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B-cells can neutralize pathogenic molecules by targeting them with extreme specificity
using receptors secreted or expressed on their surface (antibodies). This is achieved
via molecular interactions between the paratope (i.e., the antibody residues involved
in the binding) and the interacting region (epitope) of its target molecule (antigen).
Discerning the rules that define this specificity would have profound implications for our
understanding of humoral immunogenicity and its applications. The aim of this work is to
produce improved, antibody-specific epitope predictions by exploiting features derived
from the antigens and their cognate antibodies structures, and combining them using
statistical and machine learning algorithms. We have identified several geometric and
physicochemical features that are correlated in interacting paratopes and epitopes, used
them to develop a Monte Carlo algorithm to generate putative epitopes-paratope pairs,
and train a machine-learning model to score them. We show that, by including the
structural and physicochemical properties of the paratope, we improve the prediction
of the target of a given B-cell receptor. Moreover, we demonstrate a gain in predictive
power both in terms of identifying the cognate antigen target for a given antibody and
the antibody target for a given antigen, exceeding the results of other available tools.
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INTRODUCTION

B-cells form an essential part of the adaptive immune system, as they are capable of providing
long-term protection against pathogens and harmful molecules. Their extremely specific B-cell
receptors, named immunoglobulins or antibodies, are key components in this process. Antibodies
recognize their molecular targets, termed antigens, via interactions between their binding site
(paratope) and a specific region of the antigen (epitope).

Most B-cell epitopes are discontinuous in sequence, meaning that they are composed of residues
that might be far apart in sequence and are brought together in spatial proximity by the protein
folding (1). Data describing such conformational epitopes aremainly obtained from experimentally
resolved 3D structures of antibodies co-crystallized with their target antigen, which allows a very
precise identification of the epitope residues.
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Identification of B-cell epitopes is of high importance for
many medical, immunological and biological applications
including disease control, diagnostics, and vaccine development
(2). Several experimental methods for epitope identification
are available including protein crystallography, ELISA and
peptide-chip, but in general they are expensive, time consuming,
low-throughput, or have low accuracy. Several computational
methods have been developed to assist or substitute the
experimental approaches, including BepiPred, DiscoTope,
CBtope, and ABCpred (3–6). In absence of information on the
cognate antibody, B-cell epitope prediction tools can broadly
be categorized in two groups: sequence- and structure-based
methods. As the names suggest, sequence-based methods predict
the B-cell epitopes from the protein sequence of the antigen
alone, whereas structure-based methods take into account
also their 3D structure. Many benchmark studies have, as
expected, demonstrated that structure-based methods display
superior performance compared to sequence-based methods
(7). However, even the best current structure-based methods
for B-cell epitope prediction have limited predictive power
(4). One important reason for this is that in many cases the
problem is ill-posed. If we set the task in very broad terms, we
aim at predicting whether a given surface patch of an antigen
is a potential epitope, i.e., if one or more of the many billion
antibodies potentially present in a host can target this region.
Formulated like this, most surface patches of an antigen are
potential epitopes. This has a profound impact on the way we
define an appropriate dataset for training and evaluating a B-cell
epitope prediction method, and on the limited predictive power
of B-cell epitope prediction method (4).

Moreover, in many applications, it is often more important
to understand which region of an antigen can be targeted
by a specific antibody, or by a group of antibodies, e.g., a
library or an antibody repertoire obtained via Rep-Seq (8). This
important observation has led to alternative and more well-
defined approaches being proposed to address B-cell epitope
prediction, where one seeks to predict the cognate target of
a given antibody (9, 10). This task is however very complex.
First and foremost, the data currently available to perform the
task are very scarce. Detailed information on the molecular
interactions between an antibody and its cognate antigen target is
currently available only from protein 3D structures of antibodies
co-crystallized with their target antigen, and currently the
protein databank (PDB) only contains ∼600 of such antibody-
antigen (Ab-Ag) structures. This scarceness makes it extremely
complicated to learn rules of Ab-Ag interactions. Moreover, for
these rules to be of practical use, we need the 3D structures of the
antibodies and antigens that we are investigating, that are in most
cases not available. One can potentially predict such structures
with well-established methods (11–14), but even then it will be
essential to address the effect that the accuracy of these models
will have on the performance of any epitope prediction method.
As a practical example, protein-protein molecular docking
methods can potentially be used, if both the antibody and the
antigen structure are available, and usually they demonstrate
an accuracy that is slightly superior to antigen-only prediction
methods (15, 16). However, the accuracy of docking procedures

decreases drastically when applied to structural models of the
interacting partners, especially if no additional information on
the binding site is available (17–19).

To offer an alternative solution to these problems, here we
describe an approach that exploits coarse-grained geometric and
physicochemical descriptors of the interacting partners using
a combined statistical and Machine Learning approach. We
seek to identify, in a set of known structures of antibody-
antigen protein complexes, a number of structural, geometric,
and physicochemical features that show statistical correlation
in interacting paratope-epitope pairs. Next, based on such
subset of structural features, we define an algorithm to generate
surface patches on a given antigen. We then develop a
neural network to discriminate the cognate antibody target
(the epitope) from other geometrically similar surface patches.
We investigate if including antibody-derived features in the
training leads to a better accuracy in the prediction of
the correct epitope, and improves the identification of the
correct target for a given antibody from a pool of antigens,
and the correct target of a given antigen from a pool of
antibody targets.

MATERIALS AND METHODS

Structural Dataset
Solved 3D structures of antibodies in complex with their
cognate antigen were obtained from IEDB-3D database using the
search criteria “Receptor-type: BCR heavy-light” (20, 21). These
results were combined with all the unpublished antibody-antigen
structures deposited in the PDB, identified using the antibody
specific Hidden Markov Models from LYRA (14). Entries of
antibodies interacting with other antibodies or T cell receptors
were excluded, as were entries where the size of the antigen target
was <60 amino acids and entries with a resolution worse than
3 Å. This resulted in 857 antibody-antigen complexes. For each
structure, the biological unit was used to make sure we had the
functional form of the antigen.

To train and evaluate models without overfitting and over-
evaluating predictive power, we partitioned the structures using
the tool UCLUST (22) on both the antibody and the antigen
sequence. For the antibody clustering, by setting a threshold
of 90% sequence identity, we obtained 335 antibody clusters.
For the antigen clustering, we obtained 264 cluster using a
similarity threshold of 70% sequence identity. These antibody
and antigen clusters were combined in a way that all structures
with either more than 90% antibody sequence identity or 70%
antigen sequence identity were in the same clusters. We obtained
202 antigen-antibody clusters.

A total of 6 merged clusters, consisting of 6 antigen clusters
and 8 antibodies clusters, were left out as a final, independent test
set (Table S1). The remaining 196 clusters were randomly split
into 5 partitions to be used for cross-validation (Figure S1). In
each partition, we selected a single representative per antibody
cluster, but we retained all complexes in the same antigen cluster.
In this way, in our training data we have complexes of the same
antigen with different antibody, binding to the same and to
different epitopes.
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We then defined the binding residues of both paratope and
epitope as all exposed residues having a distance between any
heavy atoms shorter than 4 Å to any residues in the antigen
and antibody, respectively. Exposed residues are defined as those
containing at least one heavy atom with more than 2.5 Å2

exposed surface area, calculated using PyMOL’s python API (23).
We should underline that the paratope residues were defined
on the actual structure and were not predicted. All data and
information about the data and partitioning used in this study
can be obtained at http://www.cbs.dtu.dk/suppl/immunology/
ASE_Pred/.

Features
We calculated a number of features on the complexes in our
training data set, that were then used to generate putative epitope
patches, and to train the algorithm. The complete set of features
is described in Table 1.

The principal components of the Cα atom coordinates,
Zernike moments and other features were used to geometrically
represent the surface patches. First, we calculated the three
principal components, namely PC1, PC2, and PC3, of the Cα

atom coordinates of all residues in a patch, as illustrated in
Figure 1C. The size of a patch was defined as the number
of residues included in the patch and the patch density was
calculated by the average number of neighbor residues for each
residue in the patch. The neighboring residues were defined
as exposed residues within a 6 Å radius. The max, min, and
average Relative Solvent Accessibility (RSA) were calculated
using PyMOL as the maximum, minimum and average relative
surface area of the residues in the patch. Finally, to describe
the structural shape of a patch, we represented each patch
as a series of 3D Zernike Moments, that have earlier been
used to compare surfaces of proteins and also for antibody
binding site classification (24). The Zernike Moments, being
translation, scale and rotation invariant, provide a detailed yet
robust representation of a surface. In short, the Zernike moments
give a compact description of an image by deconvoluting it
into a set of primitive functions centered in the middle of the
image, each describing a different type of shape. The Zernike
Moments were calculated using a modified version of the python
package by Scott Grandison et al. (25), where all the atoms
in the convex hull region of the patch are used. Examples of
the shape description of each moment are shown in Figure 1D.
To optimize the computational time and focus on a coarse
description of the patch, less dependent on the correct side
chain positioning in the structure, only Zernike Moments of
order 3 and 4 mainly describing the vertical and horizontal tilts
were included.

The amino acid composition and the conjoint triads were
used to describe the patch composition statistics. The amino acid
composition was calculated as the frequency of each amino acid
type in the patch. The conjoint triads are based on structural
neighbors (illustrated in Figures 1A,B) (26). Amino acids were
assigned to one out of 7 classes displayed in Figure 1A. For a
residue X in the patch, all possible triad combinations N1XN2,
where N1 and N2 are residues that are structural neighbors of
X, were identified and labeled as the tuple [C(N1), C(X), C(N2)],

where C() is the class of a residue. Finally, the frequencies of the
total 196 non-directional triad types were computed.

Finally, a few features were included describing the
physicochemical characteristics of the patch. The exposed
acceptor and donor atoms were calculated as the number
of exposed h-bond acceptors and donor atoms, respectively,
regardless of their actual involvement in any h-bond in the
original structure. The hydrophobicity score was calculated by
counting the number of exposed carbon atoms with a distance
to any exposed acceptor/donor atom of more than 2.5 Å.
Additionally, the number of positively and negatively charged
residues and number of aromatic residues were included.

Generating Surface Patches
Surface patches were generated using a Monte Carlo (MC)
approach (27). The algorithm starts from a random surface
exposed residue (at least one atom exposed more than >2.5 Å2),
and each MC move can either remove a residue from the current
patch, add a residue among the patch’s neighboring surface
residues, or swap a patch residue with a neighbor one. The moves
are then accepted or rejected using the Metropolis criterion.

P = min(e−!E/T , 1)

where P is the probability to accept the move, T is a scaling factor
that is set to 20 at the beginning of the simulation and reduced
over 500 iterations by a factor of 0.985 in each MC step ending at
T = 0.01045, and E is the following energy function, calculated
over a set of features described later:

E =

∑

Xi∈F

(

Xi − Xi

σi

)2

where Xi is a feature from the set of features F, and Xi, σi are
its mean and standard deviation, respectively. Here, the set of
features F includes the three ratios between the three principal
components, PC1, PC2, and PC3 of the patch and the paratope,
the ratio of the size of the patch to the size of the paratope, the
ratio between the summed residue surface area of the patch and
the surface of the paratope, and the ratio between paratope and
epitope patch density.

The mean and standard deviation values of each feature were
determined from the actual epitope-paratope pairs in a cross-
validated manner, so that the patches generated for any antigen
in a given partition are constructed from values obtained from
the remaining 4 partitions. Using this MC approach with a total
of 500 MCmoves per simulation, 300 patches (MC patches) were
generated per antigen.

Training Set
In order to develop a function for scoring putative
epitope/paratope patches, we first defined a training set
composed of real and MC generated epitope-paratope pairs.
Target values were assigned to MC generated epitope-paratope
pairs based on their overlap with the real pairs as the product
of the precision (proportion of residues in the patch that are
part of the actual epitope) and recall (proportion of epitope
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TABLE 1 | Description of the feature used to describe patches.

Feature Size Description Model

Amino acid composition 20 Frequency of given amino acid type in patch Both

Exposed Donors/Acceptors 2 Amount of exposed donor/acceptor atoms Both

Hydrophobicity score 1 Amount of exposed carbon atoms with distance >2.5 Å to an exposed donor/acceptor atom Both

Aromatic/Positive/Negative residues 3 Amount of aromatic and positively and negatively charged residues Both

Principal Components 3 Principal components calculated on x, y, z coordinates. Both

Size 1 Number of residues within the patch Both

Patch density 1 Average number of neighbors in patch Both

RSA max, min & mean 3 Maximum, minimum and average RSA of patch residues. Antigen

Structural Conjoint Triads 196 Structural conjoint triads based on neighboring residues on surface. Both

Zernike Moments 7 4th order Zernike Moments excluding 0th and 1st. Both

The first four rows (gray) are physio-chemical features, applied in all models. The following three rows (white) are simple structural features also applied in all models. The last three rows

(light gray) are more complex structural features only used in the Antigen and the Full model.

FIGURE 1 | (A) Conjoint Triads amino acid classes and representation of method on a sequence level. (B) Structural representation of Conjoint Triads classes
mapped to an epitope patch. (C) The three principal components illustrated on an epitope patch. (D) Illustration of 4th order of Zernike Moments’ descriptive shape
excluding order 0 and 1.

residues included in the patch). This target value is hence 1
if the patch overlaps perfectly with the actual epitope, and
zero if no overlap is present. To evaluate how well a model
predicts patches overlapping to the real epitope, we defined

patches with a target value above 0.25 as a highly overlapping
(HO) patch.

We included the actual paratope-epitope pair, together with
up to 10 non-redundant epitope-overlapping MC patches (target
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value >0.0075) from each complex in the training set. These
were selected using a Hobohm1 (28) like approach by sorting
the patches based on their target value and iteratively including
only patches with<60% overlap in residues to patches previously
included. Similarly, up to 50 non-redundant MC patches with
target value≤0.0075 were added, with the difference of not being
sorted on their target value.

Moreover, for each complex, we included 10 mis-paired
paratope-epitope patches, obtained by pairing the real epitope
patch with the paratope of an antibody from a different antibody
cluster. Given the very high specificity of antibodies, we assumed
that they do not bind a random antigen, and therefore assigned a
target score of 0 to the mis-paired patches.

Neural Network Architecture and Training
A Feed Forward Neural Networks (FFNN) model was
constructed using the python package Keras (29), with two
hidden layers each having 25 neurons, sigmoid activation
function at all neurons and ADAM as the optimizing function.
Three models were made (Full, Minimal and Antigen model)
using different features to encode the patches. Table 1 shows a
summary of which features were used in the different models.
The Full model included all calculated features, i.e., one data
point consists of 471 features, where 234 describe the paratope
and 237 describe the antigen patch. The Minimal model did
not include the last three feature sets resulting in 62 features,
31 for each antibody and antigen patch. The Antigen model
was similar to the Full model, however, only including the 237
antigen features.

Feed forward neural networks were trained and their
performance were evaluated using a nested 5 partition 10-fold
cross validation: one of the 5 partitions was in turn left out
from the model training, and then the remaining 4 partitions
were next split into 10 random sub-partitions maintaining the
original clustering, and models were trained using 10-fold cross-
validation with early stopping. Finally, the ensemble of these 10
models was used to predict the left-out partition in the outer
5-fold cross validation.

RESULTS

As an initial analysis, we investigated correlations between
structural and physicochemical properties of actual paratope and
epitope patches. We compared the correlations of various
structural features (PC1-3, size, and surface) measured
on both the paratope and the epitope patch, as shown
in Figure 2.

As expected, these analyses demonstrated a high correlation
between corresponding structural properties of the paratope
and epitope; i.e., the size of the epitope is to a high degree
predictable from the paratope size. The same holds for
the epitope shape (PCs) and surface. Similar results were
obtained for physicochemical features: hydrophobicity, h-
bond acceptors and donors. Unsurprisingly, the number of
available acceptors in a patch correlates with the number of
available donors in the corresponding partner patch. These
observations overall suggest that information contained

within the antibody is of potentially use to gain insight
into the shape and physicochemical properties of the
cognate epitope.

In order to prove that the observed correlations could be
used to generate an improved prediction, we tested different
prediction models each trained and evaluated using nested
cross-validation on the training data (for detail on model
architecture, training hyper-parameters and model features see
methods). We trained 3 such methods using different subsets
of the features from each patch. The first model was trained on
the Antigen features only (i.e., geometrical properties of the
antigen patch combined with amino acid composition, amount
of exposed Donor/Acceptor atoms, hydrophobicity, and amount
of Aromatic/Positive/Negative residues). Here, no information
on the paratope patch was included. The second model was
a Minimal model, which was trained using a minimal set of
features of antigen and paratope patches. The third was the Full
model expanding the Minimal model to include the additional
features of structural conjoint triads, Zernike Moments, and
maximal, minimal and average relative surface exposure of
the paratope and epitope patches (for details see materials
and methods).

Epitope Ranking
We evaluated the performance of each of the three models by
scoring, for each structure in the independent test partition, the
actual epitope and 300 MC patches. The 301 patches were sorted
according to their score, and the performance was reported as
the relative number of MC patches with a score higher than
the epitope (Frank). In this way, a perfect prediction where the
epitope is ranked at the top of the list would get a Frank score
of 0, and a Frank score of 0.5 would correspond to a random
prediction (30, 31).

In Figure 3, we show the results of this analysis for
the 3 models in terms of a boxplots of the Frank values
for each of the three prediction. These plots confirm the
superior performance of the Full model compared to the
other two models with a median rank performance of
7.4% compared to performance values of 10.9 and 15%
for the minimal and antigen models respectively. The
results demonstrate that incorporating information of the
antibody in the prediction model results in a high gain in
predictive power.

Figure 4 provides another way to illustrate the predictive
performance of the different models. Here, we show how many
of the structures have a highly overlapping patch within the
top 1, 5, 10, 15, 20 up to top 100 MC patches for each of the
3 models. Additionally, we compared the performance of each
models to DiscoTope-2.0. Here, the patch score was calculated
as the sum of DiscoTope predictions over all residues in a given
patch. This analysis again clearly demonstrates that the Full
model has the highest performance of all models confirming that
the predictive power is increased by integrating information from
the cognate antibody. It is also interesting to observe that even
the Antigen model achieves results that are slightly improved
compared to Discotope-2.0.
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FIGURE 2 | Correlation matrix of structural and physicochemical features of the true paired paratope and epitope patches.

FIGURE 3 | Box plot showing the distribution of the real epitope ranks within
each Antibody-Antigen structure for the three prediction models; Antigen,
Minimal, and Full.

Antibody-Antigen Pairing
One of the main goals of an antibody-guided epitope prediction
tool would be to identify the cognate antigen target of a given
antibody from a pool of potential antigens. To benchmark the
tool in such a setting, we scored each “true” epitope patch
against all paratope patches (from antibodies with different
epitopes) within each data partition and registered the rank
of the true paratope in this sorted list (Antibody Rank). This
benchmark resulted in average and median ranks of 23.7 and
15.6%, respectively. Further details on the different performance
measures used are given in Table 2. Next, for each antibody,
we similarly score the paratope against the epitopes from all
structures within the given data partition, and identified the rank
of the cognate epitope patch within this sorted list (Antigen

FIGURE 4 | The ability of the four models’ (Antigen: green, Minimal: pink, Full:
purple, and DiscoTope-2.0: orange) to identify high overlapping patches.
X-axis indicating number of top predicted patches included and Y-axis
showing the percentage of structures having at least one high overlapping
within the selected pool.

Rank), resulting in an average rank of 24.8% and a median
rank of 17.5%. These analyses demonstrate that the model is
capable of differentiating between real and mis-paired epitope-
paratope pairs.

As the PCs are highly correlated between paratope and epitope
patches, one could speculate that the above performance values
were driven by these structural similarities. To investigate this,
we repeated the experiment only including paratopes of similar
shape. We performed a K-means clustering (with 5 clusters)
within each test partition, based on a vector of the three PCs of
the paratope. We then recalculated the ranking of each paratope
only against paratopes in the same cluster, hence with similar PCs
(Structurally Similar Antibody Rank). This resulted in an average
Structurally Similar Antibody Rank of 25.5% (compared to the
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TABLE 2 | Description of the ranking measurements used to describe performance of the models.

Measurement Description

Epitope Rank The Frank of the real epitope patch against the ∼300 Monte Carlo patches.

Antigen Rank The Frank of the cognate epitope patch toward a given paratope against a pool of epitope patches from other antigens.

Antibody Rank The Frank of the cognate paratope patch toward a given epitope against a pool of paratopes from other antibodies.

Structurally Similar Antibody Rank The Frank of the cognate paratope patch toward a given epitope against a pool of paratopes from other antibodies with
structurally similar paratopes.

Monte Carlo Antibody Rank The Frank of the cognate paratope patch toward a given antigen against a pool of paratopes from antibodies with structurally
similar paratopes. The paratope score is defined by the average of top 5 scoring Monte Carlo patches.

Monte Carlo Antigen Rank The Frank of the cognate epitope of an antigen toward a given paratope against a pool of epitopes from other antigens with
structurally similar paratopes. The antigens score is defined by the average of top 5 scoring Monte Carlo patches.

First HO Patch The Frank of the highest predicted patch highly overlapping the real epitope (target value above 0.25) in the list of predicted
antigen patches sorted by prediction value.

average Antibody Rank of 23.7% obtained when comparing to
all paratopes). This result indicates that the geometric differences
(i.e., PCs) are not the main drivers of the predictive performance
of the model.

In the benchmark calculations conducted so far, we have
focused on identifying surface patches corresponding to or
overlapping the cognate epitope of a given antibody. Another
important application of the proposed method would be to
identify the cognate antibody target of an antigen without
involving information about the actual epitope. To assess to what
degree this was possible, we scored the 300 MC patches of an
antigen against all paratopes with similar structural properties
to the true paratope (i.e., within the PC cluster of the true
paratope) and assigned a score to each paratope from the top
5 MC patch predictions. The paratopes were then sorted based
on this score and the rank of the true paratope reported (Monte
Carlo Antibody Rank). Doing this, resulted in an average Monte
Carlo Antibody Rank of 31.2%.

Finally, and with the intent of benchmarking the performance
of the model for selecting the correct antigen target given
an antibody, for each antibody we predicted its pairing to all
antigens with similar structural epitope properties (i.e., within
the same epitope PC cluster). We did this by scoring all 300
MC patches of a given antigen to the given paratope patch, and
assigning a single score as the average of the top 5 MC patch
predictions. All antigens were then sorted by this score, and the
rank of the true antigen was measured (Monte Carlo Antigen
Rank). This resulted in an average Monte Carlo Antigen Rank
of 29.9%, showing similar performance as the antibody selection.

While these latter results are not striking, they demonstrate
how, using the proposed framework, we are able to construct
models that are capable to a high degree of identifying both
the correct antibody target for a given antigen, and the correct
antigen target of a given antibody.

Independent Test Set
Finally, the model was evaluated on the independent test data set
consisting of eight structures non-redundant to the training data.
We generated 300 MC patches for each antigen and the rank of
the highest scored HO patch in this set of patches was recorded
(First HORank). Next, the true epitope was included and ranked
(Epitope Patch Rank). Additionally, we evaluated the ability of

each tool of identifying the correct antigen (Antigen rank) given
the paratope and the correct antibody (Antibody Rank) given
the epitope.

This benchmark was performed on the Full model, on
Discotope-2.0, and on ClusPro (16, 32), an antibody-specific
docking protocol. Again for DiscoTope, the patch score was
calculated as the sum of the DiscoTope score for all residues
in the given patch. For ClusPro, as recommended, we used the
cluster size as patch score. For the Antigen and Antibody ranks,
as before, the test was conducted by ranking the score of the
true epitope patch to the score of the epitope patches from the
other 7 antigens in the benchmark when paired with the actual
paratope, and by ranking the true paratope patch to the paratopes
of the other 7 antibodies when paired with the actual epitope. The
results of the First HO rank and Epitope Patch rank comparison
between the Antigen model, the Full model and Discotope-2.0
are included inTable 3, and demonstrate a consistently improved
performance of the Full model. We observe that the rank of the
first high overlapping patch (First HO rank) in more than half of
the cases (175) is lower than the rank of the true epitope. This
suggests both that the Monte Carlo generation algorithm is in
more cases capable of generating patches that structurally overlap
the true epitope, but also that there is room for improvements
in the prediction model (the actual epitope should ideally be
ranked at the top). For our models, we always generate a total
amount of 300 MC patches, but ClusPro generates a variable
number of solutions, usually between 20 and 30. To perform a fair
comparison against ClusPro, we reduce the MC patches to ∼30
patches per structure by using a Hobohm 1 approach, sorting the
patches in a given structure by prediction value and excluding
any patches sharing 35% or more of its residues with any other
patch higher up on the list (Table 4). We observe that, though
the Full model and ClusPro have a similar ability to identify HO
patches, ClusPro has almost no predictive power in pairing the
right epitope and paratope together (Antigen andAntibody ranks
values are close to 50%).

DISCUSSION

Prediction of B cell epitopes has proven extremely challenging.
One reason for this is the ill posed question most often put
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TABLE 3 | Benchmark of 8 antibody-antigen PDB structures non-redundant to training, comparing DiscoTope-2.0, the Antigen Model and the Full Model developed here.

PDB ID DiscoTope-2.0 Antigen model Full model

Epitope patch rank (%) First HO rank(%) Epitope patch rank(%) First HO rank(%) Epitope patch rank(%) First HO rank(%)

3RKD 95.3 44.7 60.1 0 72.7 0.3

4EDW 52.2 53 39.2 19 10.6 25.3

5B3J 3.3 22 31.8 56.3 0.3 17.3

5DHV 92 51 75 12.6 7.6 8.3

5SY8 5.3 0.3 53.4 0.3 22.2 0

5TZ2 72.8 50.3 11.6 10.6 2.6 9.6

5TZT 0 39.3 19.9 5.0 87.3 20.0

5TZU 54.2 43.7 20.2 0.6 2.6 0.3

AVERAGE 38 46.9 39 13.1 25.8 10.3

MEDIAN 44.2 53.2 35.5 7.8 9.1 9.1

Epitope Patch Rank indicates how well each model ranks the real epitope patch within the 300 Monte Carlo patches. First HO patch shows how high the first high overlapping patch

(target value > 0.25) ranks within the set of 300 MC patches. A rank of 0% means it was ranked highest and a rank of 100% is ranked lowest or that no HO patch exists for the structure.

TABLE 4 | Benchmark of 8 antibody-antigen PDB structures non-redundant to training, comparing DiscoTope-2.0, ClusPro and the Full Model developed here.

PDB ID DiscoTope-2.0 Full Model ClusPro

First HO rank(%) First HO rank(%) Antigen rank(%) Antibody rank(%) First HO rank(%) Antigen rank(%) Antibody rank(%)

3RKD 86.6 4.5 87.5 25 0 75 75

4EDW 79.1 100 37.5 37.5 19 25 12.5

5B3J 59.8 22.3 0 0 43.3 87.5 50

5DHV 33.3 37.5 12.5 0 100 50 62.5

5SY8 40 0 12.5 12.5 23.3 37.5 87.5

5TZ2 92.3 21.4 0 0 0 50 75

5TZT 32.4 30 62.5 37.5 100 37.5 62.5

5TZU 86.3 4.3 12.5 0 0 0 0

AVERAGE 63.8 27.5 28.1 14.1 35.7 45.3 53.1

MEDIAN 69.5 21.9 12.5 6.2 21.2 43.8 62.5

First HO patch shows how high the first high overlapping patch (target value > 0.25) ranks within the set of non-redundant MC patches. Antigen and Antibody ranking show how well the

Model can select the correct antigen given a paratope and select the correct antibody given an epitope, respectively. Patch scores for the Discotope-2.0 were calculated as described

in the text. A rank of 0% means it was ranked highest and a rank of 100% is ranked lowest or that no HO patch exists for the structure.

forward when seeking to predict B cell epitopes, where the aim
is to predict whether a given surface patch of an antigen is
a potential epitope, i.e., if one or more of the many billion
antibodies potentially present in a host can target this region.
In this current study, we formulate a more precise question,
and ask if we can predict the epitope target of a given cognate
antibody. The answer to this question is yes, as results of this
study illustrates the substantial gain of including information
on the cognate antibody for specific epitope predictions. Using
3D structures of antibody-antigen complexes, our analyses
identified multiple structural and physicochemical features that
correlate between interacting paratope and epitope patches. By
using these features in a Feed Forward Neural Network, we
demonstrated that even simple features extracted from cognate
antibody improved the accuracy in predicting specific epitopes.
Additionally, we showed that more complex features, such as
Zernike Moments, could further improve the predictive power
of the model. Comparing to DiscoTope-2.0, a structural B-cell

epitope predictor that only uses the antigen structure, we
showed both in cross-validation and on an independent dataset
of structures, that our model performed better in identifying
patches overlapping with real epitope patch. Additionally, the
model showed promising results in pairing a given antibody
to its cognate antigen from a pool of antigens and vice
versa. When compared to ClusPro, an antibody-specific docking
protocol, we observed that our model, but not DiscoTope, had
a similar predictive power to identify the epitopes. Additionally,
using ClusPro to select the correct antibody-antigen pairs, we
obtain results close to random, whereas our model could to a
fair degree perform this task correctly. These results indicate
the that our model has not only to a high degree learned
to predict the correct epitope, but also to pair it with the
correct antibody.

Despite the very promising results of our model, it is clear
that the predictions are far from perfect. This in particular true
when it comes to identifying the correct antigen target for a given
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antibody and vice versa the correct antibody target for a given
antigen. On a repertoire-scale, where more than 106 antibodies
can be isolated, our current results of identifying an antibody
for a specific epitope in the top ∼31% of hits would still mean
testing 3.1∗105 antibodies, which cannot realistically be tested for
specificity using conventional experimental approaches. Thus,
significant further improvements in prediction performance are
necessary to enable such broad applications. However, for many
applications, the antibody repertoire that needs to be considered
can be narrowed by additional information, such as in the
case of vaccine induced plasmablasts, and the identification of
clusters in antibody sequences that are expected to have related
specificity would allow to limit sequences to be considered to
a set of cluster representatives. We expect that going forward
there will be an iterative improvement of both experimental
and computational approaches to address these challenging
questions as there has been for predictions of T cell epitopes,
and have here confirmed the feasibility of improving our ability
to predict B cell epitopes by developing antibody specific
prediction models.

One important explanation for the relative poor predictive
model of our model is lack of training data. By downsampling
our training data, we can show (data not shown) that the
amount of high quality data (i.e., 3D structural data) is still
too limited, and that the performance of the method improves
significantly as more structures are included in its training. Also,
we often observe that the actual epitope is not scored in the
very top of the prediction list, when compared to MC patches.
Adding more data and more features to the model might lead to
future improvements.

A second caveat is that the current results, though focusing
on coarse-grained descriptors, have been generated on solved
structures rather than on models. Kilambi and colleagues have
investigated how docking methods can be used to discriminate
between cognate and non-cognate antibody-antigen pairs (33).
Analyzing the native-bound structure of 17 antibody-antigens
complexes, they could demonstrate a very high performance,
and in 80% of the cases rank the cognate antibody as the
top target for a given antibody. However, when using modeled
antibodies structures in the benchmark that number went
down to 12%. In our work, we likewise benchmark the model
performance using the native structure of the bound antigen-
antibody complexes, and even though the modeling framework
used here is more coarse-grained compared to that underlying
protein docking, we would still expect some drop in performance

when applying the framework to unbound or modeled antibody
and antigen structures.

Also, the current approach depends on the structural
properties of the antibody paratope, that are used when
generating epitope-like patches on the surface of the antigens.
Given this, we expect the performance to be affected when
using predicted paratope patches. Nevertheless, in the last
few years a plethora of methods for antibody structure and
paratope prediction have been developed, inmost cases achieving
extremely high accuracy (34–36).

Even with the aforementioned limitations, we believe that our
approach, that uses a statistical and machine learning approach
to successfully include antibody information in B-cell epitope
prediction, can be of great importance in many applications,
such as in silico antibody library screening, identification of
antibody targets for vaccine development and immunotherapy,
and analysis of antibody cross-reactivity.
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