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SUMMARY 

Citrus canker is an important disease of citrus, whose causal agent is the bacterium Xanthomonas 

citri subsp. citri (Xcc). In previous studies, we found a group of Xcc mutants, generated by the 

insertion of the Tn5 transposon, which show impaired ability to attach to an abiotic substrate. One 

of these mutants carries the Tn5 insertion in hupB, a gene encoding a bacterial histone-like protein, 

homologue to the beta subunit of the Heat-Unstable (HU) nucleoid protein of Escherichia coli. These 

kinds of proteins are necessary to maintain the bacterial nucleoid organization and the global 

regulation of gene expression. Here, we characterized the influence of the mutation in hupB 

regarding Xcc biofilm formation and virulence. The mutant strain hupB was incapable of swimming in 

soft agar, whereas its complemented strain partially recovered this phenotype. Electron microscope 
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imaging revealed that impaired motility of hupB was a consequence of the absence of the flagellum. 

Comparison of the expression of flagellar genes between the wild-type strain and hupB showed that 

the mutant exhibited decreased expression of fliC (encoding flagellin). The hupB mutant also 

displayed reduced virulence compared to the wild-type strain when they were used to infect Citrus 

lemon plants using different infection methods. Our results therefore show that histone-like protein 

HupB play an essential role in the pathogenesis of Xcc through the regulation of biofilm formation 

and biosynthesis of the flagellum.  

 

INTRODUCTION 

Citrus canker, one of the most important diseases of citrus trees, leads to defoliation, 

dieback and fruit drop, reducing yields and causing serious economic losses (Graham et al., 2004). Its 

causative agent is Xanthomonas citri subsp. citri (hereafter Xcc), a member of the Gamma 

subdivision of Gram-negative proteobacteria (da Silva et al., 2002). This pathogen enters the host 

plant tissues through stomata or wounds and then colonizes the apoplast, causing corky lesions 

(cankers) in fruits, leaves and stems. It finally breaks the tissues as a consequence of cell hyperplasia, 

hence allowing bacterial dispersal (Brunings and Gabriel, 2003). The canker itself, along with 

surviving populations of bacteria, constitutes the main source of disease spread (Cubero and 

Graham, 2004). Given the relevance of citrus canker, it is essential to undertake studies that expand 

the understanding of Xcc virulence mechanisms in order to improve its detection and control. 

 

Bacterial successful infection depends on the ability of the microorganism to adhere to the 

plant surface, invade the intracellular spaces of the host plant, obtain nutrients, and overcome plant 

defense (Büttner and Bonas, 2010). Like other plant pathogens, Xanthomonas spp. display an array 

of virulence factors, such as the synthesis of extracellular cell-wall degrading enzymes and the 

production of xanthan, the characteristic extracellular polysaccharide (EPS) of this genus, which 
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contribute to the interaction with plants (Tang et al., 199; Vojnov et al., 1998). The production of 

these factors is under the control of the rpf/DSF cell-to-cell chemical communication system (Barber 

et al., 1997; Crossman and Dow, 2004; Dow et al., 2003; Siciliano et al., 2006; Tang et al., 1991; 

Torres et al., 2007). 

 

Biofilm formation plays a key role in the induction of disease symptoms during Xcc infection. 

Biofilms are complex assemblies of bacteria usually attached to a solid surface (abiotic or biotic) and 

encapsulated in a matrix consisting mainly of EPS, proteins, extracellular DNA and lipids (Flemming 

and Wingender, 2010). In phytopathogenic bacteria, biofilm development contributes to the 

maintenance of a critical mass of bacteria in specific areas that facilitate the infection process. 

Moreover, these bacterial assemblages confer resistance to harsh environmental conditions, 

protection to protozoa attack, tolerance to antimicrobial agents, and consortia metabolism, and also 

enable horizontal gene transfer (Bogino et al., 2013; Danhorn and Fuqua, 2007). Biofilm formation, 

which has been extensively studied in many species, consists of five general stages: an initial and 

reversible attachment, followed by an irreversible attachment that leads to the formation of a 

monolayer, the development of microcolonies that mature in complex macrocolonies (with the 

characteristic mushroom shape), and the dispersal of cells in the planktonic state (Kierek‐Pearson 

and Karatan, 2005; Martínez and Vadyvaloo, 2014; Sauer et al., 2002; Stoodley et al., 2002).  

Biofilm formation process in Xcc requires the EPS, xanthan, for the development of mature 

structures both in vitro and in vivo (Rigano et al., 2007). In many species of Gram-negative bacteria, 

flagella are essential during the early stages of biofilm formation (Guttenplan and Kearns, 2013; 

Haiko and Westerlund-Wikström, 2013; Wood, 2013). In particular in Xcc, it was shown that flagella 

are also involved in structuring the mature biofilm with defined water channels and play a vital role 

in bacterial dispersal, and thus are required for the establishment of bacterial communities on the 

leaf surface (Malamud et al., 2011). 
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To better understand the whole mechanism of biofilm formation, it is necessary to know the 

genetic determinants and underlying factors that regulate this process. To this end, Xcc mutant 

libraries have been screened in search of new genes involved in biofilm development. Using this 

tool, Li and Wang (2011) found 33 novel genes related to regulatory networks, EPS production, and 

lipopolysaccharide synthesis, among others. In our laboratory, a library of Xcc mutants obtained by 

the insertion of the Tn5 transposon was screened in search of those affected in the adhesion to an 

abiotic substrate (Malamud et al., 2013). As a result, we found 23 novel genes associated with 

biofilm formation in Xanthomonas spp.; four of them related to the regulation of gene expression, 

five encoding membrane proteins, eight encoding structural proteins and six encoding hypothetical 

proteins. From this screening, we selected the strain characterized in this work, affected in the 

expression of hupB (XAC1081). 

 

 The XAC1081 gene, hupB, encodes a bacterial histone-like protein, homologous to the beta 

subunit of the Heat-Unstable (HU) nucleoid protein (da Silva et al., 2002). Histone-like proteins in 

bacteria are able to bind to DNA and are known to contribute to the organization of the bacterial 

�^�v�µ���o���}�]���_��(Rouvière-Yaniv and Gros, 1975). In addition, they are associated with cellular processes 

such as replication, recombination and DNA repair, and the global regulation of gene expression 

(Dorman and Deighan, 2003). Histone-like proteins have been divided into four major groups, based 

on their amino acid sequence: histone-type Escherichia coli U93 (HU), nucleoid structuring histone 

(H-NS), integration host factor (IHF), and factor for inversion stimulation (FIS) (Anuchin et al., 2011). 

HU and H-NS are the best characterized. HU does not recognize a specific sequence when binding to 

DNA but prefers regions with distorted or supercoiled structures (Dorman and Deighan, 2003). It is 

believed that the functional role of HU is to participate in DNA supercoiling (Tanaka et al., 1995). In 

E. coli, HU consists of two subunits, hupA and hupB, acting as a hupA-hupA homodimer or as a hupA-

hupB heterodimer, depending on the bacterium growth phase (Balandina et al., 2001; Grove, 2011). 

In most bacteria, HU is a homodimer. In E. coli, HU null mutants have a mild phenotype, whereas in 
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Gram-positive bacteria, such as Bacillus subtilis, HU appears to be essential (Grove, 2011). In 

addition, it has been described that HU participates in the regulation of genes involved in processes 

related to virulence (EPS production, mobility and expression of virulence factors) and tolerance to 

different types of stresses (anaerobiosis, medium acidification, osmolarity increase, UV radiation, 

etc.) (Balandina et al., 2001; Nishida et al., 1997; Oberto et al., 2009). 

 

 The main objective of this work was to analyze the role of a hupB homologue gene in Xcc 

biofilm formation and virulence. We found that a null mutation in the histone-like protein HupB 

results in a reduction in the ability of the bacterium to infect Citrus. In addition, the hupB null mutant 

is impaired in flagellum synthesis being unable to develop a mature biofilm structure. Here, we 

provide new insights into gene regulation by studying for the first time the role of a histone-like 

protein in Xcc. 

 

RESULTS 

The hupB gene encodes a bacterial histone-like protein 

The null mutant in hupB was isolated from a screening of a pool of Xcc 306 mutants (carrying 

the insertion of Tn5) that aimed to identify those genes required for cell attachment to an abiotic 

substrate (Malamud et al., 2013). The hupB gene encodes a histone-like protein homologous to the 

beta subunit of the HU protein in E. coli. The predicted amino acid sequence shows that, as 

expected, HupB is a small protein with a predicted molecular weight of approximately 9 KDa. Protein 

sequence analysis reveals a high conservation among orthologous genes, not only within the same 

genus (X. campestris pv. campestris) or related species (Xylella fastidiosa), but also in bacteria 

evolutionarily more distant such as E. coli or Bacillus subtilis (Gram-positive species) (Figure 1). 
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Typically, HU adopts a compact conformation by linking the two monomers together 

(Swinger et al., 2003). Two alpha helices of each monomer form the body of the protein, which is 

confined by two beta sheets that extend and "embrace" the DNA. An alpha helix (short sequence) 

completes the structure. According to Lee et al. (1992), a proline residue (P63) is essential in the 

"coupling" with DNA, and its substitution results in a significant alteration in DNA binding. Another 

important residue is lysine 3 (K3), which is critical for maintaining a stable complex (Grove and 

Saavedra, 2002). All of these elements appear to be conserved in the protein encoded by the hupB 

gene (Figure 1). 

 

A null mutation in hupB impacts negatively on the biofilm formation process 

 Biofilm formation is a dynamic process which is not only influenced by multiple factors but 

also involves several stages, from adhesion to the surface until the appearance of mushroom-like 

arrangements. One of our aims was to evaluate biofilm development in the hupB mutant in 

comparison to the wild-type strain.  

 

 In the first instance, we confirmed that there were no major differences in growth between 

the hupB mutant and the wild type strain (Figure S1). Then we analyzed the ability to attach to an 

abiotic surface of each strain, showing a significant reduction for the hupB mutant (approximately 

60% less than the wild-type strain) (Figure 2A). The structural organization of the biofilm was studied 

in detail by Confocal Laser Scanning Microscopy (CLSM). The presence of a mature biofilm formed by 

the wild-type strain was clearly observed after four days of incubation (Figure 2B). In contrast, the 

hupB mutant strain was only able to grow into seemingly a monolayer of cells, very different from a 

typical biofilm (Figure 2B). Complementation with an intact copy of the hupB gene and its promoter 

region (c-hupB) partially restored the defective phenotypes (Figure 2). 
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The absence of HupB affects Xcc motility  

 The environmental survival and pathogenesis of Xcc are subjected to its ability to move. In 

addition, motility is one of the determinants for biofilm formation. Therefore we investigated if the 

absence of HupB affects bacterium motility. To this end we performed a swimming assay, in which 

soft agar plates were inoculated with aliquots of exponential phase cultures of the different strains. 

After 72 h of incubation, the hupB mutant was essentially non-motile, whereas the wild-type strain 

showed a migration area around the plating site (Figure 3). Complementation of hupB mutant strain 

restored the ability to swim, although not reaching the levels of the wild-type strain. 

  

The absence of HupB leads to the loss of flagellum 

 Since the hupB mutant strain was non-motile, we hypothesized that this could be associated 

with a defect in either the functioning or a structural defect of flagellum. Therefore, we examined 

the flagellar apparatus of exponentially growing cells by transmission electron microscopy (TEM). As 

shown in Figure 4A, a single polar flagellum was visible in the wild type and in c-hupB but not in most 

of the observed fields for the hupB mutant strain. These results suggest a possible role of HupB in 

the regulation of flagellar biosynthesis. 

 

 Flagella-dependent motility in Xanthomonas spp. is controlled by the hierarchical expression 

of a regulatory cascade involving several regulators (Yang et al., 2009). Thus, we compared the 

expression of some of these genes between the wild-type strain and the mutant strain by qRT-PCR 

(Figure 4B). According to our results, fliC, a class III gene which encodes flagellin, was significantly 

reduced in comparison with the wild-type strain. Genes encoding FleQ and RpoN2, class I master 

regulators that control the expression of class II genes, showed no significant differences between 

strains. By contrast, the flgM gene, encoding a class I master regulator, showed a significant 

reduction of its expression in the mutant strain when compared to the wild-type strain. The levels of 

expression of the class II genes (fliA, flhA and fleN) displayed no differences between strains. 
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Complementation with an intact copy of the hupB gene and its promoter region (c-hupB) restored 

the expression of fliC and flgM genes to levels similar to those in the wild-type strain (Figure 4B). 

 

HupB affects Xcc pathogenicity  

 To study a possible effect of the hupB gene product in Xcc virulence, we carried out 

pathogenicity assays in lemon plants (Citrus limon cv. genova). Two different types of 

infection methods were applied (Figure 5A): swabbing bacterial suspensions i) on the lower 

surface (abaxial) of healthy young leaves; or ii) on leaves previously injured with a needle to 

allow bacteria to enter the mesophyll. Symptoms were evaluated at 30 days post infection 

(d.p.i.). Results showed that regardless of the infection method used the null hupB mutant 

strain generated fewer lesions than the wild-type strain (Figure 5A). By contrast, 

complementation by expression of the hupB gene under its own promoter (c-hupB) restored 

the ability to induce cankers to wild-type levels.  

 

 Next, we compared bacterial growth in planta (Figure 5B). For this purpose, injured 

young leaves were swabbed with bacterial suspensions of the hupB mutant strain or the wild-

type strain. At 0, 6 and 14 d.p.i., plant tissue was grinded and the number of colony forming 

units (CFU) per cm2 of leaf tissue was determined. Results in Figure 5B show significant 

differences between strains at 6 d.p.i. At 14 d.p.i., the wild-type strain was able to grow about 

two fold more than the hupB mutant strain.  

 

DISCUSSION 

The hupB gene is homologous to the beta subunit of the HU protein of E. coli. This histone-

like protein is a member of family II of DNA binding proteins (DNABII), a group of small proteins 

involved in the organization and compaction of bacterial DNA (Dillon and Dorman, 2010). HU and 
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other histone-like proteins in bacteria are now called Nucleoid-Associated Proteins (NAPs). NAPs 

have been related to the formation of complexes at specific DNA structures, in the processes of 

recombination, initiation of replication and regulation of gene expression, in addition to their role in 

DNA compaction and protection. In general, bacteria present multiple NAPs, whose functions usually 

overlap and are complementary. For example, in E. coli, the lack of HU is not lethal, unless other 

NAPs such as IHF and H-NS are also suppressed (Kayoko et al., 1992). In other bacteria, HU 

disruption is lethal since they only have one NAP available (Liu et al., 2008; Micka and Marahiel, 

1992). In the case of Xcc, there are genes in its genome that encode proteins homologous to IHF and 

H-NS (da Silva et al., 2002). In agreement with this, our results showed that a null mutation in hupB 

was not lethal. 

 

In this work, we attempt to understand why a null mutation in a histone-like protein results 

in a reduction in the ability of the bacterium to adhere to a surface. To this end, we analyzed 

structures which could be involved in biofilm formation and found that the mutant in hupB does not 

have a flagellum. However, we cannot reject other defective phenotypes which may contribute to 

biofilm formation. Notably, Devaraj et al. (2015) have recently described a new role of NAPs in 

biofilm formation in E. coli. These authors proposed that hupB may have a structural role during 

biofilm formation as an essential element of the matrix, and that HU, as a DNABII protein, binds to 

the extracellular DNA of the matrix. These authors also described that the HupB subunit is a 

necessary and limiting component for the growth and maintenance of biofilm structures. 

 

In the present study, the hupB mutant strain was unable to swim due to the absence of 

flagellum, which was associated with a significant reduction in the expression of fliC (a gene 

encoding the main protein of the filament). This suggests that hupB positively regulates the flagellar 

synthesis in Xcc. Similar results had already been reported in E. coli by Nishida et al. (1997). The 

double mutant hupA-hupB (i.e. mutant in both subunits of the protein) does not produce flagellin 
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and as a consequence is non-motile. Nishida and colleagues (1997) also concluded that regulation of 

flagellar genes expression is at transcriptional level. However, the mechanism by which hupB 

regulates fliC expression and motility has not been elucidated. Our results indicate that none of the 

class II genes or class I genes, with the exception of flgM, showed differences in expression between 

the strains. Compared to the class I and II genes, fliC has reduced expression in the mutant strain 

(Figure 4B). From studies derived from the analysis of the gal operon of E. coli, it is presumed that 

HU could induce a DNA looping, thus helping to load or unload negative or positive regulators in 

specific sites of DNA to either help or block the start of gene transcription (Lewis et al., 1999; Oberto 

et al., 2009). We suggest that the absence of HU would alter the activity of the fliC promoter directly, 

causing the loss of accessibility for positive regulators or facilitating the access for negative 

regulators. HU promotes the compaction of DNA, so its inactivation would alter the structure of the 

DNA molecule and, as a consequence, the activity of several promoters would be affected. 

Considering this hypothesis, i.e. that the hupB gene product affects the supercoiling of DNA (Nishida 

et al., 1997), its mutation could alter the transcription of other genes that we have not considered in 

our analysis that are involved in flagellar motility. Nevertheless, the mechanism of synthesis and 

rotation of the flagellum is complex and involves many factors. HupB could alter motility in many 

ways, as reported for H-NS in E. coli. On the one hand, H-NS is a positive regulator of the flagellar 

regulon, binding DNA and promoting the synthesis of the master regulator FlhDC (class I) (Bertin et 

al., 1994), whereas, on the other hand, H-NS modulates flagella rotation by interacting with FliG, 

promoting its interaction with Mot proteins (flagellar motor).  

In the present study, we found that inactivation of hupB leads to the reduction of bacterial 

virulence in lemon plants. Swabbing infection on undamaged leaves showed that the hupB mutant 

strain was less effective in colonizing plant tissue through natural openings, such as stomata (Figure 

5A). These observations likely imply that lack of motility impairs bacterial movement in leaf surface 

and as a consequence limits penetration through stomata pores. Consistently, absence of flagellin 

was shown to slightly reduce Xcc pathogenicity in lemon leaves (Malamud et al., 2011). 
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In this work, we focused on the study of the effects of the mutation in the hupB gene 

(XAC1081) on biofilm formation and virulence of Xcc, and demonstrated that is essential for both 

processes. However, more work is needed to understand more precisely how it regulates these 

functions.  

 

EXPERIMENTAL PROCEDURES 

Bacterial strains and growth conditions 

Xcc strains were cultured at 28°C with shaking at 220 r.p.m. in PYM (peptone�tyeast extract�t

malt extract) medium (Cadmus et al., 1976) or YMM (Y minimal medium) (Sherwood, 1970). E. coli 

strains were grown at 37°C in Luria�tBertani (LB) medium (Sambrook and W Russell, 2001). Bacterial 

growth was measured in a T60UV-Visble spectrophotometer (PG Instrument, Leicestershire, UK) at 

600 nm and described as optical density 600 (OD600). When required, antibiotics were added to the 

growth media in the following concentrations: ampicillin (200 mg/ml), kanamycin (50 mg/ml) and 

tetracycline (3.5 mg/ml). 

 

Complementation of the Xcc hupB mutant strain 

The null mutant hupB was complemented through the introduction of the pLAFR3 plasmid 

carrying an intact copy of the hupB gene and its promoter region. The hupB gene and its promoter 

were amplified using primers BamHI‐hupB‐rv and EcoRI‐hupB‐fw (Table S1). The PCR product was 

cloned into the pGEMTeasy vector (Promega, USA) and then digested with EcoRI. The released 

fragment was ligated into pLAFR3 (Staskawicz et al., 1984), which had been previously digested with 

the same restriction enzyme. This construct was introduced in hupB mutant strain by biparental 

conjugation through E. coli S17. 
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Biofilm formation analysis 

Adhesion assay  

To measure the attachment of bacteria to an abiotic surface, we performed the crystal violet 

���•�•���Ç�� �����•���Œ�]�������� ���Ç�� �K�[�d�}�o�o���� ���v���� �<�}�o�š���Œ���~�K�[�d�}�}�o���� ���v���� �<�}�o�š���Œ�U�� �í�õ�õ�ô�•. Briefly, bacterial strains cultured 

overnight in PYM medium were used to inoculate YMM medium (containing 1% w/v of glucose as 

the sole carbon source) to a final OD600 of 0.1. Aliquots of 150 �…l of these suspensions were placed in 

different wells of a polystyrene microtitre plate (Orange Scientific, Braine-�o�[���o�o���µ���U Belgium) and 

incubated at 28°C for 24 h without shaking. Differences in growth between strains were rejected by 

determining the OD600 of each strain before performing the assay. Initially, the medium was carefully 

removed from each well with a pipette and wells were then washed with NaCl (0.9% w/v). Then, 

cells bound to the wells were stained with a 0.1% (w/v) crystal violet solution. After 30 min 

incubation, the remaining crystal violet solution was removed and wells were washed with distilled 

water twice. The crystal violet adhered to each well was dissolved in 150 �…l of 70% (v/v) ethanol. The 

absorbance of each well was measured with a 7520 Microplate Reader (Cambridge Technology Inc., 

Bedford, MA, USA) at 570 nm. Results are expressed as the ratio between crystal violet absorbance 

at 570 nm and growth (OD600). 

 

In vitro analysis of biofilm formation by confocal laser scanning microscopy (CLSM) 

All strains were cultured in PYM medium (supplemented with the corresponding antibiotic) 

at 28°C. Cultures were diluted 1:1000 in YMM medium and aliquots of 500 �…l were transferred to 

chambered coverglass slides containing a 1-mm thick borosilicate glass (no. 155411, Thermo 

Scientific Nunc Lab-Tek). Bacterial suspensions were cultured in those chambers for four days at 

28°C without shaking until analysis (Malamud et al., 2011). To visualize samples, bacteria were 

stained using the BacLight LIVE/DEAD viability kit (Thermo Fisher Scientific, Waltham, MA, USA). This 

kit consists of two different fluorescent dyes: Syto-9t (S-9) (highlighting viable bacteria) and 

propidium iodide (indicating dead cells). Biofilm formation was studied through an inverted confocal 
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�o���•���Œ�� �•�����v�v�]�v�P�� �u�]���Œ�}�•���}�‰���� �E�]�l�}�v�� �����o�]�‰�•���� �d���� �î�ì�ì�ì�r���î�� �~�E�]�l�}�v�U�� �D���o�À�]�o�o���U�� �E�z�U�� �h�^���•�X�� �d�Z�Œ����-dimensional 

images were generated with Image J 1.49 software from the National Institutes of Health 

(http://rsbweb.nih.gov/ij/download.html).  

 

Swimming motility assays 

Swimming assays in soft agar were carried out as described in Malamud et al. (2011). 

Bacteria were cultured in PYM medium overnight and an aliquot (3 �…l) of each strain was placed in 

the centre of Petri dishes containing NYGB medium - 0.5% (w/v) peptone extract, 0.3% (w/v) yeast 

extract and 16 ml/l glycerol - 0.25% (w/v) agar. The growth of each culture was normalized by OD600. 

Plates were incubated at 28°C and images were taken 72 h later.  

 

Study of bacterial flagella by electron microscopy 

To obtain TEM images, Formvar-coated copper grids were floated on a drop (5-10 �…l) of 

appropriately diluted bacteria for 1 min. After that, the grids plus absorbed bacteria were then 

rinsed rapidly with distilled water and floated on a solution of uranyl (2%) for 30 s. Then, the grids 

were removed with forceps, rinsed with distilled water and the excess liquid was drained off with 

the edge of a filter paper and preparations were air-dried for 5 min. Finally, the specimens were 

examined with a Zeiss LEO906 TEM (Carl Zeiss, Oberkochen, Germany) (operated at an accelerating 

voltage of 100 kV k) and photographed with a Megaview III camera (Olympus, Center Valley, PA, 

USA). 

 

Gene expression analysis by RNA extraction, cDNA synthesis and qRT-PCR 

 Xcc strains were cultured in PYM medium until they reached an OD600 between 1 

and 1.5. Bacteria were harvested, and total RNA was extracted by treatment with TRIzol 

(Thermo Fisher Scientific), following the manufacturer’s instructions. Total RNA was 

quantified by spectrometry and its integrity was checked by agarose gel run. 
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Total RNA was reversely transcribed using random primers and M-MLV RT (Promega). All 

primers used in this work (Table S1) were designed with the software Primer Express 3.0 (Applied 

Biosystems, Foster City, CA, USA). Reactions were performed using SybrGreen master mix (Roche, 

Mannheim, Germany) and a Step One Real Time-PCR system (Applied Biosystems) as previously 

described (Yaryura et al., 2015). The protocol for the qRT-PCR reactions was as follows: 50°C for 2 

min, initial denaturation at 95°C for 5 min followed by 40 cycles of 10 s at 95°C and 30 s at 60°C. qRT-

PCR data analysis and primer efficiencies were obtained using LinReg PCR software (Ramakers et al., 

2003). The 16S gene was used to standardize the expression of a given target gene; then a ratio 

between treatments was calculated using the algorithm developed by Pfaffl (Pfaffl, 2001). Relative 

expression ratios and statistical analysis were performed using fgStatistics software interface (J. A. Di 

Rienzo, personal communications). The cut-off for statistically significant differences was set as P 

value < 0.05, indicated as *. 

 

Plant growth conditions and pathogenicity assays 

The host plant in this work was C. limon cv. genova. Plants were kept under controlled 

humidity and temperature (28-30ºC) with a photoperiod of 12 h.  

 

 To carry out infection assays, bacteria were cultured in PYM medium supplemented with the 

appropriate antibiotic overnight. Aliquots of these cultures were diluted in distilled water to a final 

concentration of 1x106 CFU/ml. These bacterial suspensions were swabbed on the abaxial face of 

intact young leaves or previously injured leaves. Symptoms were observed at 30 d.p.i.  

 

 Bacterial growth in planta was quantified as previously described (Malamud et al., 2012). 

Briefly, bacterial suspensions of known concentration (1 x 108 CFU/ml) were swabbed on injured 

lemon leaves. Three samples were taken for each strain at 0, 6 and 14 d.p.i. Bacterial counts were 

determined by macerating 1-cm2 leaf disks in 0.5 ml sterile water. Suspensions were subjected to 
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serious dilutions and cultured in medium-rich plates with the corresponding antibiotic. Plates were 

incubated at 28°C, and colonies quantified after 48 h. Population data were transformed to log10 

values, and standard errors were determined. 
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SUPPORTING INFORMATION LEGENDS 

Table S1. Strains, plasmids and primers used in this work. 

Figure S1. Growth curves of the strains under study in the different culture media: PYM (A) and 

YMM (B). 

 

FIGURE LEGENDS 

Figure 1. Multiple alignment of the HupB protein in Xcc and its homologues in other species. 

Alignments were carried out using the Clustal IX 2.1 software. Identical residues are indicated with 

an asterisk (*), highly conserved (:) and less conserved (.). Grey boxes indicate the sequences of the 

�š�Z�Œ�������}�(�� �š�Z���� �r-helix structures. The proline residue (that intercalates into DNA) is shown in a black 

box. References and NCBI protein ID: xcc306_hup, X. citri subsp. citri strain 306 (AAM35959); 

xcb8004_HU, X. campestris pv. campestris strain 8004 (AAY50306); Bsub_hbs, B. subtilis strain 168 

(NP_380160); E. coli_hB, hupB of Escherichia coli strain K-12 MG1655 (NP_414974); E. coli_hA, hupA 

of E. coli strain K-12 MG1655 (NP_418428); Xfa, X. fastidiosa strain 9a5c (AAF84000).  

 

Figure 2. Biofilm formation analysis of the Xcc hupB mutant strain. (a) Microtiter plate adhesion 

assay. Crystal violet absorbance (Abs 570 nm) and OD600 ratio are represented for each strain: wild-

type strain (Xcc 306), null mutant strain (hupB) and the complemented strain (c-hupB). Error bars 

indicate standard error of the mean of three independent experiments. (b) Biofilm structures after 
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four days of inoculation: projections in the x-y plane obtained through CLSM (40X magnification); z-

axis projected images are shown below (s�����o���������Œ�•���A���ñ���…�u). 

 

Figure 3. Swimming motility assay. Aliquots (3 µl) of each culture (Xcc 306, hupB and c-hupB) in 

exponential growing phase were placed in the centre of a Petri dish containing NYGB-soft agar 

media. Plates were incubated at 28ºC for 72 hours and then, pictures were taken.  

 

Figure 4. Study of the flagellar structure in the hupB null mutant. (a) Images obtained by 

transmission electron microscopy of the flagellar structure of the wild-type strain Xcc 306, hupB 

mutant strain and the c-hupB strain. Bacteria were cultured in rich medium and harvested when 

OD600=1 was reached. Scale bar = 0.5 �…m. (b) Relative expression of flagellar genes (fliC, fliA, flgM, 

fleN, flhA, fleQ, rpoN2, flhA) between the treatment (hupB mutant strain or the c-hupB strain) and 

the control (wild-type strain Xcc 306) was estimated by qRT-PCR. Data correspond to the average of 

four independent experiments; error bars indicate standard error. Significant difference between 

treatment and control is indicated by * (p<0.05). 

 

Figure 5. Pathogenicity assay in C. limon plants. (a) Development of disease symptoms in lemon 

leaves. On the left: intact leaves were infected by swabbing with bacterial suspensions of the wild-

type strain (Xcc 306), the hupB null mutant (hupB) or the complemented strain (c-hupB) at a final 

concentration of 1x108 CFU/ml; on the right, leaves were injured before swabbing. Pictures were 

taken at 30 d.p.i. (b) In vivo growth of the Xcc strains in lemon leaves. Bacterial suspensions (1x106 

CFU/ml) were swabbed on previously injured leaves. Bacterial counts were determined at 0, 6 and 

14 d.p.i. Three independent experiments were carried out and similar results were observed.  
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