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ABSTRACT
We present a new cosmological test using the distribution of galaxies around cosmic
voids without assuming a fiducial cosmology. The test is based on a physical model
for the void-galaxy cross-correlation function projected along and perpendicular to
the line of sight. We treat correlations in terms of void-centric angular distances and
redshift differences between void-galaxy pairs, hence it is not necessary to assume a
fiducial cosmology. This model reproduces the coupled dynamical (Kaiser effect, RSD)
and geometrical (Alcock-Paczynski effect, GD) distortions that affect the correlation
measurements. It also takes into account the scale mixing due to the projection ranges
in both directions. The model is general, so it can be applied to an arbitrary cylindrical
binning scheme, not only in the case of the projected correlations. It primarily depends
on two cosmological parameters: Ωm, the matter fraction of the Universe today (sensi-
tive to GD), and β, the ratio between the growth rate factor of density perturbations
and the tracer bias (sensitive to RSD). In the context of the new generation of galaxy
spectroscopic surveys, we calibrated the test using the Millennium XXL simulation for
different redshifts. The method successfully recovers the cosmological parameters. We
studied the effect of measuring with different projection ranges, finding robust results
up to wide ranges. The resulting data covariance matrices are relatively small, which
reduces the noise in the Gaussian likelihood analysis and will allow the usage of a
smaller number of mock catalogues. The performance evaluated in this work indicates
that the developed method is a promising test to be applied on real data.

Key words: cosmological parameters – large-scale structure of Universe – galaxies:
distances and redshifts – methods: data analysis, statistical

1 INTRODUCTION

One of the major challenges of modern cosmology is to un-
derstand the nature of dark energy, which drives cosmic ac-
celeration. There is a wide variety of dark energy models,
hence, in order to constrain them, it is important to apply
several complementary statistical methods to the available
simulated and observational data.

Cosmic voids are the subdense regions of the Universe.
Since their discovery (Gregory & Thompson 1978; Kirsh-
ner et al. 1981; de Lapparent et al. 1986), voids have been

? E-mail: cmcorrea@oac.unc.edu.ar (CMC)

recognized as powerful cosmological laboratories, specially
with the advent of modern galaxy redshift surveys. As they
take up most of the volume of the space, they constitute
a fundamental component of the cosmic web, holding valu-
able clues about the geometry and expansion history of the
Universe. The study of voids offers two distinct advantages
over the high density regime: i) void dynamics is less non-
linear since it is mainly composed of single streaming flows,
hence, it is easier to model systematics such us redshift-
space distortions effects (Sheth & van de Weygaert 2004;
Padilla et al. 2005; Ceccarelli et al. 2006, 2013; Paz et al.
2013; Hamaus et al. 2014b, 2015; Ruiz et al. 2015); and ii)
theories of modified gravity predict deviations from Gen-
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2 C. M. Correa et al.

eral Relativity (GR) to be most pronounced in unscreened
low-density environments, making voids a powerful tool for
detecting them (Clifton et al. 2012; Li et al. 2012; Clampitt
et al. 2013; Cai et al. 2015; Barreira et al. 2015; Lam et al.
2015; Joyce et al. 2016; Koyama 2016; Cautun et al. 2018;
Paillas et al. 2018).

Voids can be used to infer cosmological information in
different ways. For instance, a shape analysis of stacked voids
allows to perform an Alcock & Paczynski (1979, AP) test.
The AP test is a purely geometric method that examines the
ratio of the observed angular to radial sizes of objects that
are known to be intrinsically isotropic. Many studies on this
topic can be found in the literature: Ryden (1995); Lavaux &
Wandelt (2012); Sutter et al. (2014); Mao et al. (2017). Also,
cosmology can be constrained by the analysis of the abun-
dance of voids: Sheth & van de Weygaert (2004); Furlanetto
& Piran (2006); Jennings et al. (2013); Chan et al. (2014);
Achitouv et al. (2015); Pisani et al. (2015).

This work is focused on another method: the void-
galaxy cross-correlation function on redshift-space (Paz
et al. 2013; Hamaus et al. 2014a, 2015, 2016, 2017; Cai
et al. 2016; Achitouv 2017; Achitouv et al. 2017; Chuang
et al. 2017; Hawken et al. 2017; Nadathur & Percival 2017;
Nadathur et al. 2019). This statistical function is a power-
ful tool that describes the void environment and dynamics.
Specifically, it quantifies the probability excess of having a
galaxy around a void. According to the cosmological prin-
ciple, this function must be isotropic. However, anisotropies
arise due to the presence of dynamical and geometrical
distortions. Dynamical distortions, or redshift-space distor-
tions, arise from the contribution of the line-of-sight com-
ponent of the peculiar velocities of the galaxies surround-
ing voids. Geometrical distortions, on the other hand, arise
when a wrong cosmology is used to assign a distance scale
to measure correlations. This is a manifestation of the AP
effect and can be used to extract cosmological information.
Both types of distortions are coupled, hence, any cosmolog-
ical analysis must take both into account.

In this work, in addition, we consider a third type of sys-
tematics that affects the cosmological inference when mod-
elling the correlation function. Models evaluate the correla-
tion function on a given point of the space. However, when
measuring it, a binning scheme is used, and hence, several
scales are mixed in the observation. This correction is a key
aspect for the new method presented here: we measure and
model two fully projected void-galaxy correlation functions,
along and perpendicular to the line of sight. The data covari-
ance matrices associated to this method are smaller, and the
noise in the Gaussian likelihood analysis is reduced, which
will allow the usage of a smaller number of mock catalogues
(Taylor et al. 2013; Dodelson & Schneider 2013). The other
important aspect of our analysis is the treatment of correla-
tions directly in terms of void-centric angular distances and
redshift differences between void-galaxy pairs, so that it is
not necessary to assume a fiducial cosmology. The physi-
cal model that we developed reproduces all these type of
distortions and depends primarily on two cosmological pa-
rameters: the matter fraction of the Universe today, Ωm, and
the ratio between the growth rate of density perturbations
and the linear tracer bias, β.

This paper is organised as follows. In Section 2, we ex-
plain the fundaments of the cosmological test, namely, the

origin of geometrical and dynamical distortions, and the role
of the projected void-galaxy cross-correlation functions as
cosmological tools. In Section 3, we provide the data sets.
We describe the numerical N-body simulation and the void
catalogues. In Section 4, we present the projected correla-
tion functions from data. In Section 5, we present a physical
model for them. In Section 6, we perform a likelihood analy-
sis to constrain the cosmological parameters from the model.
Finally, we summarize and discuss our results in Section 7.

2 FUNDAMENTS OF THE TEST

2.1 Geometrical distortions

Our method relies on measuring the cross-correlation func-
tion between void-galaxy pairs on a spectroscopic survey.
The observables we have are (θ, z′, z), where θ denotes the
angular distance subtended by a void centre and a galaxy
on the plane of the sky (hereafter POS), z′ the redshift of
the void centre provided by the void finder (see Section 3.2),
and z the redshift of the galaxy. Their respective POS and
line-of-sight (hereafter LOS) comoving separations, (σ, π),
are given by the following equations:

σ = dcom(z′) θ π =
��dcom(z) − dcom(z′)

�� , (1)

where dcom is the comoving distance from the observer. An-
alytical expressions for the comoving distance in the gen-
eral non-flat case are given in terms of elliptic functions by
Kantowski et al. (2000). Throughout this work, we adopted
a standard flat ΛCDM cosmology, but the method can be
generalised to incorporate other models. In this frame,

dcom(z) = c
∫ z

0

dẑ
H(ẑ), (2)

where c is the speed of light in vacuum, and H the Hub-
ble parameter, a function of redshift and the cosmological
parameters (H0,Ωm,ΩΛ):

H(z) = H0

√
Ωm(1 + z)3 +ΩΛ. (3)

Here, H0 = H(0) is the Hubble constant, Ωm the al-
ready mentioned matter fraction of the Universe today, and
ΩΛ = 1 − Ωm the dark energy fraction today.

As can be seen from the above equations, it is neces-
sary to assume fiducial values for H0 and Ωm in order to
estimate comoving distances from the observables. A bad
selection of these values will lead to a wrong estimation of
(σ, π), and hence, a distorted spatial distribution of galaxies
around voids on comoving coordinates. This also happens
when measuring, for instance, the galaxy auto-correlation
function or the power spectrum. This phenomenon is known
as the Alcock & Paczynski (1979) effect.

Hereafter, we will refer to this kind of distortions in
the spatial distribution of galaxies as geometrical distortions
(GD).

2.2 Dynamical distortions

Besides the GD described in the previous section, there also
exist dynamical or redshift space distortions (Kaiser 1987,
RSD). The peculiar velocity of a galaxy along the LOS, v‖ ,
generates an additional shift on the spectrum lines due to

MNRAS 000, 1–14 (2018)



Non-fiducial cosmological test with voids 3

the Doppler effect, which is indistinguishable from the cos-
mological redshift due to the universal expansion. This ad-
ditional shift affects z, and hence, distorts the estimation
of the LOS comoving separation π. The apparent comoving
separations (σ, π) can be written in terms of their respective
true comoving separations (r⊥, r‖) as follows:

π = r‖ +
v‖

H(z) (1 + z) σ = r⊥. (4)

Note that σ remains unaffected.
Hereafter, we will distinguish between: i) the observ-

able space (θ, ζ), where measurements are made; ii) the real
space (r⊥, r‖), not affected by distortions; and iii) the dis-
torted space (σ, π), where GD and RSD are jointly observed.
Here, ζ := |z − z′ |.

2.3 The projected void-galaxy cross-correlation
functions

As we mentioned in Section 1, the void-galaxy cross-
correlation function is a natural tool to perform an AP test.
According to the cosmological principle, the real-space corre-
lation function, ξ(r⊥, r‖), possesses spherical symmetry with
circular isocontours. However, when working with observa-
tional data, it is only possible to obtain the distorted-space
correlation function, ξ(σ, π), which is not isotropic due to the
presence of GD and RSD. Nevertheless, these anisotropies
can be modelled, and this model depends on the cosmologi-
cal parameters.

Working directly on observable-space, ξ(θ, ζ), has the
advantage that it is not necessary to assume a fiducial
cosmology. This is the first aspect we incorporated in our
method. The second aspect is related to a third type of sys-
tematics besides GD and RSD that can affect the cosmo-
logical inference when modelling the correlation function.
Models evaluate the correlation function on a given point of
the space. However, when measuring it, a binning scheme
is used, and hence, several scales are mixed. This is not a
problem if we work with almost differential bins, neverthe-
less, this implies a poor signal. On the contrary, increasing
the bin sizes improves the signal, but the correlation func-
tion must then be modelled taking into account the volume
and geometry of the bins. Such a model allows to work with
bins of arbitrary sizes, so we can do even more and work
with fully projected correlation functions.

If we project ξ(θ, ζ) towards the POS in a given redshift
range, we get the plane-of-sky correlation function, ξpos(θ),
which depends only on the angular coordinate θ. On the
other hand, if we project ξ(θ, ζ) towards the LOS in a given
angular range, we get the line-of-sight correlation function,
ξlos(ζ), which depends only on the redshift-difference coor-
dinate ζ . We measure and model these two complementary
functions taking into account the effects of GD, RSD and
the scale mixing due to the projection range, and in this
way, we perform an AP test to constrain Ωm and β1. We
will explain in detail how to define the binning scheme to
measure the projected correlations in Section 4.1.

Given that GD are sensitive to the redshift of void iden-
tification (Eqs. 1), we analyse the performance of our test

1 β will be defined in Section 5.3.1.

with the redshift, using void samples up to z′ = 1.5. This
is important in view of the advent of the new generation of
galaxy spectroscopic surveys, such as HETDEX (Hill et al.
2008), Euclid (Laureijs et al. 2011), and DESI (Eisenstein
& DESI Collaboration 2015), which in general, will cover a
volume with a median redshift larger than 0.5, a significant
improvement with respect to the available surveys.

3 DATA SET

3.1 Simulation setup

We used the Millennium XXL N-body simulation (Angulo
et al. 2012, MXXL). This simulation extends the previous
Millennium and Millennium-II simulations (Springel et al.
2005, Boylan-Kolchin et al. 2009) and follows the evolution
of 67203 dark matter particles inside a cubic box of length
3000 h−1Mpc. The particle mass is 8.46 × 109 h−1M�. This
simulation adopts a flat ΛCDM cosmology with the same
cosmological parameters as the previous Millennium coun-
terparts: Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.045, Ων = 0.0,
h = 0.732, ns = 1.0 and σ8 = 0.9. We used three snapshots
belonging to redshifts 0.51, 0.99 and 1.50.

We used dark matter haloes as tracers, which were iden-
tified as groups of more than 60 particles using a friends-of-
friends algorithm with linking parameter equal to 0.2 of the
mean inter particle separation. We selected a lower mass cut
of 5 × 1011 h−1M�.

Positions and peculiar velocities in real space are avail-
able to quantify the effects of distortions. In order to gen-
erate RSD, we picked the z-axis of the simulation box as
the LOS direction, and applied Eq. (4) to shift all haloes
from real to distorted space. Moreover, the redshift of each
snapshot, zbox, was assumed to be the redshift for void iden-
tification. As these are high redshifts, it is valid to adopt
the plane-parallel approximation, where changes in the LOS
direction with the observed angles on the sky are neglected.

3.2 Void catalogues and selected samples

We applied the void finding method described in Ruiz et al.
(2015), which is a modified version of the Padilla et al. (2005)
algorithm. Briefly, the algorithm starts with the identifica-
tion of the largest spherical regions where the overall density
contrast satisfies the criterion ∆(Rvoid) = ∆id

cut(z), where Rvoid
is the radius of the region and ∆id

cut is a redshift dependent
threshold obtained from the spherical collapse model (Gunn
& Gott 1972; Lilje & Lahav 1991) by fixing a final spherical
perturbation of ∆id

cut(0) = −0.9. The list of void candidates is
then cleaned so that each resulting sphere does not overlap
with any other. Therefore, voids are defined as underdense
spherical regions with a well defined centre and radius.

It is worth mentioning that the void finder was applied
in real space. Hence, it is cosmology dependent, as well as
the values of ∆id

cut and Rvoid. The scope of this paper, how-
ever, is to present a non-fiducial test given a galaxy redshift

2 The Hubble constant is usually parametrised as
H0 = 100 h Mpc km−1 s−1. Hence, all distances and masses are

expressed in units of h−1Mpc and h−1M� respectively.
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Table 1. Main characteristics of the halo and void catalogues.
From left to right: MXXL snapshot, number of dark matter

haloes, density threshold criterion for void identification, and

number of identified voids.

zbox Haloes ∆id
cut Voids

0.51 136993439 -0.8764 333741
0.99 133688808 -0.8533 305082

1.50 118244901 -0.8302 254993

10 15 20 25 30
Rvoid [ h−1 Mpc ]

F
re

qu
en

cy
 / 

h−1
 M

pc

100

101

102

103

104

zbox = 0.51
zbox = 0.99
zbox = 1.50
void sample limits

Figure 1. Void radii distribution for each MXXL snapshot. Ver-
tical dashed lines delimit the void samples used to perform the

cosmological test.

catalogue and a set of underdense centres. We leave for fu-
ture investigation the question of void identification in a
non-fiducial way, namely, in observable space. It will also be
necessary to compare different void finders and to study the
non-trivial effects of finding voids in Mpc-scales. Nadathur
et al. (2019) analyse the impact of identifying voids in real,
redshift and reconstructed real space over the void-galaxy
correlation function for the case of the ZOBOV void finder
(Neyrinck 2008). In this way, in order to compute distances
and densities, needed in void definition, we adopted the same
cosmology of the MXXL simulation. The position of the void
centres in comoving coordinates are then transformed into
observable-space coordinates with this assumed cosmology.
Table 1 shows the main characteristics of our halo and void
catalogues, and Figure 1, the void radii distribution.

For each MXXL snapshot, we selected voids with sizes
between 20 ≤ Rvoid/h−1Mpc ≤ 25 to perform the cos-
mological test. This is shown with vertical dashed lines in
Figure 1. Our results are not sensitive to the size of the voids
used, as we have verified. However, large void sizes ensure
that they are mostly in expansion (see Section 4.2), which
simplifies the RSD modelling (see Section 5.3). The num-
ber of voids found in each sample are the following: 10157

for zbox = 0.51, 13703 for zbox = 0.99, and 21034 for
zbox = 1.50.

4 MEASURING THE PROJECTED
CROSS-CORRELATION FUNCTIONS

In this section, we explain how to measure the projected
POS and LOS correlation functions, ξpos(θ) and ξlos(ζ), and
present the results from data.

4.1 Binning scheme and projection range

As we explained in Section 2.3, correlations are isotropic on
real space. However, this is not the case on distorted space
due to the presence of the coupled GD and RSD. If only RSD
were present, this spherical symmetry would be reduced to
a cylindrical symmetry along the LOS direction. Actually,
as GD are also present, the spherical symmetry is distorted
in a more complex way. Nevertheless, it is still instructive
to visualize a void sample as a two dimensional stack with
cylindrical axes.

The void-halo cross-correlation function is measured in
terms of the void-centric observables (θ, ζ), with ζ = |z − z′ |,
which is estimated by counting void-halo pairs within a
cylindrical binning scheme. In this geometry, a bin is a cylin-
drical shell oriented along the LOS, with internal radius θint,
external radius θext, a lower height ζlow = |zlow − z′ |, and
upper height ζup = |zup − z′ |. In order to estimate the corre-
lation value for a given bin, ξbin(θ, ζ), the number of counted
pairs, DD, must be normalised by the expected number of
pairs in a homogeneous distribution, DR. In this work, we
used the Davis & Peebles (1983) estimator:

ξbin(θ, ζ) =
DD
DR
− 1. (5)

Here, (θ, ζ) denotes the coordinates of the geometrical cen-
tres of the bins merely in order to label them. When working
with real data, the Landy & Szalay (1993) estimator must
also be analysed.

The POS and LOS correlation functions are special
cases of this binning scheme. On the one hand, the scheme
for the ξpos(θ) correlation consists of a set of nested cylindri-
cal shells across the POS centred at different angles θ, with
constant thickness δθ := θext − θint (the POS binning step),
and a constant height PRζ := ζup (the redshift projection
range). Note that in this case, ζlow = 0. On the other hand,
the scheme for the ξlos(ζ) correlation consists of a succession
of filled cylinders along the LOS centred at different redshift-
separations ζ , with constant length δζ := ζup − ζlow (the
LOS binning step), and a constant radius PRθ := θext (the
angular projection range). Note that in this case, θint = 0.

For simplicity, we will refer to both PRζ and PRθ as a

single value PR expressed on real-space units of h−1Mpc using
the MXXL cosmology. The same applies to the binning steps
δθ and δζ . In this work, we analysed 8 different PRs/h−1Mpc:
1, 5, 10, 20, 30, 40, 50 and 60. Figure 2 shows ξpos(θ) and
ξlos(ζ) of the void sample taken from the zbox = 0.99 MXXL
snapshot for the cases PR/h−1Mpc = 20 (blue circles), 40
(green squares) and 60 (red triangles). The binning step is
δθ = δζ = 1h−1Mpc. The error bars are not shown be-
cause they are smaller than the data points. The remaining

MNRAS 000, 1–14 (2018)



Non-fiducial cosmological test with voids 5

snapshots show a similar behaviour. By way of comparison,
we show both the observable (below) and real-space (above)
axes. We also show the theoretical functions (solid curves)
obtained after the application of the model from Section 5
with the best fit parameters obtained in Section 6. From the
figure, it can be seen that the profiles flatten with increasing
PRs, and that ξlos(ζ) is more affected by RSD than ξpos(θ).

4.2 Real-space profiles

Before we present the physical model for the POS and LOS
correlation functions, first it is instructive to study the mea-
sured stacked real-space density and velocity profiles of the
void samples, as they are the fundamental components of
this model (see Section 5.3). These profiles describe the void
environment and dynamics. Although this analysis is not
possible with real data as we cannot work on real space,
with a simulation instead, we can take advantage of the real-
space positions and velocities of tracers. In this way, we can
check if our method is capable of recovering these profiles.
This is part of the calibration of our test (more details in
Section 6.2).

4.2.1 Density contrast profiles

Sheth & van de Weygaert (2004) proposed that the evolu-
tion of voids is strongly determined by their surrounding
environment. They provide a theoretical framework based
on the excursion set formalism where the void population is
twofold according to two evolutionary processes: i) expand-
ing voids embedded in an underdense region compared to
the mean density of the Universe (void-in-void mode), and
ii) collapsing voids surrounded by an overdense shell (void-
in-cloud mode). Large voids are typically of the first type,
whereas small voids, of the second type. According to Cec-
carelli et al. (2013), Paz et al. (2013), Hamaus et al. (2014b)
and Ruiz et al. (2015), the density contrast profile charac-
terises the void environment. They highlight two kinds of
profiles that illustrate two distinct behaviours: i) increas-
ing profiles that tend to the mean density of the Universe
at large distances (R-type), and ii) profiles with a noticeable
maximum and a decline at larger distances towards the mean
density (S-type). The key aspect is that R-type voids match
with the void-in-void mode, whereas S-type voids, with the
void-in-cloud mode.

Consider the stacked differential density contrast profile
of haloes around voids:

δ(r) :=
n(r) − n̄

n̄
, (6)

where n(r) is the number density of haloes within a void-
centric spherical shell of radius r and infinitesimal thickness,
and n̄ the mean number density of haloes in the simulation
box. In the case of a cross-correlation, ξ(r) = δ(r). Here,
ξ(r⊥, r‖) has been reduced to a one dimensional profile due

to the spherical symmetry, such that r =
√

r2
⊥ + r2

‖ . Left

panel of Figure 3 shows ξ(r) (black circles) of the void sample
taken from the zbox = 0.99 MXXL snapshot. The remaining
snapshots show a similar behaviour. Note the three reference
dashed lines there: i) the horizontal ξ = − 1 line, which
indicates total emptiness, as is the case near the void centres,

ii) the horizontal ξ = 0 line, which is the mean value of the
Universe, and iii) the vertical r = rcut line, which indicates
the minimum void radius of the sample and can be thought
as a representative border between the inner parts of the
voids and their environment.

Consider now the stacked integrated density contrast
profile:

∆(r) :=
1
V

∫
V
δ(r)dV =

3
r3

∫ r

0
δ(r ′)r ′2dr ′, (7)

where V is the volume of the void-centric sphere of radius
r. For the second equality, spherical symmetry has been ap-
plied. Left panel of Figure 3 shows ∆(r) (light-blue squares)
of the same void sample (zbox = 0.99). As can be seen, the
sample is represented by an increasing stacked profile that
tends to the mean density of the Universe at large distances,
that is, the sample is mostly composed of R-type voids.

For both density profiles, the solid curves are the theo-
retical functions obtained after the application of the model
from Section 5 with the best fit parameters from Section 6.
We chose R-type voids to perform the cosmological test be-
cause they are less sensitive to non-linear effects compared
to the S-type, and also because we found a simple paramet-
ric model that describes very well their stacked profiles (see
Section 5.3).

4.2.2 Velocity profiles

Right panel of Figure 3 shows the corresponding stacked
radial velocity profile (black circles). Again, the remaining
snapshots show a similar behaviour. Each point represents
the average of the void-centric radial component of the pe-
culiar velocities of haloes around voids. There are two ref-
erence dashed lines: i) the horizontal v = 0 line, which is
the mean value of the Universe, and ii) the vertical r = rcut
line. As can be seen, the sample is represented by a pro-
file that shows only expansion velocities, as expected for the
R-type voids. The characteristic rcut distance represents the
change between increasing (inside the voids) and decreasing
(outside the voids) expansion.

5 MODEL

In this section, we present a physical model for the void-
halo cross-correlation function on observable space for a
general binning scheme (θint, θext, ζlow, ζup). This model takes
into account the effects of GD, RSD and the scale mix-
ing due to the bin sizes. In this way, the projected POS
and LOS correlation functions are treated as special cases
with the appropriate bin limits: (δθ = θext − θint, 0, PRζ ) and
(0, PRθ, δζ = ζup − ζlow), as was explained in Section 4.1.

5.1 Modelling geometrical distortions and bin size

First, we give the full treatment, the one which must be
applied when working with observational data. Then, we
turn to the simplifications used for our simulation boxes.

MNRAS 000, 1–14 (2018)
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Figure 2. Plane-of-sky (left) and line-of-sight (right) void-halo cross-correlation functions of the void sample taken from the zbox = 0.99
MXXL snapshot. Here are shown the cases PR/h−1Mpc = 20 (blue circles), 40 (green squares) and 60 (red triangles). The error bars are

not shown because they are smaller than the data points. Both observable (below) and real-space (above) axes are shown for comparison.

Solid curves are the theoretical functions obtained after the application of the model from Section 5 with the best fit parameters from
Section 6.
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5.1.1 Full treatment

The first step is to map the distorted-space scales (σ,π)
that are involved in an observable-space cylindrical bin
(θint, θext, ζlow, ζup). For a fixed void centre at z′, there are two
z values for each ζ limit that match the criterion ζ = |z − z′ |.
Specifically, the counted tracers will have angular coordi-
nates between θint and θext, and their redshifts z will belong
to either one of this two disjoint intervals: (z′ + ζlow, z′ + ζup)
or (z′ − ζup, z′ − ζlow). Therefore, each cylindrical bin corre-
sponds to two volumes on the data. Given a set of cosmolog-
ical parameters, this two regions correspond to two different
volumes in distorted space.

Taking this into account, the expected number of data
pairs, DD, is given by the following expression3:

DD =2 π̂
∫ z′max

z′min

dz′ d2
com(z′) nv(z′) Vslice[∫ z′+ζup

z′+ζlow

dz
ddcom

dz
(z) nt (z)

∫ θext

θint
dθ θ [1 + ξ(σ, π)] +∫ z′−ζlow

z′−ζup
dz

ddcom
dz
(z) nt (z)

∫ θext

θint
dθ θ [1 + ξ(σ, π)]

]
,

(8)

where nv(z′) is the number density distribution of voids in
the slice z′min ≤ z′ ≤ z′max taken from the catalogue to
perform the test, Vslice the volume of this slice, and nt (z)
the number density distribution of tracers in the bin. Here,
ξ(σ, π) is a theoretical correlation function defined on dis-
torted space that must be modelled considering the RSD ef-
fects. Its arguments, σ = σ(θ, z′) and π = π(z, z′), depend
on the observable-space coordinates by means of Eqs. (1).

The expected number of pairs in a uniform distribution
of tracers, DR, is given in a similar fashion:

DR =π̂
(
θ2

ext − θ2
int

) ∫ z′max

z′min

dz′ d2
com(z′) nv(z′) Vslice[∫ z′+ζup

z′+ζlow

dz
ddcom

dz
(z) nt (z) +

∫ z′−ζlow

z′−ζup
dz

ddcom
dz
(z) nt (z)

]
.

(9)

Finally, combining Eqs. (8) and (9) into Eq. (5), we get an
estimation of ξbin(θ, ζ). This is a general expression that takes
into account the effect of all possible mixing of scales and
GD.

5.1.2 Simplifications for a simulation box

The scope of this work is to present a novel cosmological
test using voids, focusing our analysis on the effects of the
different types of distortions that arise in the measurements,
namely GD, RSD and the scale mixing due to the bin sizes.
In order to test these effects, we used simplified mock cata-
logues taken from the MXXL as was explained in Section 3.1.
In a forthcoming paper, we will present an analysis on real
data, specifically, using the BOSS survey (Dawson et al.

3 π̂ refers to the irrational number pi : 3.14159..., to avoid confu-

sion with the π coordinate.

2013), for which all the machinery developed above must
be applied.

For the case of a simulation box, nt is a constant func-
tion. We assume a unique redshift for void centres, the one
corresponding to the MXXL snapshot, zbox. In this way,
nv(z′) can be thought as a Dirac-delta distribution. There-
fore, according to Eqs. (8) and (9), ξbin(θ, ζ) simplifies to the
following expression:

ξbin(θ, ζ) = − 1 + 2
(
θ2

ext − θ2
int

)−1[∫ zbox+ζup

zbox+ζlow

dz
H(z)

∫ θext

θint
dθ θ [1 + ξ(σ, π)] +∫ zbox−ζlow

zbox−ζup

dz
H(z)

∫ θext

θint
dθ θ [1 + ξ(σ, π)]

]/
[∫ zbox+ζup

zbox+ζlow

dz
H(z) +

∫ zbox−ζlow

zbox−ζup

dz
H(z)

]
,

(10)

where Eq. (2) was used to express the dcom(z) derivative.
We made a further simplification here, which is to model

only the upper (zbox + ζlow, zbox + ζup) integrals and consider
the same contribution for the lower ones. This approxima-
tion introduces a small difference in the integrated comov-
ing distance spanned by each bin, which in all the cases
considered is almost negligible. For instance, in the case of
PRζ = 20 h−1Mpc at zbox = 1.50, this difference translates
into an uncertainty of ∼ 0.4%, small enough to justify this
simplification.

In next section, we give a model for ξ(σ, π), needed in
Eqs. (8), (9) and (10) that takes into account the RSD ef-
fects.

5.2 Modelling dynamical distortions

Following Peebles (1979), ξ(σ, π) is computed as the convo-
lution of the real-space correlation, ξ(r), and the pairwise
velocity distribution of void-halo pairs, g(r, v):

1 + ξ(σ, π) =
∫

d3v [1 + ξ(r)] g(r, v), (11)

where r = (r⊥, r‖) and v = (v⊥, v‖) are the respective
real-space position and velocity vectors of haloes around
voids. Recall that the real-space coordinates (r⊥, r‖) are re-
lated with their respective distorted-space quantities (σ, π)
by means of Eqs. (4). The pairwise velocity distribution can
be chosen as a Maxwell-Boltzmann distribution (Paz et al.
2013; Hamaus et al. 2015, 2016). Given that only π is affected
by peculiar velocities, Eq. (11) reduces to a 1-dimensional
integral via the replacements g(r, v) → g(r, r‖, v‖) and

d3v → dv‖ , with g a Gaussian distribution centered on
the radial velocity profile v(r), with a constant velocity dis-
persion, σv :

1 + ξ(σ, π) =
∫ ∞
−∞
[1 + ξ(r)] 1

√
2πσv

exp

[
−
(v‖ − v(r)

r‖
r )2

2σ2
v

]
dv‖ .

(12)

In next section, we give a model for v(r) and ξ(r), needed in
Eq.(12).
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5.3 Modelling the real-space profiles

5.3.1 Model for v(r)

In the case of voids, density fluctuations around them are
moderate compared to the case of virial motions inside clus-
ters, so nonlinearities are expected to be less severe. The fact
that we model a cross-correlation between void centres and
haloes, also mitigates nonlinear effects, since the main ve-
locity contribution comes from the tracers and not from the
centres. In contrast, in tracer auto-correlations, the veloci-
ties at two locations are correlated with each other, which
effectively squares nonlinearities (Hamaus et al. 2015). Fol-
lowing linear theory (Peebles 1976; Paz et al. 2013; Hamaus
et al. 2015, 2016), v(r) can be obtained via mass conservation
up to linear order in density:

v(r) = −1
3

H(z)
(1 + z) β(z)r∆(r), (13)

where β(z) = f (z)/b(z) is the ratio between the logarith-
mic growth rate of density perturbations, f (z), and the linear
tracer-mass bias parameter, b. This bias assumption applies
as long as density fluctuations remain moderate: |δ(r)| < 1
(Pollina et al. 2017, 2018).

Within the standard ΛCDM cosmological model, f (z)
can be approximated analytically (Linder 2005; Hamaus
et al. 2016):

f (z) ≈
(
Ωm(1 + z)3

Ωm(1 + z)3 +ΩΛ

)0.55
. (14)

As we mentioned in Section 1, theories of modified gravity
predict deviations from GR to be most pronounced in un-
screened low-density environments, making voids a powerful
tool for detecting them. In such cases, the above equations
must be modified. In order to detect any tension with the
standard model, it is instructive to take f /b as a free pa-
rameter of the model, and not to incorporate the explicit
dependence of Ωm on this equation. In this way, we keep the
method general.

5.3.2 Model for ξ(r)

We have empirically found a parametric model for ξ(r) suit-
able for our R-type void samples:

ξ(r) =


Ar − 1 if r < rcut,

−ξ0

[(
r
r0

)−3
+

(
r
r0

)−α]
if r ≥ rcut,

(15)

where (ξ0, r0, α) are the three parameters of the model. Three
ranges can be identified: i) the inner zone r < rcut, ii)
the environmental zone rcut ≤ r ≤ 100 h−1Mpc, and
iii) the outer zone r > 100 h−1Mpc. Remember that rcut
is the minimum void radius of the sample and represents
the border between the inner parts of the voids and their
environment (Section 4.2.1).

Let us start with the environmental zone. This range
is quantified by a double power law with slopes (−3, α) that
describes the voids wall and environment. The other two pa-
rameters are an amplitude ξ0, and a pivot distance r0, where
the slope changes. It fails describing the inner zone, since
this function tends to −∞ as r → 0. It also fails describing
the outer zone beyond 100 h−1Mpc because of the baryonic

acoustic oscillation (BAO) feature, a relic clustering excess
from the very early Universe.

The inner zone, on the other hand, is not relevant in
terms of correlation signal and is not trivial to model. More-
over, the condition ∆(Rvoid) = ∆id

cut imposed by the spherical
void finder has a direct effect on the shape of the density
and velocity profiles. This is apparent in Figure 3, where
a discontinuous feature at r = rcut can be seen in both
panels. For this reason, we decided to measure correlations
only in the environmental zone, as Figure 2 reflects. Nev-
ertheless, the contribution from the inner and outer zones
when reproducing RSD are significant, specially the inner
zone. This is because some scales from the inner zone can
be shifted into the environmental zone by means of Eqs. (4),
making a significant contribution to RSD. In the same way,
some scales from the environmental zone can be shifted into
the outer zone. Hence, these ranges must be modelled, even
though data from there are not used. For the inner zone,
we found that it is sufficient a straight line connecting the
points ξ(0) = − 1 and ξcut := ξ(rcut), with the following
resulting slope:

A =
1

rcut
(ξcut + 1). (16)

For the outer zone, on the other hand, it is sufficient to
extend the scope of validity of the double power law model,
finding no significant deviations.

In next section, to finish, we give a derived model for
∆(r), needed in Eq.(13), and an approximated theoretical
value for the slope A, since this quantity can only be truly
known in real space.

5.3.3 Model for ∆(r)

The ∆(r) stacked profile can be modelled combining Eqs. (7)
and (15):

∆(r) =
{ 3

4 Ar − 1 if r < rcut,
3
r3

[
ar4

4 −
rcut
3 + I(r) − I(rcut)

]
if r ≥ rcut,

(17)

where I(r) is the indefinite integral of Eq. (7) without the
3/r3 pre-factor and with Eq. (15) as integrand:

I(r) = −ξ0

[
r3
0 ln(r) +

rα0
3 − α r3−α

]
. (18)

To give an approximate value for the slope A, we realised
that the true value ∆cut := ∆(rcut) can be approximated by
the identification-method value ∆id

cut shown in Table 1. Then,
from Eq. (17) for r < rcut,

A ≈ 4
3rcut
(∆id

cut + 1). (19)

From Eqs. (16) and (19), we can also give an approximate
value for ξcut:

ξcut ≈
4
3
(∆id

cut + 1) − 1. (20)

The validity of these approximations can be corroborated
visually in Figure 3, where the approximated values for for
∆cut and ξcut (where the dashed and solid curves match)
are near the corresponding true values (data points at the
vertical r = rcut reference line).
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6 TESTING THE METHOD

In this section, we test how well does our model reproduce
the features of the projected POS and LOS correlation func-
tions presented in Section 4, as well as the corresponding
real-space profiles. The aim is to extract cosmological infor-
mation from the parameters involved in the model. These
parameters can be summarised in two sets: i) the cosmolog-
ical set {Ωm,H0, β}, and ii) the nuisance set {ξ0, r0, α, σv}.
In order to constrain these parameters, we implemented a
likelihood exploration with a Markov Chain Monte Carlo
(MCMC) technique, using a Metropolis-Hastings sampler
(Metropolis et al. 1953; Hastings 1970). We will focus our
analysis on the cosmological set, specifically, on Ωm and β.
In this work, we considered a fixed H0 value, the one cor-
responding to the MXXL (Section 3.1). When applied to
a real data set, H0 can be extracted from a different and
independent method.

6.1 Likelihood analysis

Let us denote the likelihood function with L(θ |x), where
θ = {ξ0, r0, α, σv,Ωm, β} denotes the parameter space, and
x the measured data. The MCMC chains explores L(θ |x)
near its maximum until they reach the equilibrium distribu-
tion, that is, the method finds the θ values that make the
data most probable and their confidence regions. We took
the Gelman & Rubin (1992) convergence criterion, which
compares the spread of the means between chains with the
variance of the target distribution. Once the chains satisfy
this criterion, the unburned parts are discarded and the re-
maining ones are used to sample the likelihood function.

The L function is obtained by computing the differences
between the measured and modelled correlation functions for
a given set of parameters:

ln(L) = −∆ξTC−1∆ξ + constant. (21)

Here, both measured and modelled correlations are denoted
as single vectors ξ := (ξpos, ξlos) containing the correlation
values in each bin, and ∆ξ denotes the corresponding dif-
ference vector. C denotes the associated covariance matrix.
Each element Ci j is computed on the data by a jackknife
re-sampling using the multivariate generalization of Efron
(1982):

Ci j =
n − 1

n

n∑
k=1

[
ξ(k) − ξ(.)

]
i

[
ξ(k) − ξ(.)

]
j
, (22)

where n is the number of jackknife realisations, ξ(k) the cor-

relation function for the k th jackknife realisation, and ξ(.) the
average of ξ(k) over the n realisations. If 2m, the number of
bins, is the dimension of ξ , then 2m × 2m is the dimension
of C. This is by far much smaller than those in the tradi-
tional case, where the correlation is a ξ[m × m] matrix and
the covariance is a C[m2 × m2] matrix. This is a key aspect
of our method, first because the estimation of the inverse of
a smaller matrix is numerically more stable, and second and
more important, because the propagation of covariance er-
rors into the likelihood estimates are substantially reduced,
allowing to use a smaller number of mock catalogues (Taylor
et al. 2013; Dodelson & Schneider 2013). In this work, we
used ξ[2∗80] correlation vectors and C[160×160] covariance
matrices.

Figure 4 shows the covariance matrices of the void sam-
ple taken from the zbox = 0.99 MXXL snapshot for the
cases PR/h−1Mpc = 10, 30 and 50. The remaining snap-
shots show a similar behaviour. Technically, the correlation
matrices are shown: Ci j/

√
CiiCj j , which acquire absolute val-

ues from 0 to 1, encoded as a coloured contour map from red
to blue. The x- and y-axes are expressed in real-space coor-
dinates for a better comparison. Note that the matrices are
not diagonal since the independence of the correlation val-
ues for bins at different scales can not be guaranteed. In
fact, they show clear patterns. Focusing on an individual
matrix, four distinct quadrants can be seen: i) the bottom
left quadrant is the covariance sub-matrix for the ξlos cor-
relation, ii) the top right, the covariance sub-matrix for the
ξpos correlation, whereas iii) and iv) the bottom right and
top left are the symmetric ξlos × ξpos covariances. The diag-
onal of the entire matrix is the global variance. The square
root of these diagonals make up the implicit error bars in
Figure 2. Comparing now the three matrices, it can be seen
that if the PR is small, the covariance matrices tend to be
diagonal, whereas as the PR increases, off-diagonal values
become more prominent. For instance, note the increment
of the covariance values on the ξlos × ξpos quadrants.

6.2 Cosmological constraints

We present now the results of the likelihood analysis. Since
Ωm and β are the two parameters of interest, we will focus
mainly on them. The goal is to calibrate the method. The
test is calibrated if we recover the MXXL values of the model
parameters. On the one hand, Ωbox

m = 0.25 (Section 3.1).
On the other hand, the target βbox values were inferred by
fitting directly the real-space velocity profiles measured in
the simulation boxes (Section 4.2.2) with Eq. (13).

Figure 5 shows the Ωm and β marginalised likelihood
distributions for each MXXL snapshot and for each pro-
jection range as 1σ (68.3%) error bars. These distributions
show a Gaussian shape. The dashed horizontal lines indicate
the MXXL values. Note that βbox is slightly dependent on
zbox. As can be seen, the MXXL values fall inside the er-
ror bars in most cases, and fall inside 3σ (99.7%) in all of
them, which is the consistency check we were looking for.
This is a consequence of the ability of the model to repro-
duce GD, RSD and the scale mixing, as can be also corrob-
orated by inspecting Figures 2 and 3, where the theoretical
profiles (solid curves) obtained with the best fit parameter
values from this likelihood analysis match very well the data
points. However, there is an appreciable deviation with re-
spect to the MXXL value in the case of β at zbox = 0.51 for
PR ≥ 10 h−1Mpc. This is possibly due to a deficiency in the
linear model for RSD (Section 5.2), as RSD prevail over GD
at lower redshifts. Achitouv (2017) and Nadathur & Percival
(2017) present an improved RSD model for voids, analysing
non-linearities and second order effects. Note also that the
error bars for β are almost constant, nearly independent of
the PR and zbox. In the case of Ωm, the error bars reach a
minimum at PRs between 10 and 20 h−1Mpc, which points
out the optimal range to perform the test. Moreover, they
generally decrease from lower to higher zbox, which elucidates
that better confidence regions are obtained performing the
test at higher redshifts. This is due to the fact that GD are
more sensitive in the model at higher redshifts.
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variance. Clear off-diagonal patterns arise as the PR increases.

Two aspects worth mentioning. First, we are using a
high density halo sample in a large volume. Therefore, the
confidence levels on the estimated parameters must be un-
derstood in a precision limit framework. When applied to
real data, the confidence regions will be larger. Second, for a
fixed zbox, the box-plots are not independent estimates, since
it is about measuring the same correlation function for the
same void sample, merely adding more void-halo pairs when
increasing the projection range. Having said this, Figure 5
is a robust confirmation that the test can be applied with a
wide variety of projection ranges.

Figure 6 shows, as an example, the two-dimensional like-
lihood marginalisations towards the Ωm−β plane for the case
PR = 40 h−1Mpc for the three MXXL snapshots. From the
inner to the outermost, the coloured contour levels enclose
1σ (68.3%), 2σ (95.5%) and 3σ (99.7%) confidence regions.
Dashed lines indicate the respective MXXL values, whereas
the white crosses, the best fit values. Note that the tar-
get values fall inside the 1σ confidence region for medium
and high redshifts, whereas for low redshift the deviation
of β explained before can be appreciated. While the best
results (tightest constraint and smallest deviation) were ob-
tained for the PR = 5 h−1Mpc case, we decided to show the
PR = 40 h−1Mpc case to highlight the robustness of the test
with the PR, which is important because the wider the PR
is, more data pairs are counted, and therefore, the measured
signal increases. In this sense, this is a a more realistic case
applicable to real data. For completeness, Figure 7 shows
the two-dimensional marginalisations of the full parameter
space for the case zbox = 0.99 and PR = 40h−1Mpc. The
constraints are tight, showing no degeneracies among each
other. Moreover, the distributions show a Gaussian shape.
The remaining snapshots and PRs show a similar behaviour.

7 SUMMARY AND CONCLUSIONS

Cosmic voids are powerful cosmological laboratories. Their
potential will be greatly exploited with the advent of modern
galaxy redshift surveys, which will have a median redshift
larger then 0.5, a significant improvement with respect to the
available surveys. The void-galaxy cross-correlation function
is a statistical tool that describes the void environment and
dynamics. Taking advantage of the ability to model the cou-
pled dynamical and geometrical distortions which affect it,
cosmological information can be extracted, since this model
depends on the cosmological parameters. Dynamical distor-
tions (RSD) arise due to the LOS component of the peculiar
velocities of galaxies surrounding voids, whereas geometrical
distortions (GD) arise when a wrong cosmology is used to
assign a distance scale to measure correlations, the Alcock-
Paczynski effect.

There is, in addition, a third type of systematics that
affects the cosmological inference when modelling the corre-
lation function. In the measuring process, a binning scheme
is used, and hence, several scales are mixed in the observa-
tion. Increasing the bin sizes improves the signal, but then,
models must carefully take into account the volume and ge-
ometry of the bins. Such a model allows to work with bins of
arbitrary sizes, so we can do even more and work with fully
projected correlation functions. Moreover, we treat correla-
tions directly in terms of void-centric angular distances and
redshift differences (θ, ζ) between void-galaxy pairs, so that
it is not necessary to assume a fiducial cosmology. Project-
ing ξ(θ, ζ) towards the POS in a given redshift range, we get
the POS correlation function, ξpos(θ), which depends only on
the angular coordinate θ, whereas projecting ξ(θ, ζ) towards
the LOS in a given angular range, we get the LOS correla-
tion function, ξlos(ζ), which depends only on the void-centric
redshift coordinate ζ . Both projections constitute the fun-
damental observables of our cosmological test (Figure 2).
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In Section 5, we presented a physical model for the
void-halo cross-correlation function on observable space for
a general cylindrical binning scheme (θint, θext, ζlow, ζup). This
model takes into account the effects of GD, RSD and the
mixing of scales due to the bin sizes. The projected POS
and LOS correlation functions constitute special cases with
the appropriate bin limits.

The goal of our method is to extract cosmological infor-
mation from the parameters involved in the model. These
parameters can be summarised in two sets: i) the cosmo-
logical set {Ωm, β}, and ii) the nuisance set {ξ0, r0, α, σv}.

Ωm is sensitive to GD, whereas β is sensitive to RSD. The
method was calibrated using an N-body simulation, the Mil-
lennium XXL, for three snapshots: zbox = 0.51, 0.99 and
1.50. In order to constrain the parameters, we implemented
a likelihood exploration with a MCMC technique. Consider-
ing the full set of parameters, the constraints are tight, with
no degeneracies among each other, and they show Gaussian
distributions. The main results are presented in Figure 5,
which shows the likelihood marginalisations of Ωm and β as
1σ (68.3%) error bars. The MXXL values fall inside them
in almost all cases, which is a consistency check of the re-
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Figure 7. Two dimensional likelihood marginalisations of the full parameter space for the case zbox = 0.99 and PR = 40h−1Mpc. The
Ωm − β panel is the same as the mid panel of Figure 6.

liability of the method. It also shows robustness with the
projection range. This robustness is strengthened, in addi-
tion, by the fact that the theoretical curves obtained after
the application of the model to the best fit parameters from
the likelihood analysis match the data points of the mea-
sured POS and LOS correlations (Figure 2), as well as the
density and velocity profiles (Figure 3). The appreciable de-
viation of β with respect to the MXXL value at zbox = 0.51
for PR ≥ 10 h−1Mpc, can be attributed to a possible de-
ficiency in the linear model for RSD (Section 5.2), as RSD
prevail over GD at lower redshifts. The error bars in the case
of Ωm, show that there is an optimum PR and that better
confidence regions are obtained performing the test at higher
redshifts, where GD are more sensitive in the model.

It is worth mentioning that the method presented here

is a non-fiducial test given a galaxy spectroscopic catalogue
and a set of underdense centres. The void identification is
a difficult task that deserves particular attention before ap-
plying the test to observational data. A non-fiducial way of
finding voids has still to be found and the non-trivial effects
of identification in Mpc-scales must be completely under-
stood (Section 3.2), a topic for future investigation.

Finally, the data covariance matrices (Figure 4) asso-
ciated to the projected POS and LOS correlation functions
are much smaller than the traditional ones. Therefore, the
propagation of covariance errors into the likelihood estimates
are substantially reduced. This will allow to use an smaller
number of mock catalogues. This kind of features and the
performance shown by our method in this work, makes it a
promising test to be applied on real data.

MNRAS 000, 1–14 (2018)
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