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studies, water is encapsulated inside the organized media; however, a different tendency is observed depending on the cationic
component of the surfactant. For Na-AOT system, the results suggest that the micellar shapes are probably spherical, while in
the case of bmim-AOT, a transition from ellipsoidal to spherical micelles could be occurring when water is added. '"H NMR data
show that water is structured differently when Na* cation is replaced by bmim*; in bmim-AOT RMs, the interaction of water
with the surfactant is weaker and the water hydrogen-bonding network is less disturbed than in Na-AOT RMs. Kinetic studies
reveal that the hydrolysis reaction in bmim-AOT RMs was much more favorable in comparison to Na-AOT RMs. In addition,
when water content decreases in bmim-AOT RMs, the hydrolysis reaction rate increases and the solvent isotope effect remains
constant, while for Na-AOT solutions, both the reaction rate and the solvent isotope effect decrease. Our results indicate that
bmim" cation would be located in the surfactant layer in such a way the negative charge density in the interface is less than that
in Na-AOT RMs, and the reaction is more favorable. Additionally, as '"H NMR studies reveal, the interfacial water molecules
would be more available in bmim-AOT RMs to participate in the nucleophilic attack. Therefore, the present study evidences
how the replacement of Na* counterion by bmim" alters the composition of the interface of AOT RMs.

B INTRODUCTION

When amphiphilic molecules (surfactants) are dissolved in
different media, they can self-assemble to form diverse
supramolecular systems; some examples of them are micelles,
vesicles, and reverse micelles (RMs)." The formed system
depends, among other variables, on the structure of the
surfactant and the solvent used. RMs are systems typically
represented by nanodroplets of a polar solvent, generally water,
confined by a surfactants arrangement in a nonpolar solvent,
resulting in thermodynamically stable and optically transparent
solution.””* In them, the surfactants are located with the polar
group oriented toward the inner polar solvent, and the
hydrophobic chains point toward the external nonpolar
solvent. The temperature and type of external solvent and
surfactant can strongly influence the amount of water
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solubilized (defined as W, = [water]/[surfactant]) in these
organized systems.”” RMs are widely used in different fields
such as nanomaterials synthesis,é_12 chemical and enzymatic
reactions, > ™*° drug delivery,ZI_26 separation science,””?®
among others.””*°

Anionic, cationic, nonionic, and zwitterionic molecules have
been used as surfactants to formulate RMs. "' *'%3173% I this
sense, one of the surfactants most employed for preparing
anionic RMs is sodium 1,4-bis-2-ethylhexylsulfosuccinate (Na-
AOT).* In particular, Na-AOT can be used to generate RMs
in nonpolar solvents in the absence of a cosurfactant. In recent
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years, new types of surfactants have been synthesized.”*** For
example, surfactants with characteristics of ionic liquids (ILs-
like surfactants), which present very interesting properties,
have been relatively little studied.” " ILs are low-melting-
point salts (below 100 °C) with highly optimizable nature and
exceptional properties,””*”~** which can be modulated by the
selection of the cation and/or the anion in the synthesis
procedure.*’

Organic cations such as tetraalkylammonium, 1-butyl-
3-methylimidazolium (bmim*),"~>* or proliniumisopropyles-
ter’> have been used in the past to change the counterion of
AOT instead of Na¥, allowin% to obtain IL-like surfactants that
can form micelles*™****°" or vesicles®® in water and
RMs’”**~* in nonpolar solvents with different properties
compared to the organized systems formed by Na-AOT. In
particular, in previous work, we reported the formation of
aqueous RMs with the IL-like surfactant 1-butyl-3-methyl-
imidazolium 1,4-bis-2-ethylhexylsulfosuccinate (bmim-AOT,
Scheme 1) in aromatic solvents (benzene, toluene, and

44—48

Scheme 1. Molecular Structure of 1-Butyl-3-
Methylimidazolium 1,4-Bis-2-Ethylhexylsulfosuccinate
(bmim-AOT; the Hydrogen Atom Labeling Is Shown) and
Bis(4-nitrophenyl)carbonate (BNPhC)

chlorobenzene) and the study of its interfacial properties.*®*”

These systems were explored by dynamic light scattering
(DLS) and static light scattering, 'H NMR spectroscopy, and
Fourier transform infrared (FT-IR) spectroscopy.”® The results
showed that bmim-AOT forms RMs in aromatic solvents and
the organized systems increase their sizes with the addition of
water. Also, FT-IR and 'H NMR results revealed that in the
RMs composed of water/bmim-AOT/aromatic solvent, the
interaction of water with the surfactant is weaker than in the
traditional water/Na-AOT/aromatic solvent RMs. More
recently, the systems have been investigated by using molecular
probes and UV—vis absorption spectroscopy to assess different
interfacial properties at different water contents.”” The
solvatochromic behavior of molecular probes demonstrates
that the hydrogen-bond donor capacity and interfacial polarity
are lower in the system formed by bmim-AOT compared to
Na-AOT. Also, those results suggest that bmim-AOT RMs
interface is a less electron donor compared to Na-AOT.
Moreover, NMR relaxometry””*® was used to analyze the
molecular motion of interfacial water, finding that in bmim-
AOT RMs, the water molecules are less limited to move inside
the RMs compared to traditional Na-AOT RMs.”’

There are some studies about bmim-AOT RMs created
using different ILs as polar phase’”**~>* and aqueous bmim-
AOT RMs in aromatic nonpolar solvents,*®” in the absence of

cosurfactants. Additionally, the bmim-AOT RMs formation
using hydrophobic ionic liquids as nonpolar component and #-
alcohol as cosurfactant has been reported.’”* Interestingly,
there have been no reported studies on aqueous bmim-AOT
RMs in aliphatic nonpolar solvents. Hence, the aim of the
present work is to employ bmim-AOT as surfactant dissolved
in the widely used nonpolar solvent n-heptane and water as
polar component. The system formulated by the analogue
surfactant Na-AOT in n-heptane was also explored as
comparison. The generation of reverse micellar systems and
the analysis of the interfacial properties were evaluated by DLS
and 'H NMR techniques. Also, we studied the kinetics of a
reaction taking place at the micellar interface to examine the
behavior of the water molecules in this region. Thus, we
worked with a reaction model in which one of the reactants is
water. Specifically, we studied the hydrolysis reaction of bis(4-
nitrophenyl)carbonatem’62 (BNPhC, Scheme 1). As the
reaction environment strongly affects the hydrolysis of
BNPhC, this reaction has been used to investigate the
properties of water in homogeneous medium. In addition, it
has been studied in different RM systems, such as water/Na-
AOQOT/isooctane, 1-hexanol/water/sodium dodecyl sulfate/
isooctane, and 1-hexanol/water/tetradecyltrimethylammonium
bromide/isooctane.*>%*

The present results allowed determining the influence of the
chemical structure of the AOT counterion on the interaction
of interfacial water with the surfactant in bmim-AOT RMs,
altering its properties with respect to the reverse micellar
systems formed by Na-AOT.

B EXPERIMENTAL SECTION

Materials. The IL-like surfactant bmim-AOT was obtained
following the methodology previously reported by other authors,*
and it was dried under vacuum before use. Na-AOT, from Sigma
(>99% purity), was dried at reduced pressure and then used without
further purification. n-Heptane and deuterium oxide (D,0), from
Sigma (high-performance liquid chromatography quality), were used
as supplied. The substrate BNPhC, from Sigma, was of high purity
and was used without prior purification. Milli-Q (Millipore)
equipment was used to obtain ultrapure water.

Methods. Experimental procedure for preparing bmim-AOT and
Na-AOT RMs solutions; DLS, "H NMR, and kinetic experiments are
detailed in the Supporting Information section.

B RESULTS AND DISCUSSION

Water/bmim-AOT/n-Heptane System. As it was men-
tioned above, the solubilization of bmim-AOT in aromatic
solvents such as benzene, toluene, and chlorobenzene in the
absence of water (W, = 0) was reported.’® In the present work,
we tested the ability of bmim-AOT to form reverse micellar
systems in n-heptane. Thus, the variation of the surfactant
concentration and the water content for water/bmim-AOT/n-
heptane system was evaluated. The concentration of bmim-
AQOT was varied between 0 and 1 M, and it was found that the
surfactant was insoluble in n-heptane at W; = 0 in all of the
surfactant concentration range evaluated. Therefore, to prepare
clear solutions of bmim-AOT in n-heptane below 1 M, the
addition of water was indispensable. A 0.7 M concentration of
bmim-AOT was used to perform all of the experiments; at this
concentration, bmim-AOT is soluble in a wide range of W,
(W, = 2-35). Below W, = 2, the solubilization of the
surfactant is incomplete, and at W, > 35, separation into two
liquid phases occurs. Therefore, at high surfactant concen-
trations, the bmim-AOT/n-heptane system can disperse a
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considerable amount of water, resulting in a clear and stable
ternary mixture. Interestingly, this system can dissolve a larger
ans‘160unt of water than in aromatic solvents, where W™ is 5—
6.

The results suggest that just as the solubility of AOT
changes by replacing the Na® counterion by bmim’, the
interfacial properties could be also altered; hence, in the next
sections, we evaluate the behavior of this novel system,
compared to water/Na-AOT/n-heptane.

DLS Experiments. DLS measurements were carried out for
water/bmim-AOT/n-heptane at [surfactant] = 0.7 M and
different W(’s, to determine if water is entrapped inside the
organized media or if water only dissolves in the solution
without any molecular organization." Water/Na-AOT/n-
heptane system, in the same experimental conditions, was
also analyzed for comparison.

The apparent hydrodynamic diameters (d,,,) for the RMs at
variable W are reported in Figure 1. Additionally, the values of
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Figure 1. dapp values of water/bmim-AOT /n-heptane RMs (red circle

open) and water/Na-AOT/n-heptane RMs (box solid) at different
Wy’s. Temperature = 25 °C, [surfactant] = 0.7 M.

polydispersity index (PDI) are listed in Table S1. As can be
seen in Figure 1, depending on the cationic component of the
surfactant, the observed tendency is different. When increasing
the amount of water, an increase in the apparent hydrodynamic
diameter is observed for water/Na-AOT/n-heptane system,
which suggests that water is encapsulated and RMs are formed.
The aggregates do not interact with each other and are
probably spherical according to the observed linear trend and
the low PDI values (Table $1).°® This tendency is consistent
with the results obtained for water/Na-AOT/n-heptane at
lower surfactant concentration.”

In the case of bmim-AOT, different behavior is observed
compared to Na-AOT. Figure 1 shows that d,,, values decrease
to a minimum at W, ~ 12 and then start to increase. The
results suggest that a transition from ellipsoidal (W, < 12) to
spherical (W, > 12) RMs could be occurring. Similar results
have been found for water/sodium bis(2-ethylhexyl)phosphate
(Na-DEHP)/n-heptane,’®”  water/Na-DEHP/benzene,*®’
and dimethylformamide/Na-DEHP/n-heptane’® systems,
which show a minimum in size when plotting d,,, versus W,
Beyond the changes in shape for the bmim-AOT system, the
dyp and PDI (Table S1) values obtained confirm that the
water molecules are encapsulated forming RMs. In this sense,
the present work is the first investigation where an aliphatic
nonpolar solvent as n-heptane is used as a nonpolar
component to generate aqueous bmim-AOT RMs.

The d,y, profile versus the water content for the bmim-AOT
system could be analyzed taking into account the critical
packing parameter (CPP).”' The molecular structure of a
surfactant is one of the factors that governs the types of
molecular assemblies that are formed; this relationship is given
by CPP. CPP is equal to V./ayl, where V_ is the volume
occupied by the lipophilic group of the surfactant, g, is the area
occupied by the hydrophilic region, and [ is the length of the
lipophilic part. Surfactants in nonpolar media with CPP larger
than 1 assemble in RMs;” an increase in a, decreases the CPP
value so that the organized system has a less negative curvature
and an elongated aggregate is expected to form.”” In n-heptane,
both Na-AOT and bmim-AOT form RMs; however, the IL-
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Figure 2. "H NMR spectra for water/bmim-AOT/n-heptane RMs obtained varying the water content at 25 °C. [bmim-AOT] = 0.7 M. (A) The
lines highlight "H NMR signals of H2 from the bmim" cation (green line) and HA’ proton associated with AOT (red line). (B) 'H NMR spectra in

the region of 2.9—5.9 ppm showing H from water-entrapped signal.
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like surfactant bmim-AOT has a large cation (bmim®)
compared to Na-AOT, which leads to a large g, value and
lower CPP value than Na-AOT, making the formation of
ellipsoidal RMs more favorable. The distance between AOT
and bmim" increases when water content increases in bmim-
AOT RMs due to solvation of both the anion and cation.
Consequently, the a, value for AOT decreases and the CPP
value increases, so the aggregate tends to have a more negative
curvature, and the ellipsoidal RMs transform to a reverse
spherical micelle. Thereby, there is a decrease in d,,, values
determined by DLS when W, increases, up to W, < 12. When
the hydration process is complete, the micellar diameter
increases for W, > 12 due to the swelling of the micelle. A
similar behavior was observed by Bai et al.”” when studying the
effect of water on [bmim][BF,]/bmim-AOT/benzene micro-
emulsions.

'H NMR Analysis. '"H NMR spectroscopy is a technique
that allows to analyze RM systems and to study the structure of
dissolved water.””*™”7 In the present work, 'H NMR
measurements in aqueous bmim-AOT RMs in n-heptane
were carried out varying the water content (Figure 2). The
chemical shift changes of hydrogen atoms of the water
entrapped, HA' proton associated with the anion AOT and H2
signal for the bmim" cation (Scheme 1) were evaluated. The
"H NMR chemical shifts of the corresponding Na-AOT system
were also recorded, for comparison.

Figure 3 shows the chemical shifts of H (from water) in
water/bmim-AOT/n-heptane and water/Na-AOT/n-heptane
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Figure 3. 'H NMR chemical shifts of water hydrogen atoms in water/
bmim-AOT/n-heptane (red circle open) and water/Na-AOT/n-
heptane (box solid) RMs at different water content. [Surfactant] =
0.7 M. The value for bulk water (dashed line) is included.

RMs at different water content. The results show that in both
RMs, the signal of H from water shift to a downfield position
upon W, increase. Interestingly, the values are not identical
denoting different environment around the water molecules.
Previous studies performed in Na-AOT RMs ®”*”? report
that as a consequence of the interaction of water with AOT
polar head group, entrapped water molecules have better
electron donor capability compared to bulk water. This
interfacial interaction increases the electron density on water
protons, whereby the chemical shifts of hydrogen atoms from
entrapped water in Na-AOT RMs appear at lower value than in
bulk (4.85 ppm).”® On the other hand, the interaction of the
entrapped water with positively charged counterions makes the

water more electrophilic, resulting in a downfield shift in
comparison to bulk water.”¥%® Therefore, at low W, values,
most of the water present in water/bmim-AOT /n-heptane and
water/Na-AOT/n-heptane RMs interacts with anionic surfac-
tant polar head group. By increasing the amount of water in
both systems, the proportion of free water progressively
increases, and water begins to recover its hydrogen-bond
network structure. This reduces the electron density on water
protons, and the hydrogen signal moves downfield, tending to
the bulk value (see the dashed line in Figure 3).

It is important to note that for bmim-AOT RMs at W, < 18,
the values of water protons signal are larger than in Na-AOT
RMs. For instance, the chemical shift is 4.19 ppm at W, = S in
water/bmim-AOT/n-heptane RMs, while the signal appears at
4.00 ppm for Na-AOT at the same W,. This difference is
because the interaction of water with the surfactant is weaker
in the bmim-AOT system than in Na-AOT RMs. In addition,
when the amount of water increases, the signal trends more
rapidly to the value of bulk water in bmim-AOT than in Na-
AOT RMs, due to the interface solvates at low W,

The analysis of the AOT moiety proton signals also provides
information about the interfacial properties of the micellar
systems. In Figure 4A, the "H NMR signal position of HA’
proton from AOT in water/bmim-AOT/n-heptane RMs as a
function of W, is shown; the signal showed upfield shift when
W, increases. This same tendency shows the water/Na-AOT/
n-heptane system (Figure S1). These results indicate that the
sulfonate group of the surfactant interacts with the entrapped
water by hydrogen bonds, thereby the spatial separation
between the AOT anion and its counterion increases when W,
increases and the proton signals from the surfactant polar head
shift to an upfield position.”

The chemical shifts of the signal assigned to HA' appear at
lower values for bmim-AOT RMs than Na-AOT; however, the
changes are more important in bmim-AOT. For example, in
water/bmim-AOT /n-heptane RMs, the HA’ signal position
changes from 2.92 ppm at W, = 2, to 2.81 ppm at W, = 19 (AS
= 0.11 ppm), while the signal appears at 2.97 ppm and shifts to
2.92 ppm for Na-AOT at the same W, range (A = 0.05 ppm).
Previous studies by other authors in which the 'H NMR
signals of AOT polar head were analyzed varying the metal
counterion indicate that if the interaction between the metal
and AOT decreases, the signals of the hydrogens from
surfactant polar head move upfield.”” This allows concluding
that the differences in chemical shift values of AOT HA’
proton for bmim-AOT and Na-AOT RMs are due to a weaker
AOT-bmim" interaction compared to AOT-Na" interaction.

H2 atom in imidazolium ring in the bmim" cation (Scheme
1) is particularly sensitive to the environment; ”%"** therefore,
the '"H NMR peak position of this proton was also analyzed as
a function of W,. The signal position of the H2 of bmim" in
bmim-AOT RMs at different Wy’s is displayed in Figure 4B.
The results show that the '"H NMR peak of H2 atom shifts to a
highfield position upon W, increase, moving from 8.84 ppm at
W,y = 2, to 8.58 ppm at W, = 19. This shifting indicates an
increase in the electron density of H2 atom that could be
attributed to water—bmim® interactions when the W,
increases.”

In summary, the water addition affects more the micro-
environment of bmim-AOT than Na-AOT. Consequently, the
hydrogen bond and electron-donor ability of the micellar
interface are altered in a dissimilar way.
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Figure 4. § values of AOT HA’ (A) and H2 of bmim" (B) in water/bmim-AOT/n-heptane RMs as a function of W,. [bmim-AOT] = 0.7 M.

Kinetic Study: Hydrolysis of Bis(4-nitrophenyl)-
carbonate (BNPhC). 'H NMR studies in bmim-AOT and
Na-AOT RMs show that the confined water has its hydrogen-
bond network partially broken as a result of the interaction of
water molecules with the micellar interface. These changes in
water properties strongly affect the behavior of the reactions
that occur at the interface. Therefore, with the aim of studying
the changes in properties of interfacial water and analyzing
their influence on chemical reactivity, a model reaction in
which one of the reactants is water was tested. Thus, the
hydrolysis reaction of BNPhC (Scheme 2) was carried out in
aqueous bmim-AOT and Na-AOT RMs using n-heptane as
external nonpolar solvent, and the effects in reactivity at
different W,, were evaluated.

Scheme 2. Hydrolysis Reaction of BNPhC

o}
I H,0
O,N 0-C-0 NO, —2= » 2 O,N OH + CO,

BNPhC

The hydrolysis of BNPhC involves one water molecule that
acts as a nucleophile, attacking the carbonyl carbon atom, and
another water molecule that acts as a catalytic base removing a
proton (Scheme 3); thus, solvent kinetic isotope -effects
generally occur (usually, solvent kinetic isotope effects range
from 2 to 3).5%%

Scheme 3. Schematic Representation of the Interaction
between Water and BNPhC

Figure S2A shows the absorption spectra of a typical run
corresponding to the hydrolysis of BNPhC in RMs created
with bmim-AOT. A clear isosbestic point can be observed; the
band located at the shortest wavelength corresponds to
BNPhC, while the product band is located at higher
wavelengths. The hydrolysis reaction was followed determining
the UV—vis absorbance changes of the product, at 343 nm

12748

(Figure S2B). In Na-AOT RMs, the results were similar
(absorption spectra not shown).

The influence of RMs composition on the hydrolysis of
BNPhC was tested by performing several experiments. The
kinetic procedure to determine the observed rate constant
(kgps) is detailed in the Supporting Information section. The
variation of k., values with [surfactant], at constant W, = 20,
for both micellar systems was investigated. The results show an
increase in kg, with [surfactant] at a constant nanodrop size
for both reverse micellar systems studied, due to the
incorporation of BNPhC into the RMs (Figure S3). Moreover,
the observed rate constants are larger for the bmim-AOT
system. In addition, the kg, values as function of the water
content in Na-AOT and bmim-AOT reverse micellar systems
at constant surfactant concentration (0.7 M) were studied, it is
found that the profile of the variation of k,,, with Wj is very
different for bmim-AOT RMs compared to Na-AOT (Figure
S4). When increasing W, at constant surfactant concentration,
the reaction rate decreases markedly for bmim-AOT RMs,
while a small increase in k., is obtained when increasing W
for water/Na-AOT/n-heptane.

For a quantitative analysis of the solvolysis reaction in RMs,
we decide to use the model of the micellar pseudophase. This
model considers that the micellar system consists of three
pseudophases: aqueous phase, interface, and continuous
medium.” The combination of the reaction rates in each
pseudophase gives the overall reaction rate and depends on the
reactant concentrations in the three pseudophases. As BNPhC
is poorly soluble in water, therefore, it is assumed that it is
partitioned between the oil phase (BNPhC,) and the
surfactant monolayer (BNPhC,), whereby the reaction only
takes place in the micellar interface where water and BNPhC
molecules can meet to form the product (P) (Scheme 4).%*

Taking into account the above and according to the models
developed in previous works,*>**”® the k,, values of the
micellar system can be expressed by eq 1 as follows

kK,

k, =t
T K. +Z

(1)

where k; is the rate constant of hydrolysis at the micellar
interface, K; is the distribution constant of BNPhC between
the continuous medium and the interface, and Z is defined as Z
[n-heptane]/[surfactant]. Equation 1 can be rewritten as
follows
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Scheme 4. BNPhC Distribution Processes in the Micellar
System and Location of the Hydrolysis Reaction”

oil
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“K; is the distribution constant of BNPhC; k; is the hydrolysis rate
constant.

Z
kK (2)

1 1
— ==+
kobs ki
As it can be seen, eq 2 predicts that the relationship between
the reciprocal of k,,, and Z is linear, and K, value can be
obtained from the ratio between the intercept and slope.’*”®
The predicted linear relationship between 1/k,,, and Z at a
constant value of W was verified experimentally and K; values
were obtained from the data plotted in Figure S: K; (H,O/Na-
AOT/n-heptane) = 43 and K; (H,O/bmim-AOT/n-heptane)
= 56.
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Figure S. Reciprocal of k,,, for BNPhC hydrolysis plotted at different
[n-heptane]/[surfactant] (Z) in: H,0/Na-AOT/n-heptane (box
solid) and H,O/bmim-AOT/n-heptane (red circle open).

After determining K; and k,, values at different W, the true
rate constant at the micellar interface, k;, at different amount of
water is obtained from eq 2. For water/bmim-AOT/n-heptane
solutions, an increase in k; with decreasing W is obtained for
BNPhC hydrolysis (Figure 6A). Furthermore, a constant
solvent isotope effect for bmim-AOT RMs can be observed
from Figure 7. The isotope effect is defined as ky/kip, where
ki and kjp are the hydrolysis rate constants in the micellar
interface using H,O and D,0, respectively. Different results
were obtained for water/Na-AOT/n-heptane system, which
shows a decrease in k; with decreasing W, (Figure 6B) and a
decrease in the solvent isotope effect with decreasing W

(Figure 7). Also, for Na-AOT RM:s solutions, the hydrolysis
was slower than that in the system formed by the IL-surfactant.

Previous kinetics studies®® of the solvolysis of BNPhC in
water/Na-AOT/isooctane micellar systems, as for Na-AOT/n-
heptane, showed a decrease in the k; values and the solvent
isotope effect with decreasing W,. Decrease in the availability
and basicity of water for catalysis at the interface was suggested
as an explanation. At low W, values, the interfacial water is
solvating the surfactant and under this scenario, there are no
water molecules to catalyze the nucleophilic attack (Scheme
3).

Taking into account the more hydrophobic character of
bmim* in comparison with Na’, in bmim-AOT RMs we
suggest that the cation bmim" is part of the surfactant layer,
hence, the negative charge density in the interface should be
less than that in Na-AOT RMs. Therefore, the electrostatic
repulsion with the anionic intermediate of the associative
mechanism®*® for BNPhC hydrolysis is lower, and the
reaction in bmim-AOT RMs is more favorable. Additionally,
the cation bmim® can stabilize the unstable tetrahedral
intermediate leading to larger reaction rates. Simultaneously,
as revealed by the 'H NMR results, in bmim-AOT RMs,
smaller amount of water molecules are hydrating the
surfactant, thus they are more accessible to participate in the
nucleophilic attack. The fact that the rate constant of solvolysis
reaction decreases at larger W, for bmim-AOT RMs is the
result of a decreased water nucleophilicity.

Furthermore, the fact that the isotope effect in bmim-AOT
RMs is around 1 for all W, values analyzed, could indicate the
stabilization of the intermediate by the cation bmim®, creating
an environment less necessary for catalytic participation of the
second water molecule.

Therefore, our results show that changing the chemical
structure of the counterion on the AOT surfactant generates a
new system with different interactions between water
molecules and micellar interface and consequently with
interesting properties and reactivity.

B CONCLUSIONS

The IL bmim-AOT was evaluated as a surfactant to generate
RMs in n-heptane and was analyzed on how the bmim" cation
alters the properties of water/bmim-AOT /n-heptane RMs
compared to the water/Na-AOT/n-heptane system. The
results show that bmim-AOT form RMs and the reverse
micellar system generated by this IL-surfactant has the ability
to dissolve a considerable amount of water.

In particular, DLS studies reveal that water is encapsulated
by forming RMs; however, taking into account the cationic
component of the surfactant, a different tendency on the sizes
is observed. For Na-AOT system, a spherical micellar shape
can be invoked, while in the case of bmim-AOT RMs, a
transition from ellipsoidal to spherical micelles could be
occurring when water is encapsulated.

"H NMR data show that water is structured differently when
Na* cation is replaced by bmim®, due to differences in the
magnitude of the interaction between water molecules and the
RMs interface. In bmim-AOT RMs, this interaction is weaker
compared to Na-AOT RMs; consequently, in the bmim-AOT
system, there is a smaller number of water molecules that
interact with the surfactant and the hydrogen bonding network
of water is more preserved.

These changes in water properties affect the behavior of
reactions that occur in these aggregates. This was corroborated
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Figure 7. Variation of the kinetic isotope effect (kyy/kip) vs W, for the
hydrolysis reaction of BNPhC in aqueous Na-AOT and bmim-AOT
RM:s using n-heptane as a nonpolar component. [Surfactant] = 0.7 M.

using, as model, a hydrolysis reaction of carbonate in RM
systems. In bmim-AOT RMs, the hydrolysis reaction is much
more favorable compared to Na-AOT RMs. Also, for bmim-
AOT solutions, an increase of reaction rate with decreasing W,
is obtained for hydrolysis and a constant solvent isotope effect,
while for Na-AOT RMs, a decrease in hydrolysis rate and
solvent isotope effect with decreasing W; is observed. The
results are compatible with an ordering of bmim-AOT
surfactant at the RM interface. We think that the imidazolium
ring can be inserted between the AOT moiety leading to that
the negative charge density in the interface would be less than
that in Na-AOT RMs, thereby the reaction is more favorable as
a consequence of the lower electrostatic repulsion with the
anionic intermediate of the hydrolysis. Simultaneously, as
revealed by the "H NMR results, in bmim-AOT RMs, a smaller
amount of water molecules are hydrating the surfactant,
consequently they are more available to participate in the
nucleophilic attack.

Therefore, our results show how bmim* alters the
conformation of the interface of bmim-AOT reverse micelles
compared to Na-AOT. The results provide kinetic evidence of
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these interfacial changes as a consequence of the replacement
of the cation in AOT RMs.
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