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Highlights 

• Cancer as an open, complex, self-organizing nonlinear dynamic system. 

• The epithelial-mesenchymal transition appears as „„first order‟‟ phase transition. 

• EMT exhibit a Shilnikov‟s chaos. 
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ABSTRACT 

Herewith we discuss a network model of the epithelial-mesenchymal transition (EMT) based on our 

previous proposed framework. The EMT appears as a „„first order‟‟ phase transition process, analogous to 

the transitions observed in the chemical-physical field. Chiefly, EMT should be considered a transition 

characterized by a supercritical Andronov–Hopf bifurcation, with the emergence of limit cycle and, 

consequently, a cascade of saddle-foci Shilnikov‟s bifurcations. We eventually show that the entropy 

production rate is an EMT-dependent function and, as such, its formalism reminds the van der Waals 

equation.  

1. Introduction 

Cancer is still a leading global health problem. It has been estimated that by 2025 there will be nearly 20 

million new cancer cases diagnosed each year [1]. As reported previously, cancer can be viewed as a 

development „gone awry‟, involving a network of interacting cells and their microenvironment, losing 

control over proliferation and cell-fate specification [2]. We posit that such process take place mostly 

through deregulation of critical events occurring during biological phase-transitions. Given that 

phenotypic differentiation and cancer transformation are both self-organized processes, ruled by non-

equilibrium thermodynamics, fluctuations in the control parameters at the bifurcation point are of relevant 

value. Indeed, even subtle changes in some critical values may impair the self-organization process, 

leading to unexpected different states, exhibiting variable robustness and adaptability capability within the 

attractor landscape [3].  

It is generally agreed that cancer evolves along three basic steps [4]: avascular, vascular and 

metastatic, all emerging downstream of biological phase transitions [5]. The metastatic process consists of 

sequential, interlinked, and selective steps [6], and many of these are prompted by a mandatory transition 

from a epithelial to a mesenchymal phenotype [7]. An epithelial-mesenchymal transition (EMT) is a 

biologic process that allows a polarized epithelial cell, which normally interacts with basement membrane 

via its basal surface, to undergo multiple biochemical changes that enable it to assume a mesenchymal cell 
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phenotype, which includes enhanced migratory capacity, invasiveness, and increased resistance to 

apoptosis [8]. 

The current paradigm suggests that EMT drives metastasis by producing mesenchymal cells that 

escape the primary tumor and migrate to distant sites, whereby they can revert to an epithelial state 

through the mesenchymal-epithelial transition (MET). Moreover, depending on the relationships in 

between cells and their new microenvironment, the metastatic foci may either eventually spread to other 

organs and tissues, or enter into a state of dormancy [9]. 

We have previously proposed [5] an empirical model that qualitatively describes the general 

aspects of the evolution of a primary tumor from avascular to metastatic stage. The goal of this work is to 

generalize the previously proposed model for tumor growth [5] with the inclusion of the epithelial-

mesenchymal transition. The manuscript is organized as follows: in Section 2 we propose a network 

model for epithelial-mesenchymal transition. Section 3 focuses into the analysis of the mathematical 

model derived from the mechanism previously proposed, including quantitative simulations and stability 

assay. Development of a thermodynamic framework, based on the entropy production rate is presented in 

Section 4. Finally, some concluding remarks are presented. 

2. A network model of epithelial-mesenchymal transition 

Tumor metastasis is a multi-step process by which tumor cells disseminate from their primary site and 

form secondary tumors at a distant site. Metastasis is the major cause of death in the vast majority of 

cancer patients [10-12]. However, the mechanisms underlying each step of this complex process remains 

obscure. EMT has been increasingly recognized to play pivotal and intricate roles in promoting carcinoma 

invasion and metastasis [13, 14]. The EMT process has been observed in multiple epithelial tumors, 

including breast [15] prostate [16] and colorectal cancer [17].  

Herewith, based on our previous discussed model, we proposed an integrated framework by including 

EMT, according to the network structure shown in Fig. 1.   

 
 

Fig. 1. The network model of epithelial-to-mesenchymal transition. 

In the model, N represents the population of normal cells exposed to the pro-carcinogenic stimulus; 

H the population of the host cells in the surrounding environment [18], comprising exclusively epithelial 

cells; I is the population of immune cells (T lymphocytes (CTL) and natural killer (NK)) [19], M is the 

population of mesenchymal cells. N and H are considered as constants (because these cell groups are 

much more numerous than cancer cells and for practical effects, their number does not change) and we 
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posit I as the control parameter (because the population of immune cells may increase or decrease). 

Variables: x, y, z represent the population of epithelial tumor cells in an avascular, vascular and metastasis 

state, respectively. Finally, ncp represents a non-cancerous product due to the action of immune cells. 

Steps 1, 3 and 2, 4, 6 are related to the process of mitosis and apoptosis of the proliferating tumor 

cells respectively; steps 5 and 7 correspond to the action of the host H  [17]; steps 8, 9 and 12 show the 

action of immune cells I. Finally, steps 10 and 11 are related to the EMT. Step 10 represents an 

intermediate, preparatory step of epithelial cell before its transition to mesenchymal phenotype [20].  

The constants for the model proposed (see Fig. 1) were chosen empirically [4] trying to have a 

greater generality and simplicity as possible, so we have: 1 2 ml/(mmol s)k  , 2 0.5 ml/(mmol s)k  , 

3 4 1/sk  , 4 0.07 ml/(mmol s)k  , 2 2

5 0.5 ml /(mmol  s)k  , 6 0.001 ml/(mmol s)k  , 2 2

7 1 ml /(mmol  s)k 

, 8 9 1 ml/(mmol s)k k  , 2 2

10 12 0.1 ml /(mmol  s)k k  and for the step 11  11 0.3 0.001  mmol/(ml s)k    

is the constant flux of EMT [9]. Sensitivity analysis were done [21] and quantitative investigation of the 

behavior of the output variables when the parameters change. Across the network model (Fig.1), key steps 

– in increasing order – are as follows: 5, 9, 12, and 11 respectively. It should be outlined that steps 

entailing both metastatic cells (5, 9) and EMT (12, 11) have a pivotal position in our model. 

3. Mathematical model, stability analysis and numerical simulations 

Mathematical models represent a suitable way for formalizing the knowledge of living systems obtained 

through a Systems Biology approach [22]. Mathematical modeling of tumor growth makes possible the 

description of its most important regularities and it is useful in providing effective guidelines for cancer 

therapy, drug development, and clinical decision-making [23, 24]. 

Although the role of the EMT are well documented in literature [25], there are just few reports 

dealing with EMT dynamics [26, 27]. Indeed, most of the computational dynamic and statistical models of 

EMT focus on genetic and biophysical changes associated with EMT  [22]. 

The network model (Fig. 1) we propose is a qualitative representation of the population tumor cells 

growth, based on the experimental evidences already available. The three reactions corresponding to EMT 

transition are included. We used the mathematical methods of chemical kinetics in order to reduce the 

network to a system of ordinary differential equations (in this methods, the cell populations are equivalent 

to the chemical species concentrations). This system (eqs, 3.1) describes the avascular, vascular, and 

metastatic phases, as well as EMT in tumor dynamics: 
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                                                                                     (3.1) 

Quantitative value for each constant has been empirically obtained. Fixed points, stable states and 

bifurcations were calculated using the standard procedure [28-30]. Control parameters were represented 

by the population of immune cells I (lymphocytes T (CTL) and natural killers (NK) [18] ). 

In order to simplify, for this model it is assumed that the metastatic cells z (the epithelial cells) can 

be transformed in mesenchymal cells M at a constant rate. The vascular cells y and the metastatic z can 
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interact to produce M cells, but y population alone cannot produce M cells, neither M cells can be 

transformed in vascular cells y. These assumptions, although based on mere convenience, are within the 

bounds of what is reasonable. 

The LZ complexity [31, 32], was calculated using the proposed algorithm by Lempel & Ziv. 

Lyapunov exponents were calculated using the Wolf algorithm in Fortran language [33]. Lyapunov 

dimension DL, also known as Kaplan–Yorke dimension [24], was evaluated across the spectrum of 

Lyapunov exponents 
j   as: 

1

1

j

i

i
L

j

D j









 


                                                                                                                                             (3.2) 

where j is the largest integer number for which
1 2 ... 0j      .  

For modeling network model, COPASI v. 4.6.32 software was used. However, numerical 

integration was performed on the system of ODEs Eq. (3.1) through implementation of Gear algorithm for 

stiff equations, in Fortran with double precision and tolerance of 10
−8

 [34]. For the construction of the 

bifurcation diagram, correlation dimension and power spectrum, the package TISEAN 3.01 was used [35]. 

The results are summarized in Table 1. 

Table 1. Stability, and complexity for the system of ODEs (3.1) for different values of the control 

parameter I (
115,  3,  0.3N H k   ). 

I  
Eigenvalues of the Jacobian 

matrix 

Lyapunov Exponents 

j  
LZ complexity LD  

4 

sss 

stable focus 

-1.261418e-1 -5.375474i

-1.261418e-1 +5.375474i

-4.000000e-1

-8.012672

  

-0.126027 

-0.127308  

-0.403574  

-8.00536  

- 0 

3 

Limit cycle 
 

 

 1.031544e-1 -4.859511i

 1.031544e-1 +4.859511i

-3.000000e-1

-6.764248

 

0.00 

-0.173849  

-0.303749  

-6.27233 

0.01000 1 

1 

saddle-foci 

 4.581987

 9.124765e-3 -1.851758i

 9.124765e-3 +1.851758i

-1.000000e-1

 

0.00 

-0.103604  

-0.690052  

-1.93351 

0.01429 1 

0.4 

Shilnikov‟s chaos 
 

 3.325962

 2.969116e-2 -1.382981i

 2.969116e-2 +1.382981i

-4.000000e-2

 

 

0.00 



 

0.02388 2.03 

In table 1 we show the dynamical behavior of the proposed ODEs (3.1) for different values of the 

control parameter I . At I  = 4, there is a stationary state. As I  is decreasing, the stationary state changes 
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only in its values. Yet, at the critical point I  = 3.76, a supercritical Andronov–Hopf bifurcation takes 

place [36], giving rise to a limit cycle. Thus, the dynamical behavior turns oscillatory. 

As I  further decreases, reaching I  ≈ 0.65, a new qualitative change occurs: the limit cycle 

undergoes a distortion. Two maxima for the values of each the oscillating variables ( , , ,x y z M ) were 

recorded, thus achieving a period duplication bifurcation type saddle-focus, as previously described by 

Shilnikov [37]. Therefore, a cascade of bifurcations is triggered downstream. The model shows, for lower 

critical value of the control parameter (when 0.53I  (see Table 1 for 0.4I   and Fig. 2), that tumor cells 

exhibit “apparently random behavior” (as Shilnikov‟s chaos [34, 36, 37]) when challenged by immune 

system activation. That hypothesis has been vindicated by a recent study, demonstrating that a 

mesenchymal phenotype correlates with immune evasion via reduced expression of the 

immunoproteasome, underlying mechanism of immunoproteasome regulation that involved STAT3, 

STAT1 and miR-200s [38]. 

Concomitantly with the reduction in I values, the overall dynamics of the process increases in 

complexity, as witnessed by the upraised values in LZ . This leads to a parallel increase in the robustness of 

the EMT process.  

In Fig. 2 is shown the dynamic behavior EMT during the metastatic process. 

 

 

 
Fig. 2 A. EMT dynamics for the proposed model (3.1), control parameter values: 0.4I  , time series; 

epithelial cells z  (light blue, large variations) and mesenchymal cells M  (red, small variations); B. 

Chaotic attractor.  

This behavior has important biological implications. On the one hand, the high sensitivity of the 

system to initial conditions makes unfeasible long-term predictions regarding EMT evolution, i.e. the end 

forecasts are improbable (uncertain prognosis). 

Furthermore, the system displays a high degree of robustness [39, 40]. This implies cancer cells are 

resilient in respect to pharmacological treatment, thus leading to a low response rate, namely when cancer 

is at the metastatic state [41]. 

The drug-resistance mechanisms developed during the multiple transition affecting cancer 

development are still in place even after successful primary chemotherapy intervention and sustain high 

clinical recurrence rate [42, 43].  
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4. Thermodynamics framework 

The thermodynamics formalism of irreversible processes [44-47], systems biology [48] and complex 

systems theory [49], offer a theoretical framework appropriate for the characterization of the emergence 

and evolution of tumor growth. The seminal work of  Posch–Hoover [34] and more recently Gaspard [35] 

have shown that the production of entropy per unit of time Si it is related to the spectrum of Lyapunov 

exponents λj  through the relationship 

0i
i j

j

dS
S

dt
                                                                                                                                                             (4.1) 

where 
j  are the spectrum of Lyapunov exponents. 

 
Fig. 3 Dependence of the rate of entropy production 

iS  as a function of the constant flux of the EMT, 11k , 

keeping the constant control parameter I  ( 0.4I  ). 

Through Eq. (4.1) the rate of entropy production was evaluated as a function of the constant flux of 

the EMT 11k , keeping the control parameter I constant ( 0.4I  ), as shown in figure 3. This constant was 

moved in the positive range (M cells cannot be transformed in z cell in this range). Accordingly to our 

model, sensitivity analysis reveals that the constant flux of the EMT process (step 11, Fig.1) is among 

those that exhibit greater Sensitivity Coefficient changes. Moreover, changes in the frequency of EMT 

dramatically alter population dynamics towards exponential growth. 

Based on empirical data (see table 2), through Eq. (4.1) the polynomial regression the rate of 

entropy production 
iS  is obtained as a function of the constant flux of the EMT, 11k  as 

2 3;iS a b c d                                                                                                                                                        (4.2) 

where   represent the constant flux 11k  of the EMT, and the constants of Eq. (4.2) are:                               

( 2.042 0.002a   , -0.8 0.1b   , 5.0 1.0c   , -14.0 2.0d   ; R-square=0.99938, SD=0.00296, 

P<0.03182). The polynomial regression, Eq. (4.2), reminds the van der Waals equation, which it is useful 

to describe the first order phase transitions. 
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The critical point is determined through the Eq. (4.2) as: 
2

2
0iS




; we calculated consequently that 

11
0.11905crit

crit k   .  For values of the constant flux 11k  greater than the critical value ( crit  ) it is 

concluded that: 
2

2
0iS




; On the contrary, if crit  it can be verified that: 
2

2
0iS




, that is, the rate of 

entropy production 
iS  exhibits a minimum. 

The Fig. 4, shows the time series of the proposed model (3.1) for different values of the constant 

flux 11k  for EMT. 

 

 
Fig. 4 Time series of the proposed model (3.1) for different values of the constant flux 11k  for EMT           

( 5,  3,  0.4N H I   ); epithelial cells z  (dash dot, black) and mesenchymal cells M  (solid, red): A. 

11 0.3k  , B. 11 0.11905critk  , C. 
11 0.1k  . 
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Dynamics (see Fig.4) of the two phenotypic populations: mesenchymal versus epithelial, 

highlights that, for 
1111

critk k , dominates the density phenotypic populations of the M cell; below that 

value, for a discrete range of 
1111

critk k values, the systems display a hybrid epithelial-mesenchymal 

configuration, thus supporting previous reported experimental data suggesting that EMT is rarely an “all-

or-none” phenomenon [21] and exhibit a minimum entropy production rate [50]. Yet, a threshold value of 

11k  can be recognized at which the transition from the epithelial to the mesenchymal phenotype emerge 

abruptly, like a “first order” phase transitions. 

Table 2. Stability, and complexity for the system of ODEs (3.1) for different values of the constant flux 

11k  for EMT ( 5,  3,  0.4N H I   ). 

11k  
Eigenvalues of the Jacobian 

matrix max  LZ complexity 

11 0.3k   

 3.325962

 2.969116e-2 -1.382981i

 2.969116e-2 +1.382981i

-4.000000e-2

 0.0740662  0.02388  

11 0.11905critk    

 3.306470

-7.598350e-3 -1.276400i

-7.598350e-3 +1.276400i

-4.000000e-2

 0.0464444  0.01785  

11 0.1k   

 

 3.304328

-1.154246e-2 -1.264596i

-1.154246e-002 +1.264596i

-4.000000e-2

 
0.0514299  0.02231  

Indeed, complexity (LZ) (see Table 2) increases for 11k  values both higher and lower than the 

critical value 
11 0.11905critk  , this probably means that „true‟ epithelial and mesenchymal phenotypes 

display greater complexity than the mixed phenotype (E/M). However, it is verified that for values 

1111

critk k  the entropy production rate exhibit a minimum, which indicates the directional nature of the 

EMT process [50]. 

 

 

5. Conclusions and remarks 

The proposed network model generalized, almost qualitatively, the main features of the metastasis 

processes associates with epithelial-mesenchymal transition. In summary, in this paper we have found 

that: 

 The metastasis state and the EMT exhibit Shilnikov‟s chaos dynamical behavior. The transition 

is tightly influenced by the control parameter I, representing by the microenvironment-based 

immune surveillance. This result outlines the pivotal role that cell-microenvironment 

dynamical interactions, namely those involving the participation of the immune system, is 
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likely to play in ruling tumor evolution and the commitment of cancer cells towards distinct 

fates.  

 The EMT appear as type “first order” phase transitions, even if for a range of discrete values of 

the order parameter S a continuum spectrum of transitions from one phenotype to the other can 

be recognized both from the model and the experimental data. Appraisal of EMT as a process 

featured by criticality and threshold values may help in finding treatment strategies aimed at 

modifying the overall process by targeting the singularities. This approach would probably 

focus on reverting the cancer phenotype instead of merely killing cancer cells, an aim hardly 

achieved with the current chemotherapy regimens [51] We hope that the theoretical framework 

herewith described may help in establishing critical experiments that would improve our 

understanding of the cancer evolution process as well as finding optimal pathways for future 

treatments. 
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Mesenchymal transition

Highlights

•  Cancer  as  an  open,  complex,  self-organizing  nonlinear  dynamic 
system.

•  The  epithelial-mesenchymal  transition  appears  as  ‘‘first  order’’ 
phase transition.

• EMT exhibit a Shilnikov’s chaos.
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