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ABSTRACT: With an emphasis on unitarity and CPT requirements, we study the inclu-
sion of CP-violating processes in baryogenesis at next-to-leading order, particularly those
involving the top Yukawa interaction in leptogenesis. We show that there are more con-
tributions than previously considered, but also important cancellations. Some of these
involve the interference of connected with disconnected diagrams. We also discuss on the
application of the Kinoshita-Lee-Nauenberg theorem to treat the infrared divergences that
are common at next-to-leading order. Finally, we calculate the CP asymmetry in the
three-body decay of a sterile neutrino into a lepton and top quarks.
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1 Introduction

In many baryogenesis scenarios, notably leptogenesis in seesaw models of neutrino masses,
the main source of CP violation is typically the out-of-equilibrium decay of a heavy particle,
like a sterile neutrino with mass M. Here CP violation appears at fourth order in some
couplings and it is relatively simple to keep track of all CP-violating processes at that order.
However, there are some motivations to consider next-to-leading order (NLO) contributions
to the CP-violating source, like those due to the Standard Model (SM) Yukawa or gauge
interactions. Indeed, these may actually be dominant at high temperatures (7" 2 M), while
at lower temperatures they can be used to check the precision of leading order results.
Moreover, NLO computations rise interesting theoretical issues.

In standard (type I) leptogenesis, NLO CP-violating processes due to Yukawa and
gauge interactions have been incorporated first in [1-3] under the hierarchical limit of
sterile neutrino masses, which yields CP asymmetries proportional to those in decays. The
validity of this hierarchical limit was analyzed in [4, 5] via the explicit calculation of CP-
violating processes involving top-Yukawa and gauge interactions. Here we show that there
are additional, equally important contributions to those formerly considered, some of which
lead to important cancellations that are a consequence of unitarity and CPT invariance.
Notably, interferences between connected and disconnected diagrams are crucial in this
regard.

Special attention to unitarity conditions on CP-violating scatterings was given in [6]
in a neutron portal baryogenesis scenario (see also [7, 8]). In particular, the authors find
that the generation of an asymmetry from scatterings with only a single out-of-equilibrium
heavy particle is not possible. Here we also analyze the validity of this condition in general.

Furthermore, it is interesting to mention the approach that has been taken in [9],
where a relation between the CP-violating rates and finite-temperature real-time corre-
lation functions was derived. This allowed the authors to obtain explicit expressions at
NLO of the CP-violating rates in the hierarchical limit of sterile neutrino masses. Here we



calculate the in-vacuum CP asymmetry in the three-body decay of a singlet neutrino at
@) (/\f), for arbitrary values of the sterile neutrino masses (with \; being the top Yukawa
coupling). However, it is out of the goal of this paper to perform the full computation of all
CP-violating rates at O ()\%), and therefore we cannot verify their result. This remains an
interesting check for future work. Also notice that leading thermal corrections to the CP
asymmetry in Majorana neutrino decays, at first order in the SM couplings, were computed
in [10] and [11], in the limit of nearly degenerate and hierarchical singlet neutrino masses,
respectively. However, in those works the asymmetries at zero temperature were calculated
at zeroth order in the SM couplings.

Infrared divergences, which are common in NLO calculations, have typically been
cured with thermal masses. However, as pointed out in [12] (see also [13-21] and the
review [22]), these divergences cancel in a more fundamental way by including all processes
at a given order in the couplings, as demanded by the Kinoshita-Lee-Nauenberg (KLN)
theorem [23, 24|, which also has its roots in unitarity. Hence, calculations in this work will
be done following this approach.

Actually, as explained in detail in [25], the full treatment of infrared divergences in
the Boltzmann equations (BE) is more involved than the one of vacuum cross sections,
where cancellations are guaranteed by the KLN theorem. Indeed, the squared matrix
elements of virtual and real corrections to a given process are multiplied by different sets
of distribution functions in the BE, given that real corrections involve additional soft and
collinear particles. Moreover, the distribution function of bosons diverges as 1/FE for small
momenta, bringing a more severe infrared divergence than the logarithmic ones at zero
temperature. As also shown in [25], it is possible to group the NLO corrections to the BE
into a temperature-dependent and a temperature-independent part. This last one involves
only vacuum S-matrix elements and it is the only one we will consider in this work.

The paper is organized as follows. In Sec. 2 we study some general conditions on
baryogenesis derived from unitarity and CPT symmetry. Using Cutkosky rules we show
in Sec. 3 how, given a certain contribution to a CP-violating process, find another one
with exactly the opposite value, so that the conditions found in Sec. 2 are satisfied. The
CP asymmetry in the three-body decay of a sterile neutrino into a lepton and top quarks
is calculated in Sec. 4, together with some discussions on infrared divergences. Finally,
in Sec. 5 we summarize the main results and comment on possible directions for further
analysis.

2 General requirements from unitarity

A widely used and simple approximation to follow the evolution of lepton and baryon
asymmetries is to set classical BE in an expanding universe, with quantum effects entering
only in the calculation of cross sections and decay rates. Moreover, when CP violation
is small, an additional good approximation is to linearize the transport equations in the
CP-violating quantities. This leads to equations with two types of terms: the so called
“washout” terms, proportional to number density asymmetries (reflecting the tendency



of the system to approach the equilibrium situation of vanishing asymmetries), and the
“source” terms, proportional to the CP asymmetries per scattering or decay process.

Here we are only interested on outlining some general unitarity-based conditions that
apply to the source terms. Although the most basic conditions are well known (see e.g. [26,
27]), we make an additional remark and show, in this and the following section, how to
apply it in connection with previous works including NLO corrections to the source terms.
For simplicity we will neglect quantum statistical effects in the transport equations, hence
the resulting equilibrium distribution functions will follow the classical Maxwell-Boltzmann
law. The conclusions can be generalized following, e.g., the discussions in [26, 27].

Let us start by writing the BE for the distribution function f, = f,(p,t) of a particle
whose identity and polarization are collectively denoted by “a” (e.g., a might be a SM lepton
with a definite helicity), and the momentum p is specified in parentheses if necessary to
avoid confusion. Given the subtleties that are explained next, it is more convenient to
consider the BE for f, before integrating over the momentum of a, namely

Lifa) =) A |AY = a X))’ = fafx |Ala X = V)P (2.1)
XY
For clarity we have simplified the notation: L denotes the Liouville operator, which in a
Robertson-Walker metric is given by

2 0fa

Lit) =BG~ HO 5

with H(t) being the Hubble rate as a function of time and F the energy of the particle.
Moreover, A(i — j) is the amplitude for the transition i — j, X and Y denote sets with
an arbitrary number of particles, fx ) = HrEX(yGY) Ja(y), and ZX,Y is the sum over all
possible sets of particles and corresponding phase space,

1
);/ — Z 2/dedHy(27T)454(pa+PX_PY) :

all particle sets

Here Py (y) = erX(er) Da(y)» P 18 the momentum of particle z, dllx(y) = erX(er) dma(y)
and

9z d3pa:
(2r)3 2E,

with g, the number of internal degrees of freedom of .

dr, =

An important consideration is whether a process like Xa(p) — Ya(p), that leaves the
number of “a” particles and their momentum invariant, should be included in Eq. 2.1. It
might seem that this issue is irrelevant, given that the contribution of such process should
be negligible when integrating over all possible momenta. However, it turns out that there
are in general finite contributions to Xa(p) — Ya(p) coming from the interference of
connected with disconnected diagrams, as those depicted in Fig. 1. Then one may choose
between, (i) explicitly exclude Xa(p) — Ya(p) from the BE for fu(p,t), or (ii) include
it both in the production and destruction terms, with opposite signs, so that the overall
contribution is null. Of course (i) and (ii) are equivalent, but (ii) makes it neater to apply



the unitarity conditions below, which involve a sum over all possible initial or final states.
Therefore we will use the approach (ii) in this work. Moreover, for our purposes it is enough
to take “a” to be a fermion. Hence, the amplitude of processes involving two or more a(p)
in the initial or final state is zero, and therefore they do not contribute to the BE or the
unitarity conditions.

Similarly to Eq. 2.1, the BE for the distribution function of the antiparticle a is

P S o2 _ 5 S (2
Lifa) =) fr|AY »a X)) — fafg|A@X = V). (2.2)
XY
We are interested in possible differences in the evolution of f,; and f5, therefore we subtract

Eq. 2.2 to Eq. 2.1. At lowest (linear) order in the CP-odd quantities A|A(i — j)|* =
|AGi — §)|? — |A@i — J)|” and Af; = f; — f;, the subtraction yields

LIAf]) =) AJAY = a X)PP = fafxAlA(@ X = Y) +
XY

DA AY = a X)P = (Afa+ Afx)[Ala X 5 V) .
XY

(2.3)

The terms in the second line are proportional to Af; and hence give the washout part of
the BE, while the source terms in the first line are of prime importance for our analysis,
since no asymmetry Af; can be generated when they are zero.

The source part of the BE has contributions from: (I) -the subtraction of- production
processes of a and a, (II) -the subtraction of- destruction processes of a and a. Unitarity
and CPT imply that

Y AJA@X »Y)P=0. (2.4)
Y

Therefore the total contribution of the destruction terms to the source is zero.
Unitarity combined with CPT symmetry also implies

Y AIAY »aX)P=0. (2.5)
Y

This condition -fortunately- cannot be applied directly to the BE because the probabilities
|A(Y — a X)|? enter weighted by the distribution functions of the particles in each set Y.

—B/T 1 therefore if all the particles

However, for a particle in equilibrium, f = f°4 = e
belonging to all possible sets Y are in equilibrium, fy would be the same for all Y -fixing
FE, and Ex-, namely fy = e~ (FatEx)/T This fact combined with the condition in Eq. 2.5
would imply a null source term (thus arriving at the Sakharov third condition [28]).

Next assume that there is a particle NV belonging to at least one of the sets Y, that is
out of equilibrium. Because of the preceding argument, if we write fx = fy' + (/v — fx)

it is clear that

ST AJANY = a X)[P+ Y 1 AJAYT s a X)) =0,
Y’ vy

There could eventually be other conserved quantities besides the energy, but they would also appear
as linear combinations in the exponential and therefore the conclusions would not change.



where all the particles belonging to Y/, Y” are taken to be in equilibrium. Therefore, the
BE at linear order in the CP-odd quantities and with only one species N being out of
equilibrium, necessarily has the form

LIAf) = Y (AR AJANY! = aX)[P=) 7 (Afa+ Afx = Afy) [A(X = V),
XY XY

(2.6)
where we have also used the CPT condition |A(Y — a X)|* = ’A(d X = }7)‘2 to simplify
the washout term. Note that up to this point the discussion has been very general, with
no need to fix the model, specify all the relevant processes and eventually apply real
intermediate state subtractions. Furthermore notice that, actually, Eq. 2.6 is only valid
when there is at most one IV in each set Y, but the generalization is trivial: if N appears
r times in a certain set of particles Y, the corresponding factor in the BE is (f} — ]e\?T).

Although unitarity and CPT requirements on the BE for baryogenesis are known to be
fundamental [28] and have been extensively discussed (see, e.g., the classic works [26, 27]),
usually the derivation of the source term is not presented as simply as we have done
above. Notably, a conclusion that stands out is that the only contributions to the source
of the BE for Af, come from production processes of “a” (or “a”) particles, with an
out-of-equilibrium species N in the initial state. This statement can be useful to avoid
introducing spurious contributions, but must be interpreted with care, since it holds as
long as the processes of the kind Ya(p) — Xa(p) are handled according to the approach
(ii) described above. That is to say, Ya(p) — Xa(p) is included twice in the BE for f,,
once with a negative sign (corresponding to the destruction of an a(p)), and another with a
positive sign (corresponding to the production of an a(p)). Something similar is done with
the BE for f5. After summing all terms in the BE for Af,, the contributions to the source
from all destruction processes, including Ya(p) — Xa(p), cancel, but Ya(p) — Xa(p)
might still appear in the source term, because it also produces an a(p).

To illustrate this issue, consider the scattering into top quarks, N1f, — qt, of a sterile
neutrino N7 and a SM lepton doublet ¢, playing the role of “a”. In [4] the CP asymmetry
0(Nily — qt) - 0(N1ly — qt) was calculated (with o designating a cross section), finding in
particular two contributions from two different ways of cutting the vertex one-loop diagram,
that we denote by C and Cs in Fig. 1. The statement in the previous paragraph is useful
because it warns that there have to be other CP-violating processes cancelling the contri-
butions from N14, — gt to the source term of the lepton asymmetry. This will be analyzed
in the following section, but we anticipate that one of the contributions (Cs) is cancelled
by another coming from Nif, — N2l (not included in previous works). However, the
contribution from the other cut (C4) cancels with that coming from Nif, — {3¢l,, when
it is interpreted as a destruction process of £, in the BE. Therefore, following the approach
(ii), the contribution from C; “reappears” in (N1, — 17595[7&) - 0(Nilo — Lply), given
that N1l, — £gpl, also enters the BE as a production process with an out-of-equilibrium
particle (N7) in the initial state. Alternatively, if one follows the approach (i), the process
Nily — Lgpl,, although entering in the unitarity condition Zf A|A(N1ly — f)|2 =0, is
not included at all in the BE for Af,_ . From this point of view, the contribution from C}



“survives” in the BE, because it is cancelled in the unitarity condition by a process that
does not change the number of ¢,. In any case, the safe procedure is to verify that all
processes required to satisfy the unitarity conditions have been taken into account.

In Sec. 3 we will show how to easily find the contributions that cancel the CP violation
coming from, e.g., N1¢, — qt, but before finishing this section we wish to comment on
a statement made in [6]. Namely, they find that the generation of an asymmetry from
scatterings (as opposed to decays) with only a single out-of-equilibrium heavy particle is
not possible. They show this for a neutron portal baryogenesis scenario, but here we argue
that this statement is not valid in general. From the above considerations it can be seen
that it is not necessary that there be two out-of-equilibrium species to have a source term,
induced by scatterings, in the BE of a single particle a. Nevertheless, to get the total
baryon (or lepton) asymmetry, one is interested in summing Af, over all particles that
carry baryon (or lepton) number. Doing so, Eq. 2.6 becomes

L

ZAfa] = Z (fn = FNOAFAJANY — aX)‘2 — washout terms, (2.7)
a X, Y'a

where the sum over a runs over all the particles with positive baryon (or lepton) number.
Unitarity and CPT symmetry imply that

STAJANY = f =0. (2.8)
!

Therefore, it seems that performing first the sum over X and a in Eq. 2.7 would result
in a null source, from which the statement in [6] would follow. However, there are two
caveats to this argument. First, if the state NY’ is self-CP-conjugate (e.g. consisting
of two Majorana particles, with only one being out of equilibrium), then the sum over
X and a does not cover all possible final states (NY’ — aX is also allowed), therefore
Eq. 2.8 cannot be applied (this is the same reason why leptogenesis via Majorana neutrino
decays is viable). Second, even if the source term in Eq. 2.7 is zero, this does not preclude a
baryon asymmetry from being generated. This is, for instance, the case in “purely flavoured
leptogenesis” [29], where flavour effects allow a baryon asymmetry to be generated even
when the total CP asymmetry (i.e. summed over all lepton flavours) is zero.

3 Cancellations from cutting rules

Consider the unitarity condition in Eq. 2.4 (Eq. 2.5 is just the CPT conjugate), which was
used in the derivation of Eq. 2.6 to show that the total contribution of the destruction
processes to the source is zero. We are going to show that for each contribution to a CP
asymmetry in Eq. 2.4, there is another one with the same magnitude but opposite sign,
thus cancellations come in pairs. These may be easily found using Cutkosky rules [30, 31].
For other diagrammatic analyses of unitarity in different baryogenesis contexts see [32, 33].

CP violation requires both, a relative CP-even and a relative CP-odd phase. Specif-
ically, writing an amplitude as the sum of two contributions with the couplings factored



into the parameters \;, i.e. A(i — j) = Aolp + A1, one gets
AA( — §)|? = —4Im [N\ Im [I31] . (3.1)

Taking Iy to be a -real- tree level contribution, the cutting rules yield

Im [I3 1] = %Io > oo, (3.2)
cuts
where the sum runs over all possible ways of cutting the diagrams contributing to 17, such
that all cut propagators can be put on-shell. Now consider the contribution of one of
these terms to Eq. 2.4. It consists of the product of some couplings and three additional
factors: a tree level factor (Ip), the part of I; coming from the left of the cut (I}), and
the one from the right (I}1%). The key point is that these three factors appear in another
term contributing to Eq. 2.4, but with the corresponding couplings conjugated, therefore
cancelling the former contribution. This second term arises from the interference of: (i) a
tree level diagram equal to the left part of the cut diagram of the first term, and (ii) a cut
diagram whose left part is the tree level diagram of the first term and the right part is also
the right part of the cut diagram of the former term, but with the arrows reversed.
To illustrate this, let us resume the discussion on the annihilation of a sterile neutrino
and a SM lepton doublet, within the seesaw model, that we started in the previous section.
The lagrangian in the mass basis of the singlet neutrinos IV; reads

1 o
L= Lsm+ Liin — iMzNchz — )\Zigocd)Ni + h.c., (33)

where there is an implicit sum over repeated flavour indices, ¢, are the leptonic SU(2)
doublets, ¢ is the Higgs field and qg = 119¢", with 7 Pauli’s second matrix. Furthermore,
we denote by ¢ the right-handed top singlet, by ¢ the left-handed quark doublet containing
the top quark, and by \; the top Yukawa coupling.

The diagrams of four different contributions to the sum }; A[A(N1£y — AP are
shown in Fig. 1. The interference of the diagrams at the top of the figure gives two
contributions to A |A(Nif, — gt)|* because there are two ways of putting the intermediate
particles on-shell (the cut Cy requires the center-of-mass energy to be larger than My).
Following the procedure explained above, we have drawn the diagrams in the middle and
bottom of the figure. The ones in the middle have been constructed as follows: T is the
part at the left of the cut C of diagram L, the left part of L; is Ty, and the right part is
that part of L, at the right of cut C7, with the arrows inverted. The interference of T}, with
Ly, yields a contribution to A |A(N14, — qubﬂa)\Q equal in magnitude, but opposite in sign,
to the contribution to A|A(N14y — ¢t)|* coming from the interference of T, with the cut
C1 of L,. Hence both pieces cancel in Ef A |A(N1Ly — f)\z. Likewise, the diagrams at the
bottom of Fig. 1 come from a reordering of the ones at the top: 7T, is the part at the left of
cut Co, the left part of L. is T,, and the right part is given by reversing the arrows in that
part of L, at the right of Cy. T, and L. interfere to give a term in A|A(N14, — Ngég)\Q,
exactly opposite in value to the contribution of the cut Cy to A |A(Ni£y — qt)|>. Therefore,
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Figure 1. Some of the diagrams contributing to >~ A[A(N1ly — PP, Tree-level and one-loop
diagrams are denoted with a T" and an L, respectively. The vertical dashed lines indicate the cuts
that yield an imaginary amplitude. For L, there are two possible cuts that have been denoted by
Cy and Cy. All Feynman diagrams in this work have been drawn using JaxoDraw [34].

again there is a cancellation in } _ A [A(Nily — f) 2. We have explicitly verified at O (AF)
that all terms in >, A[A(N1ly — F)|? cancel in pairs, in the way we have explained.

Another way to see these cancellations is via closed diagrams with three cuts, one to
specify the initial state, another for the final state, and the third one to apply Cutkosky
rules, like in Fig. 2. Each choice of cuts determines a contribution to a CP asymmetry,
according to Egs. 3.1 and 3.2. Similar graphs were used in [32] to demonstrate diagrammat-
ically that the total CP asymmetry in leptonic scatterings mediated by Majorana neutrinos
vanishes at lowest non-trivial order. Here we note that for a given closed diagram, all the
permutations of the three cuts yield contributions of the same magnitude to -different-
CP violating processes. The relative sign depends on whether the tree level or one loop
amplitude is obtained when going clockwise from the initial to the final state cut. For
example, keeping the initial-state cut fixed and permuting the other two cuts, gives pairs
of cancelling contributions to Eq. 2.4.

The processes in the middle and at the bottom of Fig. 1 were not considered in previous
works on leptogenesis including CP-violating scatterings. The contribution of the cut Cs to
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Figure 2. Closed Feynman diagrams with three cuts, representing the interference of tree-level and
one-loop amplitudes contributing to CP violation. The three cuts denoted by i, f, and C; determine
the initial state, final state, and Cutkosky cut, respectively. The graphs (B1) and (Bsg) correspond
to the interference of the diagrams T, and L, cut along C1 and C2, respectively. Permuting the
cuts f and C; (Cy), yields the interference of the diagrams in the middle (bottom) of Fig. 1.

the source term found in [4] is cancelled by another contribution coming from Ni¢, — Nalgs.
However, the contribution from the cut C'; remains in the source term, as discussed in the
previous section. Moreover, relabelling flavour indices in Fig. 1, new contributions to the
BE for A fy, become apparent, like Ni{g — {3, ¢, {,. Especially worth noticing are possible
interferences between connected and disconnected diagrams, like L, with 7}. Disconnected
diagrams have also been found to be necessary to cancel infrared divergences, as demanded
by unitarity [24] (see also [35-37]). This point will be discussed in somewhat more detail

in the next section.

4 CP asymmetry in three-body decays

In order to further illustrate the issues discussed above, it is interesting to consider the
CP asymmetry in the three-body decay N; — £,qt. Another motivation is that this is
expected to give the dominant contribution to CP violation at O ()\%) when decays start
to dominate over scatterings at T' S M; (see e.g. [38]).

The expression for this asymmetry will be given below, but before it is instructive to
consider schematically how the cancellations of CP asymmetries and infrared divergences
arise. Indeed, the integration of |A(N; — £aqt)|* over the phase space of the final massless
particles has a collinear divergence when ¢ and ¢ are emitted in the same direction. For
massless quarks this final state cannot be distinguished from the corresponding one in the
two-body decay N; — £,¢, therefore at O ()\f) it is more appropriate to calculate the joint
sum of two- and three-body decays. It is precisely this sum the necessary one to cancel



infrared divergences following the KLN theorem ? (note that at O (A7) the quark loop
introduces an infrared divergence in N; — £,¢). An explicit verification was done in [12]
for the computation of NLO corrections to the interaction rates of the singlet neutrinos.
In this work we have verified that, as expected, the infrared divergences also cancel in the
corresponding sum of CP asymmetries. For instance,

T3L34 +T5Logr + LoyLa, —  infrared finite.

Here and in the following paragraphs we use a loose notation whereby the same symbols are
used to denote the diagrams in Figs. 3, 4 and their corresponding amplitudes, integration
over phase space is omitted, and the product refers to an interference term (with complex
conjugation and factors of 2 also dropped). The diagrams Lo, (z = a,b,c) are defined in
the caption of Fig. 3.

Next consider the unitarity requirement »_ . |A(N; — NP = dof ‘A(Ni — f_')}Q Ac-
tually this relation is trivial for a Majorana neutrino because N; = N; and the sum runs
over the same set of final states 3. Still it is interesting to consider how the cancellations
arise in pairs in the related identity >, A|A(N; — f )]? = 0, as explained in the previous
section. For example, the contribution from the interference of diagram T3 with L3, in
Fig. 3, cancels with the interference of diagrams Thg and Légff in Fig. 4. Here we have
introduced two more pieces of notation: an additional subscript 8 in 75 to indicate that
the final lepton is of flavour S instead of «, and a superscript C; to specify the cut for
diagrams with more than one. The complete list of cancelling pairs is

T3L3a + TogLhC?* =0, TyLs, + TogLhS* =0,

ar

T5L054 + TQﬂL/C2 =0, T5Low + TgﬁEICQ =0,

2ar 2xr
LorLoa + TopLiygt =0, LoyLoy + Tog Lot =0,

with = b, ¢, and the bar over T or L denotes the CP-conjugate process.
The full computation of the CP asymmetries in the decay rates at O ()\f) are given
next, separated into a wave L-conserving piece (subscript “w,L” below, coming from the

[AP=))

diagrams with an “a” subscript in Fig. 3, with L denoting lepton number), a wave L-

violating piece (subscript “w,J” below, coming from the diagrams with a “b” subscript

in Fig. 3), and a vertex contribution (subscript “v” below, coming from the diagrams

with a “c” subscript in Fig. 3). We have used the MS renormalization scheme with the

scale i = M; to deal with the ultraviolet divergences, while the infrared ones have been

2An insightful analysis about infrared divergences and the KLN theorem has been presented recently
in [37]. In particular, the cancellation of infrared divergences in the joint sum of two- and three-body decays
of a heavy neutral particle, was related to the unitarity requirement of probabilities adding up to a finite
value (one!), and the fact that the forward scattering amplitude for a massive neutral particle is infrared
finite. This work also shows a systematic way of finding sets of diagrams that added together yield infrared
finite cross sections.

31t is also worth noticing that 2o AJAN: — F)I? = 0 of course does not imply a null source term for
the lepton asymmetry (not even after summing over lepton flavours), because, again, the sum runs over
all possible final states, that in this case involve antileptons as well as leptons, which enter the BE with
opposite signs.
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Figure 3. Some of the diagrams contributing to the CP asymmetry in two- and three-body decays
at O ()\f) The vertical dashed lines indicate the possible cuts to obtain an imaginary amplitude.
We have denoted with a T', the tree level diagrams, and with an L, the ones with loops. Those with
the top quark loop in a Higgs line carry an additional r subscript. The complete list of diagrams
also includes the ones similar to those at the bottom but without the quark loops, to be denoted
by Laq,26,2¢, and the diagrams in Fig. 4.
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Figure 4. An additional set of diagrams contributing to the CP asymmetry in two-body decays.
The notation follows the conventions explained in the caption of Fig. 3.

regularized via a small top mass, my = m; = m. Moreover, it has been assumed that
|M; — M;| > T; ;, where I';, denotes the total decay width of Nj. Then,

AT (N; — £aqt) = AT, + AT + AT (4.1)

- 11 -



with

M; M? 23 M;
2 * 7 1 1
jF#i i 7
N M; M; M; 23 M;
. WE_ZJ# A T | (AN A s }(2@426M;_Mg [‘2““ m] (43

M, M;
3b 2 * J _ .. R ot ..
AT %:)\ Im [()\ N)ij i da }(27&26 [13 4fiy+6(fiy = 1) +3gm}
J7FT
M; M;[ 23 M;
_ I Y LI A e Y Wi . (44
=S N m[/\)\)J)\ ™ }(%)427%[ 5 6 m]+0< ]4> (4.4)
JF#i
where )
M M?2
fij = <1+J2> In <1+ ’2> , (4.5)
M: M;
and
ME L Jr — Am? M? M? +M? -z M;
i = gij(m) = de ———— 1+ -% |In| ——— | —2f;jln— . (4.6
g] g](m) /4m2 x .’.ES/Q +MZ2 n M]2 f] nm ( )

This integral has a finite limit when m — 0, but we could not find an analytical expression.
We have summed over all final degrees of freedom and averaged over the initial ones.
In the last line of Eq. 4.4 we have expanded the expression in powers of M;/M;, keeping
only the lowest order terms, to reveal the hierarchical limit of sterile neutrino masses.
Similarly,
AT (N; = lap) = AT + A2 + AT (4.7)

with

. 1 M M? A\? M;
WL = Zlm ()\TA)ji)‘ai)‘aj Ve [1 T 5292 (27)222 <1 —6ln ‘m ]
Ji i g

§

(4.10)

M}
4 .
M;

It is immediate to verify from these expressions that the infrared divergences cancel when

x T Ml MZMJ )\2 Mz
ATZy, = ;Im (AT AL Ay | Gep - [1+ G <1—6lnm>]
)\2
2b *
AI? ;Im (AT Ay 24(fw )[ + 2 <161 ﬂ

l\.’)

J (277)

adding corresponding contributions to the two- and three-body decay asymmetries.
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The CP asymmetries, € = L(i—j)—T(i—2j)

= SRSy can be obtained dividing the expressions
J

above by the decay widths,

_ M) A2 M

r=N"1W, >, L (N; — 2, _( “M; |1 ¢ 1—6In—
DL (N o) +T (N £af) = O [+<2W)222( 6nm)],
(AT)‘)iiMA A { 23 M;

~2 61
57 Migmep |7 Tl

3 Zr (Ni = Laqt) + T (N; — lagt) = } . (4.11)

In order to obtain the complete source term in the BE at O ()\f), it is necessary to
consider many more CP-violating processes, being especially careful to include the contri-
butions from disconnected diagrams. This is out of the goal of this paper, but we wish to
make a final comment. Several of these processes have infrared divergences. This is, e.g.,
the case with the scattering N1q — £,t. For massless quarks there is a collinear divergence
when the momenta of ¢ and ¢ are parallel. This is related to the fact that a massless ¢
quark cannot be distinguished from a pair of massless ¢ and ¢ with the same momenta.
Therefore, following the KLN theorem, it is more appropriate to consider the processes
N1q — €4t and N1q — £,q¢ together. At O ()\f), the process N1q — £,q¢ gets a contribu-
tion from the interference of the diagrams depicted in Fig. 5. The integral over phase space
must be handled with care, because the disconnected quark line enforces the intermediate
Higgs propagator in diagram Sp, to be on-shell. A neat way to deal with this issue has been
explained very recently in [37]. Following the prescription in the Appendix A of [37], we
have verified that indeed the infrared divergences cancel when summing the rates of both
processes in Fig. 5. Namely, if we denote by P, Q, p,r, Q’, and k the 4-momentum of the ex-
ternal N1, ¢ (initial), £, t, ¢ (final), and ¢, respectively, and by s the squared center-of-mass
energy, then the integrals over final-state phase space of the corresponding contributions
to the squared amplitudes, summing over the spin of initial and final particles, are equal

to, in the center-of-mass frame,

454 s 1 M Parl?, o, M?
I, = Z/dﬂ'gadﬂ't (2m)* 0 (p+r—P—Q)|A(S.)|” = ﬁWMl lnﬁ +IRF,
spin
(4.12)
=3 / drmg, dmydmy (20164 (p+ &+ Q' — P — Q) [A(Sy)A*(S)) + c.c] =
spin
1 A2 Aar|? 0o .
o 4k c. 4.1
in [P /d’ ‘dk 5(k)9(k) k2+i6—i—cc f(k)7 ( 3)
where o )
2 + 2m
0y _ 2 2Kk 4 2m”
f(KY) = k| (2M7 — 2kP) TR

The 4-momentum of ¢ has been written as k = (k% k), so that, e.g., k> = k2 — k% =
K92 — \k|2, and analogously for the 4-momenta of the other particles. Moreover, infrared-
finite terms, which are not relevant to the present discussion, have been denoted by IRF. As
shown in [37], the action of the distribution & (k?) 0(k°) ( L4 C.C.) on the test function

k2 4-ie
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Figure 5. Feynman diagrams for the scatterings N1q — £,t and N1q — £,q¢, which should be
considered concomitantly in order to cancel infrared divergences. At O ()\%) the process N1q — £oq¢p
receives a contribution from the interference of diagrams S, and ;.

f(KY) is a derivative. More precisely,

2 2 0
- LDl [y [ £(K) ]
KO=|K|

T i [P kO | (kO + [k])2
1 XDl .. M

= ——————M:In— +1IRF. 4.14
167 /s |P| lnmz—i_R (4.14)

Hence, the infrared-divergent terms cancel in the sum I, + I;.

As a final remark, notice that the CP asymmetry in the process Niqg — £,q¢, not
included in previous works, is a priori of similar size than the CP asymmetry in N1q — £,t,
due again to the interference of connected with disconnected diagrams.

5 Conclusions and outlook

Using unitarity and CPT invariance we have derived in a simple way the source term of the
BE for the density asymmetry of some particle denoted generically by a (e.g. a can be a SM
lepton doublet in leptogenesis). Processes that do not change neither the number nor the
momenta of a, like Ya(p) — Xa(p), must be considered with care, given that they can yield
finite contributions to the integrals over phase space due to the interference of connected
with disconnected diagrams. In order to apply the unitary conditions, it may be convenient
to include them twice in the BE for f,, once with a negative sign (corresponding to the
destruction of an a(p)), and another with a positive sign (corresponding to the production
of an a(p)). Under this convention, we showed that the only contributions to the source of
the linearized BE for A f, come from production processes of “a” (or “a”) particles, with an
out-of-equilibrium species in the initial state. We also discussed on the number of different

out-of-equilibrium species necessary to generate a baryon asymmetry from scatterings,
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following an argument started in [6]. In Sec. 3 we showed how to easily obtain pairs of
cancelling contributions to the CP asymmetries. This allowed us to find new CP-violating
processes at first order in the top Yukawa coupling, but also important cancellations.
Notably, some of these involve the interference of connected with disconnected diagrams.
In Sec. 4 we calculated the CP asymmetry in the three-body decay N — ¢qgt, considering
the processes that should be simultaneously included to cancel infrared divergences as
required by the KLN theorem, and providing detailed examples of the issues discussed in
previous sections.

It has been out of the goal of this paper to compute the full source term at first order
in the top Yukawa coupling, i.e at O ()\%) At low temperatures compared to the mass
of the lightest sterile neutrino, T < M, the quantitative effect is expected to be small,
of order a few % (check, e.g., the studies performed in several of the papers cited in the
introduction). Nevertheless, we think one interesting reason to make such a complete
calculation would be to check the results of the novel approach in [9], where a relation
between the CP-violating rates and finite-temperature real-time correlation functions was
derived, and explicit expressions in the hierarchical limit of sterile neutrino masses were
obtained. The analysis in our work can also be useful to calculate the full source term at
first order in the SM gauge couplings, completing the results of [5].
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