structure is flexible enough to
represent the complex covariance associated with model error in the truncated Lorenz-96
equations. Results of 10 repetitions of the experiment are shown in Fig. 9. The
estimations are less precise than in the previous experiments and require around 400
parameter assimilation cycles to converge. The mean parameter values obtained with the
nested ensemble Kalman filters are in general consistent with the offline estimations
shown in Fig. 8a, but with pronounced differences in the magnitudes of the off-diagonal
elements. However, estimated values are close to the parameter values that effectively
minimize the analysis RMSE (dashed lines). The nested ensemble Kalman filters are able
to accurately estimate the variance σ2

i and the first covariance σi,i±1. It is also able to
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recover the sign of the upcoming covariances. Further experiments are needed to assess
the possibility of estimating more distant covariances. For estimating distant covariances,
an increase of the ensemble size is of paramount importance to diminish the impact of
spurius distant correlations due to undersampling.

6 Discussion

In this work we introduce a novel data assimilation technique to infer stochastic
parameters that uses on a nested implementation of two ensemble Kalman filters, based
on a hierarchical Bayesian framework. The estimation of stochastic parameters requires
an ensemble of data assimilation systems that is identical to the system whose parameters
are being estimated i.e. model configuration, resolution, number of ensemble members. In
this way, the technique not only can be used to infer parameters for stochastic
parameterizations, but it can also be used to estimate other hyperparameters associated
to the data assimilation system. Whereas, we implemented an ensemble transform
Kalman filter (Hunt et al., 2007) for both state and stochastic parameter estimation, the
nested ensemble Kalman filters can be extended to different flavours of the ensemble
Kalman filters and the use of other data assimilation schemes in the inner cycles such as a
hybrid-variational one. For the outer cycle, the use of particle filters is also possible,
especially if the distribution of the parameters is strongly non-Gaussian, resembling the
Rao-Blackwellized particle filter (Doucet et al., 2000).

The proposed technique is intended to be used offline, as a tool for optimizing the data
assimilation system. While the computational cost of the proposed technique is relatively
large, it proves to be remarkably more economic than manually tuning model parameters,
particularly when estimating more than 4-5 parameters. The computational cost might be
comparable with other state-of-the-art schemes like the expectation-maximization
algorithm (Dreano et al., 2017) and less expensive than SMC2 (Chopin et al., 2013).

We proved that the technique is able to successfully estimate parameters on stochastic
twin experiments with simple model error covariance structures like the double
exponential function or the diagonal isotropic case. The estimated parameters are close to
the optimal parameter values found through an exhaustive exploration of the parameter
space at a significantly lower computational cost. The technique is also robust for the
simultaneous estimation of multiple stochastic parameters. Additionally, and more
importantly, the nested ensemble Kalman filters were able to recover the structure of
model error covariances in an experiment with missing subgrid dynamics without making
any a priori assumptions on the covariance structure nor the missing physics. The
experiments were performed on a low-dimensional chaotic model. Further experiments in
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Figure 9: Estimated parameters as a function of time for the experiment with covariance
model III for independent repetitions of the experiment. Covariances estimated with the
offline approach using residuals are shown in dotted lines. The estimation via exhaustive
sampling of the parameter space is shown in dashed lines.
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high-dimensional systems are required for which covariance localization both in the state
and in the parameter space becomes necessary. Further research is also required to
evaluate the potential of reconstructing model error covariances between variables of
different types and scales.

The stochastic parameterizations used in this work couple the model error
representation to the model dynamics by incorporating the stochastic forcing directly on
the model equations. This is an important difference with respect to other model error
treatment schemes that incorporate background state perturbations in the instant prior to
the assimilation. Additionally, in this work, the stochastic forcing is assumed to be state
independent. In the Lorenz-96 model, the amplitude of stochastic perturbations may be
partially controlled by its associated state variable (Pulido et al., 2016). The proposed
scheme is expected to handle state-dependent stochastic parameterizations, as well as
other like, parameterizations of stochastically perturbed tendencies (Palmer et al., 2009).

The possibility of estimating other types of hyperparameters in the context of the
ensemble Kalman filter is not explored in this work but it appears as a promising venue.
The nested ensemble Kalman filters, in principle, could be applied to the estimation of
parameters related to the observational error covariance matrix, as well as covariance
localization length-scales for state estimation. Hybrid schemes, like the ensemble 4DVar
(Wang et al., 2007), could also benefit from the proposed technique for inferring the
optimal covariances weighting coefficients.
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