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Autophagy is a major protein turnover pathway by which cellular components are

delivered into the lysosomes for degradation and recycling. This intracellular process

is able to maintain cellular homeostasis under stress conditions, and its dysregulation

could lead to the development of physiological alterations. The autophagic activity

has been found to decrease with age, likely contributing to the accumulation of

damaged macromolecules and organelles during aging. Interestingly, failure of the

autophagic process has been reported to worsen aging-associated diseases, such as

neurodegeneration or cancer, among others. Likewise, it has been proposed in different

organisms that maintenance of a proper autophagic activity contributes to extending

longevity. In this review, we discuss recent papers showing the impact of autophagy on

cell activity and age-associated diseases, highlighting the relevance of this process to

the hallmarks of aging. Thus, understanding how autophagy plays an important role in

aging opens new avenues for the discovery of biochemical and pharmacological targets

and the development of novel anti-aging therapeutic approaches.
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THE AUTOPHAGIC PROCESS

Autophagy, literally meaning “self-eating,” is an evolutionarily conserved catabolic process in
eukaryotic cells by means of which intracellular components and extracellular incorporated
material are delivered into lysosomes, where their degradation occurs (1). Since its discovery,
autophagy has been associated with the maintenance of cellular homeostasis, as well as the
cytoplasmic quality control process (1, 2). Its dysregulation has being related to a diversity
of pathological or physiological processes such as neurodegenerative, infectious, and metabolic
disorders, as well as cancer and aging, among others (3–5). Several studies have demonstrated
that autophagy can be very selective in targeting its cargo for degradation. Three major types
of autophagy have been identified: macroautophagy, microautophagy, and chaperone-mediated
autophagy (CMA). Macroautophagy (hereafter referred to as autophagy) begins with the extension
of a specialized membrane, known as the phagophore, derived from the endoplasmic reticulum
(ER), the mitochondria, and the Golgi cisternae (6, 7). The phagophore engulfs the molecules
and organelles to be eliminated, forming a double membrane vesicle called autophagosome (7, 8).
Finally, autophagosomes are targeted to lysosomes and fusion occurs, the sequestered material is
degraded and released back into the cytosol (8). Inmicroautophagy, the lysosome picks up cytosolic
components directly via invagination of the lysosomal membrane (9). On the other hand, CMA is a
process involving the direct transport of cytosolic components across the lysosomal membrane
via chaperone proteins. Several studies have demonstrated that CMA is a highly regulated and
degradative event, involving HSC70 (heat shock protein 70 complex) and multimerization of

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2018.00790
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2018.00790&domain=pdf&date_stamp=2019-01-09
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cfader@fcm.uncu.edu.ar
https://doi.org/10.3389/fendo.2018.00790
https://www.frontiersin.org/articles/10.3389/fendo.2018.00790/full
http://loop.frontiersin.org/people/592991/overview


Barbosa et al. Hallmarks of Aging and Autophagy

the LAMP2A receptor (lysosome-associated membrane protein
type 2A). Interestingly, not all proteins are able to be CMA
substrates. To undergo CMA degradation, proteins must contain
a KFERQmotif in their amino acid sequences, which is necessary
to bind the chaperone HSC70 (10, 11). Substrate and the HSC70
complex can bind a 12-amino-acid cytosolic tail of LAMP2A
for lysosomal docking. In addition, LAMP2A multimerization is
necessary for substrate translocation into the lysosomal lumen.
Cytosolic HSC70 is released from the multimeric complex, and
then a chaperone HSP90 (located at the lumen of the lysosomal
membrane) interacts with LAMP2A, stabilizing it during the
substrate translocation. Finally, a luminal chaperone HSC70 is
required to end the translocation process, and once inside the
targeted protein is degraded by the lysosomal enzymes (12)
(Figure 1).

Autophagy can be induced by a variety of stressors, and
nutrient restriction is one of the major stimuli, capable of
rapidly activating the autophagic process with the concomitant
inhibition of protein synthesis (1). Studies in both yeasts and
mammals have characterized at least 40 autophagy-related genes
(Atg), which encode proteins that participate in autophagy
(13). In addition, the canonical autophagy pathway includes
the inactivation of mammalian target of rapamycin complex
1 (mTORC1), allowing the phosphorylation and activation of
the Unc-51-like kinase complex (Ulk1/2), with the subsequent
cascade activation of the other ULK complex members such
as FIP200 and ATG13 (14, 15). Another important complex
that is activated is the BECLIN1, in which VPS34, one of
its members, is translocated into the ER membranes and it
produces high levels of phosphatidylinositol-3-phosphate, which
is necessary for the recruitment of other effectors such asWIPI2b
(16). Next, this effector interacts and recruits ATG16L, which
binds ATG5-ATG12 conjugated to generate the ATG12-ATG5-
ATG16L complex. This complex is required for the lipidation
of LC3 (Microtubule-associated protein light chain 3), because
it determines the site where LC3 will be conjugated and activated
to LC3-II (17). Moreover, ATG3 (an E2-like protein) is associated
with LC3-I and it binds to the complex through ATG12, allowing
the conjugation of LC3-I with phosphatidylethanolamine to
generate LC3-II. LC3-II, which is present in both inner
and outer membranes of autophagosomal structures and is
necessary for phagophore extension, cargo engulfment, and
vesicle closure to form the autophagosome. Additionally, the
targeted cargo is able to bind receptor/adaptor molecules like
p62, NDP52, and NIX. These proteins contain a LC3 interacting
region (LIR), which allows the recognition of elements to be
engulfed by the phagophore and eliminated in an autophagic
manner (18, 19).

In addition to degradation, autophagy, or part of its
machinery, canmediate a regulated cell death, named autophagy-
dependent cell death (ADCD). Moreover, autophagy can
participate in other cell death types [reviewed in reference
(20)]. Interestingly, despite the fact that regulated cell death
of malignant cells is a pro-survival mechanism at the whole
organism level, it can also lead to tissue degeneration and
function loss, and this can reduce the fitness of the aged
individual (21).

AGING

Aging, the natural event occurring in all living organisms, can
be defined as a deterioration of the cell functioning due to
damage accumulation over time (22–25). This is an important
biological, demographic and socio-economic issue all over the
world. Dr. Barja points out that all living organisms have different
longevity, indicating that evolution has played an important role
in regulation and flexibilization of aging between species, in a
relatively fast process (26). The understanding of the molecular
basis of aging and longevity could let us manipulate it somehow
in the future. In this regard, in the last 50 years numerous
investigations related to aging have emerged, trying to explain
this unstoppable process.

Despite the general accepted concept that aging is a
multifactorial process, several theories have emerged in an
attempt to explain it as a single predominant age-related change.
A popular aging theory is the “Stochastic Theory,” which suggests
that aging results from random damage accumulation. This
can be due to external and internal sources over time, in
addition to a failure of the repairing capacity. On the other
hand, other theories support the idea that aging is a regulated
process, mainly by the genetic code, such as the telomere length,
the number of divisions that a somatic cell can go through
(the “Hayflick limit”) and spatio-temporal regulation of gene
expression (27, 28). Nevertheless, one of the most popular
theories is the Free Radicals (or Oxidative Stress) Theory of
Aging, which hypothesizes that an accumulation of Reactive
Oxygen Species (hereafter ROS) falls into an oxidative damage
of biomolecules, with the consequent cell functioning decline
(27–29). A considerable body of evidence supports this theory,
because it points to an increase in ROS cellular levels as we age,
due to a higher production of them as well as a failure in the
anti-oxidant systems (30, 31).

AUTOPHAGY IN AGING

Several animal models have contributed to our understanding
of how the impairment of autophagy and redox homeostasis
can result in age-related diseases. In the same way, numerous
studies involving genetic ablation or induction of autophagic
genes have revealed the importance of this process in aging of
yeast, nematodes, flies, and mammals (32). The most important
work that links an overexpression of a single Atg gene with
an increment in mammals’ lifespan was conducted by Pyo and
collaborators. The authors overexpressed Atg5 in mice and
found an enhancement of the autophagy process and anti-
aging features, compared with the wild type mice. The mean
lifespan was also incremented, suggesting the importance of
autophagy in the longevity of mice (33). Another approach that
demonstrates the importance of autophagy in aging has been
done in Ana María Cuervo’s laboratory. In aged mice, they
generated a double transgenic mouse model, in which it was
possible to modulate the expression of the lysosomal receptor for
CMA. The results revealed that the enhancement of this receptor
can prevent features of aging at cellular and organ levels (34). In
addition, mice overexpressing Atg5 showed a better resistance to
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FIGURE 1 | Different types of autophagy pathways in mammals. Macroautophagy: extension of a specialized membrane (phagophore) surrounds molecules and

organelles, forming a double membrane vesicle called autophagosome. Finally, the fusion of autophagosomes with lysosomes leads to cargo degradation.

Chaperone-mediated autophagy (CMA): proteins containing a KFERQ motif are delivered to lysosome via cytosolic HSC70 chaperone complex. The receptor

lysosome-associated membrane protein type 2A (LAMP2A) is necessary for substrate translocation into the lysosomal lumen, where the degradation occurs.

Microautophagy: invagination of the lysosomal membrane engulfs cytosolic cargo in small vesicles for its degradation inside.

age-related obesity and enhanced insulin sensitivity, exhibiting
an improved metabolism in aged individuals (33). Despite the
mentioned studies, several others failed to demonstrate that
upregulation of a single autophagic component can extend
lifespan (32). Moreover, several KO mouse models have been
shown to have extended lifespan, although the molecular
mechanisms behind it and the connection with aging are not yet
clear (35).

Notably, another relationship between autophagy
augmentation and extended lifespan has been reported in
exceptionally healthy centenarian humans, who have increased
levels of BECLIN1, compared to young people (36). We hope
that in the next years these preliminary studies in humans will
be more advanced, providing insights into our species longevity
mechanisms from clinical case studies.

The knockout for essential Atg genes is lethal in mice,
and tissue-specific ablation has a less-dramatic phenotype,
manifesting premature signs of aging (37). Specific-Atg5 or Atg7
KO leads to neurodegeneration or tissue abnormalities in most of
the cases available in the literature [for a more detailed summary
see reference (37)].

Finally, as we age, the incidence of cancer rises, probably
because of the decline of homeostatic processes and the increase
in the accumulation of potentially harmful molecules such as
ROS and protein aggregates. Autophagy has been proposed to
have a dual role in tumorigenesis, being important both in
suppression as well as in tumor progression and surveillance
(38, 39).

ROS GENERATION AND AGING

The ROS are considered metabolites of molecular oxygen during
cellular respiration, being very reactive due to an unpaired
electron (40). Mitochondria are the major ROS producers and
perhaps the organelle most affected by them. In order to
avoid detrimental effects of ROS, two important processes arise:
Mitophagy and antioxidant system. Mitochondrial ROS can
activate the autophagic pathway upon starvation by the activation
of ATG4 (41), and this in turn leads to autophagic degradation
of mitochondria (mitophagy) in order to reduce the ROS levels
by limiting the number of mitochondria per cell (42). In
addition, hypoxia and exercise can also trigger redox-dependent
autophagy, suggesting that ROS might regulate the autophagic
response to several stresses (43). Regarding the second process,
the antioxidant system consists of several enzymes andmolecules
that react with ROS and neutralize them somehow, but the
connection of antioxidants with lifespan is controversial (44).
Notably, overexpression of a mitochondrial-targeted catalase in
mice extends lifespan and reduces overall ROS, reinforcing the
Free Radicals Theory of Aging in such model (45). Moreover,
these mice showed a reduction in age-related pathologies (46).
Additionally, Mn-superoxide dismutase (SOD2) heterozygous
mice showed a life-long reduction, but surprisingly they did not
have an accelerated aging phenotype. Nevertheless, this Sod2+/−

mice showed a higher oxidative damage to DNA and had higher
cancer incidence compared with wild type individuals (47). By
contrast, knockout of 17 genes involved in the antioxidant system

Frontiers in Endocrinology | www.frontiersin.org 3 January 2019 | Volume 9 | Article 790

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Barbosa et al. Hallmarks of Aging and Autophagy

exhibited no effect in lifespan: Only the knockout for Cu/Zn-
superoxide dismutase (Sod1) resulted in a decrease in longevity
and premature aging as well (48). This mouse model showed
an increase in senescent markers, suggesting that the oxidative
stress that Sod1−/− mice suffer leads to DNA damage, promoting
an irreversible state of quiescence (49). In addition, these
Sod1−/− mice showed an accelerated sarcopenia, manifesting
muscular mass loss and altered neuromuscular junctions (50).
Despite these controversial and unexpected results in mice, the
relationship between antioxidants and their role in healthy or
pathologic aging needs to be deeply studied in the future.

Finally, it is important to highlight that ROS have been
proposed to be implicated in proliferation and survival signaling
in certain conditions (42). A new concept has emerged recently
in the aging field, termed “hormesis,” according to which low
doses of a stressor can improve the cell response for a more
detrimental condition in the future (32, 51). This could increase
lifespan and cellular fitness (52). In this context, low levels of ROS
can be beneficial due to the trigger of homeostatic responses, but
its disproportional augmentation can lead to damage or aging
(42, 53). From an autophagic perspective, an augmentation in
ROS levels and a decline in mitophagy occur simultaneously,
leading to aging (43, 52, 54).

HALLMARKS OF AGING: AN AUTOPHAGIC
VIEW

In the last years, aging has begun to be seen as an active and
highly regulated process (55). Age-related changes at cellular
level include an increase in ROS, loss of proteostasis, genome
instability, and telomere exhaustion, among others (23, 56, 57).
These characteristic features of aging were termed “hallmarks of
aging” by López-Otín et al. (52). In the following sections, we
discuss how autophagy plays an important role in some of these
hallmarks of aging, in both health and disease.

Loss of Proteostasis
Proteostasis is one of the major functions of autophagy in normal
tissues. Imbalance of proteostasis due to aging leads to protein
aggregation, accumulation of misfolded proteins and in the end
to cellular dysfunction, among others (23, 56, 57). Notably,
carbonylation due to oxidative stress is one of the changes
that leads to loss of proteostasis (44). To avoid cell death or
dysfunction, numerous homeostatic mechanisms turn on, mainly
autophagy (58) and the Ubiquitin-Proteasome-System (UPS).
Because autophagy is considered one of the most important
intracellular homeostatic processes, an alteration or deterioration
of this pathway could modify the normal cell functioning,
including a variety of diseases and normal cell physiology
declination. Autophagosomes and lysosomes decline in an age-
dependent manner in muscles (59), heart (43), and several other
tissues. Moreover, CMA has also been implicated in removing
oxidized and potentially dangerous proteins by direct lysosomal
degradation (60).

The UPS is mostly implicated in the degradation of misfolded
proteins, as well as short- and long-lived proteins by their

ubiquitination. This process is achieved thanks to three major
proteins that sequentially activate the ubiquitin tag (E1), transfer
it to a second enzyme (E2), and finally ligate the ubiquitin tag
to the target molecule (by E3 ligase), which eventually reaches
the proteasome for degradation (61, 62). It is important to
note that almost all regulatory proteins are substrates for this
system (61, 63), and UPS declines with age [reviewed in (64)].
Interestingly, mTORC1 was found to regulate not only lysosomal
protein degradation, but also proteasomal proteolysis of long-
lived proteins, independently of protein synthesis, suggesting
a common regulation of both proteolytic systems by nutrient-
sensing (63). In addition, overexpression of a sole subunit of
the proteasome enhanced its activity and the survival against
several oxidants in two cell lines as well as primary culture of
human fibroblasts (65). Moreover, proteasome activity decreased
in an age-dependent manner (66). Overexpression of proteasome
subunits in aged dermal human fibroblasts ameliorated the
aged phenotype and restored the oxidized and ubiquitinated
proteins to young levels (66). In the same way, transgenic mice
with reduced proteasomal activity accumulated oxidized and
ubiquitinated proteins, accelerating the aging phenotype and
the age-related metabolic diseases (67). Besides, inhibition of
proteasome activity impaired cell proliferation and shortened
lifespan (68), reinforcing the importance of a correct proteostasis
in healthy aging and longevity.

Several studies have been done on neurodegenerative diseases
related to aging and autophagy, including those most relevant
for their high impact on human population. Most of them share
the accumulation of ROS, misfolded proteins, and damaged
organelles, aging being the main risk factor (69, 70). This
accumulation interferes with proper axonal traffic, enhancing
neurotoxicity. Both autophagy and CMA impairment hamper
the correct protein-aggregates degradation and the remodeling
of dendrites and axons, thus diminishing the nervous plasticity
(71, 72). In Parkinson’s disease (PD), the cytoplasmic aggregates
are formed by α-synuclein and ubiquitin (or Lewy bodies)
in dopaminergic neurons of substantia nigra, leading to their
death (32). Alterations in UPS (71) and also in CMA can
develop the disease too. It is worth noting that overexpression
of Lamp2A improved CMA performance and decreased α-
synuclein cytoplasmic levels (73). In the same way, Alzheimer’s
disease (AD) is characterized by intracellular accumulation
of tau protein as well as β-amyloids (Aβ), derived from the
amyloid precursor protein (APP). This aggregate formation
impairs normal cell function, finally leading to cell death (32).
Also, extracellular Aβ-plaques secreted by autophagosomes can
interrupt intercellular communication (72), another hallmark
of aging (52). Besides, Apolipoprotein E4 (ApoE4) is the main
genetic risk for sporadic AD and was found to promote the
disruption of the lysosomal membrane together with Aβ, leading
to neuronal degeneration (72, 74). Mutations in Presenilin1 or 2
(PS1 and PS2, two transmembrane subunits of gamma-secretase),
as well as in tau protein or in APP are common causes of the
familial AD (72). Other neurodegenerative diseases implicate
alterations in the autophagic process, i.e., SENDA, Huntington,
Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia
disorders [reviewed in (70, 75, 76)]. In all these cases, the lack
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of proper degradation by autophagy promotes the aggregation
of several proteins and the consequent malfunctioning of axonal
transport.

Regarding metabolic diseases and autophagy, it is well known
that islet amyloid deposition leads to type 2 diabetes in humans
due to the amyloidogenic property of human islet amyloid
polypeptide (hIAPP). It is important to note that mice do
not develop such aggregation. In order to bypass this model
difference, Kim et al. developed transgenic mice expressing
hIAPP specifically in β-cells and bred them with Atg71β−cell

mice. Male mice had premature diabetes, while females had
hyperglycemia but never developed the disease, suggesting a
synergism between autophagy deficiency and human amyloid
overexpression. Moreover, primary culture of monkey islet cells
overexpressing precursors of hIAPP showed that autophagic
inhibition by 3-methyladenine (3-MA) increased pro-hIAPP
dimer or trimer accumulation, blocking the autophagic activity
in these pancreatic cells (77). It is also important to highlight
that diabetes or glucose handling deficiencies are risk factors
for the AD, as the amyloids properties of proteins implicated
in metabolic diseases and AD are similar and probably
interconnected (78). More studies regarding the connection
between metabolic and neurodegenerative diseases are required
for a better understanding of the molecular basis of such
relationships at systemic level.

Finally, sarcopenia is characterized by a progressive loss of
muscle mass and strength thanks to an imbalance between
production and degradation of proteins (79). Aged-related
declination of autophagy (both mitophagy as well as CMA)
promotes sarcopenia by protein accumulation interference with
normal myofibers functioning, but an exacerbation of autophagy
can also result in cellular stress and finally death (79). Thus,
an age-related imbalance of proteostasis could drive a variety of
diseases involving both protein accumulation and degradation.

Mitochondrial Dysfunction
Mitophagy is a basal process involved in the autophagic
degradation of mitochondria (76, 80, 81). It is necessary in
normal differentiation of certain cell types such as red blood cells
(82), in embryogenesis, immune response, cell programming,
and cell death (80). Mitophagy is required not only to remove
damaged mitochondria, but also to promote the biosynthesis of
new ones, supporting the mitochondrial quality control (76, 80).
Given that mitochondria are implicated in bioenergetics and
ROS production, the mitophagy plays an important role in cell
homeostasis. Additionally, a decrease in mitophagy is observed
in aged animals and this contributes to aging phenotype (81).

Canonically, mitophagy is triggered by the cytosolic
exposition of mitochondrial outer membrane (MOM) proteins,
which have a LIR domain. The mitophagy is tightly regulated
by several molecules, NIX and BNIP being two of the most
widely characterized mitochondrial adaptors for autophagic
machinery (83). NIX activation is associated with an increment
in mitochondrial degradation in HeLa cells, protecting them
against cellular stress (84). Interestingly, NIX has a LIR domain
which binds LC3 once it is activated by phosphorylation (84).
Additionally, PINK1 and PARKIN have been involved in the

regulation of mitophagy when the mitochondrion loses its
membrane potential (80). These proteins have been considered
as key components in controlling the activation of mitophagy
(85) and also as participants of mitophagy-associated cancer
resistance. PINK1 and PARKIN are activated in response to
an increment of intracellular ROS levels, which stimulate the
MAPK and ERK1/2 signaling cascades, triggering parapoptosis
in non-malignant cells, which bypass the caspases activation and,
thus, the apoptosis (86) (Figure 2).

Additionally, Mitofusin 2 (MFN2) is a mitochondrial
membrane fusing protein involved in several processes, including
mitochondria fusion and mitophagy. Its expression declines
with age, and its deficiency provokes precocious sarcopenia,
accumulation of damagedmitochondria, andmetabolic disorders
in young mice (87). In addition, Humanin, an antiapoptotic
mitochondrial protein, is capable of activating the CMA
machinery, thus protecting several cell types from oxidative
stress (88). Interestingly, both CMA and Humanin decline with
age (89, 90), contributing to the age-related deterioration of
proteostasis and mitochondrial functionality. As can be seen,
several proteins regulate the mitophagy and contribute to the
mitochondria homeostasis. As almost all of them decline with
age, the modulation of mitophagy regulatory proteins could be
a novel anti-aging therapeutic approach in the future. Despite
this, more studies are needed in order to understand the complex
regulation of mitophagy and the relationships between the
players.

Different compounds, intracellular changes or stimuli could
drive an activation of mitochondrial dysfunction. Normally, ROS
oxidative stress, loss of membrane potential, MOM permeability,
and aging are able to cause mitochondrial dysregulation. This

FIGURE 2 | Mitophagy protects cancer cell from apoptosis. Different stimuli

could drive an activation of mitochondrial dysregulation, triggering signaling

pathways involved in activation of pro-apoptotic proteins (BAK and BAX). This

results in MOM damage and the consequent cytochrome c and SMAC release

to the cytoplasm, activating intrinsic apoptotic pathway.

Frontiers in Endocrinology | www.frontiersin.org 5 January 2019 | Volume 9 | Article 790

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Barbosa et al. Hallmarks of Aging and Autophagy

imbalance triggers signaling pathways involving activation of
pro-apoptotic proteins of the BCL-2 family such as BAK and
BAX, resulting in an MOM damage and the consequent release
of cytochrome c and SMAC (second mitochondrial-derived
activator of caspase) to the cytoplasm (91), activating the
intrinsic apoptotic pathway through caspase 9 (92, 93) (Figure 2).
Furthermore, hypoxia inducible factor 1α (HIF1α) is able to
trigger mitophagy by stabilization and activation of NIX protein,
and is also responsible for autophagic activation through VMP1
(vacuole membrane protein 1) promoter, causing colon cancer
resistance to photodynamic therapy (94).

Disruption in mitophagy, and thus in redox homeostasis, can
produce different cardiovascular pathologies (43). PINK1-KO
mice developed a decline in cardiac function due to dysfunctional
mitochondria and an increase in oxidative stress (95). Notably,
the same features were observed in human end-stage heart failure
samples, where diminished PINK1 levels were also found (95).
Despite the ubiquitous KO model, the authors were capable of
demonstrating the importance of PINK1 in heart functioning.
Additionally, altered mitophagy due to elevated ROS production
has been linked to Alzheimer Disease (AD), but there is
controversy as to whether this disturbance in the autophagic
pathway is a cause or a consequence of AD (72). Remarkably,
PARKIN and PINK1 have been found mutated in Parkinson
Disease (PD) patients, suggesting the importance of this pathway
in dysfunctional mitochondria clearance by autophagy (76, 96).
In 2015, Sun et al. published a new approach for measuring
mitophagy in vivo, using a transgenic mouse model consisting
in the mitochondria-targeted overexpression of a fluorescence
reporter named Keima (81). We think that this tool could be very
interesting for the in vivo study of mitophagy and its regulation
under a wide variety of conditions. Deeper studies are then
required to fully understand this process and its role in healthy
and pathologic aging.

Deregulated Nutrient Sensing
Cellular response to nutrient privation implies some kind of
intracellular sensor, capable of triggering the corresponding
survival mechanisms. It has been proved that nutrient sensing
is a highly conserved process across eukaryotes (97). Several
nutrient-related signaling pathways converge on mTOR
[mammalian Target Of Rapamycin; (97)], which triggers the
response to growth factors, energy, glucose or amino acid
changes (38, 97–100). Interestingly, nutrient sensors can also
be activated under oxidative stress conditions, suggesting a
common regulatory mechanism linking redox homeostasis and
nutrients availability [reviewed in (101)].

The kinase mTOR is capable of linking environmental
conditions with reproduction and somatic maintenance, thus
influencing the individual lifespan (102). In addition, mTOR
and mslt8 (a positive regulator of mTORC1) haploinsufficient
female mice showed an increment in lifespan, compared to
wild type mice (103). Mice carrying hypomorphic alleles of
mTOR also had an increase in lifespan, a reduction in aging
biomarkers, and a normal metabolism (104), showing the
importance of nutrient sensing in aging. Moreover, Ribosomal
S6 kinase 1 (S6K1) knockout mice showed an extended

lifespan, compared with wild type counterparts, demonstrating
again the importance of the mTOR pathway inhibition in
longevity (105).

Besides, mTOR forms two distinct complexes, the Complex
1 (mTORC1) being capable of integrating different responses
depending on nutrients availability (99, 106, 107). Upstream
mTORC1, there are multiple regulating complexes, responding
to each amino acid, glucose or growth factor input (99, 106, 107).
Notably, p62 is one of the mTOR interactors upon amino acid
stimulation, and it has been proposed to specifically stabilize the
activatedmTORC1 at the lysosome surface (108). It is well known
that p62 is an autophagic adaptor protein whose role in nutrient
sensing pathway might be another connection between mTOR
and the regulation of autophagy.

Because autophagy is a catabolic mechanism, it can be
assumed to be implicated in cellular and systemic metabolism.
Metabolic stress responses could be compromised due to a
decline in autophagic activity (109). As an important process
regulating the general cellular status, autophagy can also
crosslink metabolic pathways to maintain the homeostasis
under a variety of conditions (43). In this sense, it has been
demonstrated that, after nutrient or growth factor deprivation,
ULK1 and ULK2 are activated, and these kinases phosphorylate
and activate several glycolytic enzymes as well as autophagic
proteins. This makes it possible to obtain metabolites thanks to
glucose uptake, gluconeogenic pathway blockage, and autophagic
degradation of cytosolic components (110). Supporting this,
mTOR hyperactivation was found in several diseases such as
obesity, metabolic syndrome, and type 2 diabetes (100), which
highlights the importance of a tight regulation of autophagy as
well as the nutrient sensing pathway.

Given that mTOR is capable of sensing the nutritional state
of the cell, it was proposed to play an important role in Caloric
Restriction (CR) therapy. Indeed, mTOR signaling network was
shown to mediate lifespan extension by CR. Notably, the sole
amino acid-restriction is enough to promote CR-response (111).
Sirtuins 1 and 3 (NAD+ deacetylases) are activated in response
to CR, as well as SOD1, in order to change the metabolism
accordingly and prevent oxidative damage, respectively. Such
ROS regulation rules out the Free Radicals Theory of Aging,
at least partially (101, 112, 113). It is important to highlight
the fact that inhibition of mTOR (specifically mTORC1) in
embryogenesis is lethal, while the ablation of these pathways in
adulthood can extend life [reviewed in (111)]. In fact, weight
loss is suggested as prevention as well as therapy for a variety of
age-related diseases (98).

Genomic Instability
In the last decade, several studies have demonstrated that
autophagy or autophagic-related molecules act as a “safeguard”
of genome stability both directly (DNA repair modulation)
and indirectly (by acting as a homeostatic response) (114).
Several mouse models have provided substantial information
regarding genomic instability and its connection with healthy
and pathological aging (55).

Regarding oxidative stress and DNA damage, ROS increase
is thought to be mainly harmful for the mitochondrial
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DNA (mtDNA), generating the mutagenic 8-hydroxy-20-
deoxyguanosine (8-OHdG), as well as mutations and deletions
in mtDNA that result in a dysfunctional mitochondrion (69).
Moreover, mitochondrial dysfunction promotes telomere
attrition, telomere loss, and chromosome alterations,
culminating in apoptosis in mouse embryos (115). Besides,
Donati and collaborators demonstrated that, upon autophagic
stimulation with an anti-lipolytic agent in 16-month-old rats, 8-
OHdG accumulation in liver was successfully supressed, reaching
the values obtained from young animals in only 6 h. When they
measured the cytochrome c oxidase activity, they found that
this decrease was not associated with lower mitochondrial
enzyme activity, demonstrating the selective mitophagy of
a small population of 8-OHdG-positive mitochondria and
the importance of this proteostatic process in anti-aging
mechanisms (54, 116). In the same way, dietary restriction
reduced 8-OHdG levels in mitochondrial DNA (mtDNA)
of aged rats and mice compared with those fed ad libitum
(117), supporting the importance of dietary restriction in
prevention of mtDNA damage by ROS in aged animals. Notably,
Sod2−/− mice accumulated high levels of 8-OHdG both in
nuclear and mitochondrial DNA, compared with wild type
mice. Nevertheless, they showed no changes in lifespan or
age biomarkers (47). On the other hand, Atg7−/− mouse
keratinocytes presented premature aging after oxidative stress
induction, supporting the importance of autophagy in healthy
aging (118). In addition, Bender et al. found high levels of
mtDNA deletions in dopaminergic neurons of PD patients,
compared to controls (119). As we have already mentioned,
PARKIN and PINK1 are mutated in PD, thus altered mitophagy
can explain, in part, the accumulation of mtDNA damage in PD
patients.

Autophagy has emerged as an important process in genome
maintenance. After treatment with several cell cycle blockers,
human osteosarcoma cells (U2OS) increased the micronuclei
frequency as well as autophagosomes. Importantly, the authors
observed a small but significant colocalization between them.
Knockdown of Atg5 or Atg7 abolished this colocalization.
P62/SQSTM1 also colocalized with micronuclei, indicating
that micronuclei can be degraded by autophagy and this
may contribute to genome stability (120). Moreover, NDP52
and p62-dependent autophagy can degrade retrotransposon
RNA, preventing new insertions into the genome of long
and short interspersed elements (121). Additionally, autophagy
deficiency leads to an accumulation of RHOA with p62.
This phenotype drives cytokinesis failure, aneuploidy, and
multinucleation due to inappropriate formation of contractile
ring (122). Furthermore, allelic loss of Beclin1 promotes
tumorigenesis and activation of DNA-damage response in
neoplasic cells. In this context, autophagy deficiency leads
to genome instability under metabolic stress in these mouse
mammary epithelial cells (123). Artificially aneuploid mouse
cells showed increased autophagy to protect cells from genome
instability (124).

Autophagic adaptor p62 has been found to be implicated in
genome instability in several studies. Accumulation of p62 led
to the activation of DNA-damage response (125). By contrast,

overexpression of p62 (or autophagy deficiency) suppressed
DNA-damage response by its direct inhibitory interaction with
RNF168, an important E3 ligase for histone H2A ubiquitination
and DNA-damage response (126). In this regard, p62
downregulates the protein levels of several molecules involved in
homologous recombination (HR) of damaged DNA, inducing at
the same time non-homologous end-joining (NHEJ), stressing
the importance of p62 nuclear accumulation upon several stresses
(127). More studies are needed to completely elucidate the role of
p62 and other autophagic components in genome maintenance
throughout life.

Epigenetic Alterations
Epigenetic changes due to external or internal factors drive
several processes, including development and aging (128).
In muscular and hematopoietic stem cells, different histone
modifications help to establish the quiescence state with
age (129). Besides, epigenetic alterations lead to different
responses in aging and longevity in several mouse models
[reviewed in (55)]. Notably, macrophages of old mice
had hypermethylated LC3 and Atg5 promoter regions,
compared with those of young mice, downregulating the
protein levels and promoting aging decline of autophagy
(130).

The natural polyphenol resveratrol, an autophagic inducer,
has been proved to exert its action by inositol 1,4,5-triphosphate
receptor (IP3R) and by protein acetylation decrease (131, 132).
In this sense, a balance between different degrees of protein
acetylation is presumed to be important for autophagy (32). High
levels of acetyl-CoA, which serves as an acetyl group donor,
were found to promote histone hyperacetylation, downregulating
the expression of Atg genes, thus inhibiting autophagy and
shortening lifespan in aged yeast (133). In addition, these
authors found that the knockout of a certain acetyl-CoA in
Drosophila melanogaster brain enhances autophagy and prolongs
lifespan. Morselli et al. used specific siRNA knockdown of
Sirtuin1, a NAD+ deacetylase in HCT116 cell line, which resulted
in a suppression of the autophagic response to resveratrol.
Importantly, resveratrol induced autophagy by AMP-dependent
kinase/mTOR-independent pathway and changed the acetylation
of 375 proteins, half of them involved in autophagy. On the other
hand, deacetylations were often observed in metabolism-related
proteins, thus activating autophagy (131). Another autophagic
inducer, spermidine, is a well-known pro-longevity polyamine
(56), largely studied as an anti-aging agent. Like resveratrol,
spermidine can induce both acetylation and deacetylation
changes that promote the autophagic pathways via AMP-
dependent kinase signaling. In this regard, low doses of this
polyamine together with low doses of resveratrol synergistically
caused the same autophagic response as higher doses of each
inducer separately (131).

Taken together, organismal models as well as in vitro studies
highlight the importance of epigenetics throughout life. The
relationship between epigenetic changes and autophagy needs to
be deeply studied in order to understand the regulatory loop that
seems to be involved in development and aging.
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Telomere Attrition
Telomeres are specific repetitive sequences at the end of
chromosomes, the telomerase is the special polymerase involved
in the elongation of this protective zone. It is important to note
that somatic cells of mammalian species lack the expression of
telomerase. Thus, telomerase is highly regulated in a spatio-
temporal manner (134). In each cell cycle, the telomere becomes
shorter and shorter, leading to a vulnerability of the chromosomal
end. This process is called telomere attrition and is considered
another hallmark of aging (52).

Telomere shortening can cause genomic instability, and
thus contributes to cancer or age-related diseases (115).
This progressive diminishment in telomere length can
influence gene expression and provoke several pathologies
without damaging DNA (134). Moreover, ROS can trigger
telomere attrition or loss and genomic instability, which can
be prevented by using an antioxidant (115). In addition,
telomerase activity can support cell cycle progression by
preventing the arrest due to short telomeres, leading to a
putative malignancy. Remarkably, overexpression of Beclin1
in HeLa cells revealed that telomerase activity is reduced
after autophagy induction (39). This approach argues in favor
of the hypothesis that autophagy plays an important tumor
suppressor role by the modulation of telomerase activity in
somatic cells. Similarly, Guanosine-rich zones, like telomeres,
can suffer the formation of G-quadruplexes, interfering with
gene expression and cell growth (135). In this regard, melanoma
cells treated with an anthracene-based ligand (Ant 1,5, capable
of stabilizing G-quadruplexes) showed an increase in genome
instability and telomere dysfunction. Furthermore, Ant 1,5
induces a p21-dependent augmentation of autophagy levels.
This autophagic response arises in order to avoid genome
instability and telomeric dysfunction, thus promoting cell
survival (135).

Other Hallmarks of Aging
Cellular senescence is considered another hallmark of aging (52).
Senescence can be induced by DNA damage, telomere attrition
or other stress signals, with the consequent cell cycle arrest.
Several mouse models have contributed to the current knowledge
of senescence and its characteristics (55). For example,
Apolipoprotein E (ApoE) knockout mice present atherosclerotic
plaques, which can be prevented by the addition of rapamycin.
Furthermore, autophagy regulates the senescence of vascular
smooth muscle cells (VSMCs) of ApoE−/− mice, involving the

mTORC1/ULK1/ATG13 pathway in atherosclerosis progression
(101). In addition, senescent MEF cells accumulate copper
due to higher import and lower export, enhancing antioxidant
defense mechanisms. In addition, rapamycin treatment can
prevent and reverse copper accumulation, suggesting that
autophagy mediates the copper homeostasis (136). Along the
same lines, primary cultures from human fibroblasts depleted
for Atg7, Atg12, or Lamp2 showed cell cycle arrest and
high levels of SA-β-Gal staining, a characteristic feature of
replicative senescence cells (137). Intriguingly, autophagy can
mediate the transition to a senescent phenotype in IMR90
human diploid oncogene-induced senescence fibroblasts, making
possible the protein remodeling needed to establish the senescent
phenotype under oncogene activation (138). An interesting
review conducted by Kwon et al. put forward a “toolkit” of
differential diagnosis to resolve the apparent contradiction of
autophagy in the cellular senescence. They proposed that type
of autophagy, the exact moment when it acts, and the place
where it occurs can define the pro or anti-senescence role of
autophagy (139).

Another hallmark of aging, according to López-Otín et al.,
is stem cell (SC) exhaustion, with the consequent decline in

tissue regenerative potential (52). Self-renewal is important to
maintain the population of tissue-specific stem cells throughout

life. Importantly, as we age, stem-cell activity decreases (140).
In addition, SCs function is highly regulated in response to
external stimuli (129). Ho et al. have shown that autophagy

is necessary for preservation and quiescence of hematopoietic
stem cells (HSCs). The authors demonstrated, in an Atg12-
KO mice model, that autophagy-defective HSCs resemble old
HSCs, in terms of accumulation of mitochondria, augmentation
of myeloid-to-lymphoid ratio, diminishment of the regenerative

potential, and decrease in self-renewal (141). This study supports
the importance of autophagy in blood system homeostasis
(142). Autophagy is also important to maintain stemness in
bone marrow-derived mesenchymal stem cells (BMMSCs), and
induction with rapamycin restores the biological properties of
BMMSCs (143). In addition, Atg7 loss in aged muscle stem
cells (satellite cells) of transgenic mice caused altered mitophagy
and an accumulation of ROS, all features of senescence that
diminish the regenerative potential of aged satellite cells (144).
It is important to note that autophagic modulation could be an
interesting therapeutic approach to prevent stem cell senescence
and decline. Due to SC complexity, more studies are required to
fully elucidate the role of autophagy in maintenance of stem cells.

FIGURE 3 | Schematic representation of aging-related disorders in autophagy and redox imbalance.
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CURRENT AND FUTURE AUTOPHAGIC
TREATMENTS IN AGING AND
AGE-RELATED DISEASES

It can be presumed that induction or restoration of autophagy
and antioxidant cellular systems could alleviate aging symptoms.
Three major anti-aging therapies were evaluated over the last
30 years: Autophagic inducers, antioxidant (polyamine-rich)
consumption, and caloric restriction.

Rapamycin, an immunosuppressive macrolide, is a well-
known autophagic activator via mTORC1 inhibition of the
mTOR complex. This pharmacological treatment has proved to
increase lifespan in flies, nematodes, yeast, and mice [reviewed in
(111)]. Moderate doses of this drug can alleviate atherosclerosis,
achieving the same effects as higher concentrations (101).
Furthermore, rapamycin added during reperfusion after heart
infarction in a C57 myocardial ischemia mouse model improved
the survival and cardiac functioning, reducing the infarcted
zone size as well as apoptosis post-ischemia/reperfusion. In
addition, AKT phosphorylation increased after treatment,
suggesting that AKT-ERK pathways were selectively activated
by rapamycin (145). Finally, rapamycin improves whole
metabolism in several ways, strengthening the importance of
regulating autophagy activity by external compounds in order
to ameliorate metabolic diseases at cellular and whole organism
levels (100, 109).

In addition, exogenously administered spermidine extends
lifespan in mice treated throughout life or at pre-aged adulthood,
and in hypertensive rats as well. In addition, spermidine dietary
intake was inversely correlated with cardiovascular pathologies
in a human population-based cohort (146). Spermidine, thus, has
been proposed to be a neuro and cardioprotector in aging models
and humans, highlighting the importance of polyamine-rich diets
(56).

Caloric restriction (CR) is the reduction of total calorie
intake by 30-40% without malnutrition. There is strong evidence
supporting this therapy as one of the most effective in reducing
oxidative stress in rats and mice, prolonging lifespan (31, 111).
CR has been found to provoke a decrease in ROS generation (69)
and a diminishment of DNA damage (31). Regarding CR and
autophagy, it was demonstrated that 8%-CR in combination with
exercise or 8%-CR alone were capable of upregulating Atg7, LC3,
and LAMP2 in type II skeletal muscle in rats (147). The authors
also found that aging augmented BECLIN1 protein expression
and oxidative stress, but CR alone or with exercise diminished
this modification as well as the apoptotic index, both correlating
negatively with LAMP2 gene expression (147). Sod−/− mice

treated with CR attenuated the age-related-like phenotype of
this knockout in terms of DNA damage, cellular senescence,
and inflammation (49). CR could be beneficial to human health,
according to epidemiological studies (37). As CR regulates several
pathways, more integrative studies are required in order to fully
understand its anti-aging effect.

Finally, several reviews and research studies highlight the
importance of autophagic modulation as an anti-aging therapy
for the future (32, 37, 43). Rapamycin, resveratrol, polyamines,
and CR are possible candidates to be tested more carefully in
order to improve the putative treatments for human age-related
diseases.

CONCLUDING REMARKS

Aging involves several features that can promote the
development of a variety of disorders in aged individuals,
such as neurodegenerative, heart, and metabolic diseases,
as well as cancer. These age-related characteristics involve a
gradual increase in ROS production and genome instability,
and a progressive decrease in antioxidant, DNA repairing, and
proteostatic systems, among others (Figure 3). Autophagy, as a
homeostatic process, plays an important role in the maintenance
of cell physiology and avoidance of any internal or external
damage that could eventually appear. Several attempts weremade
to improve age-related features, such as caloric restriction as well
as antioxidants and autophagy inducers. Rapamycin, resveratrol,
and polyamines are autophagic inductors clinically available
that could improve aging and some age-related disorders. It is
important to highlight the fact that chemotherapies combined
with autophagic inhibitors (i.e., chloroquine and derivatives)
could be more effective in cancer treatment. Further studies
are required to make autophagy modulation a more promising
anti-aging and anti-tumoral therapy in the next decades.
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