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Abstract 
 

 
 The Coranzulí caldera (23°00’ S – 66°15’ W) is one of the least known caldera 

complexes in the eastern part of the Argentinian Altiplano-Puna plateau (Central Andes). 

It lies at the intersection of N-S, NW-SE and NE-SW fault systems and was formed about 

6.6 Ma ago; during the eruption, four main crystal-rich dacitic ignimbrites were emplaced 

in different directions around the caldera. Caldera collapse was not homogeneous, rather 

it occurred along different sectors of the ring fault as subsidence progressed. The location 

of co-ignimbrite lag breccias and the composition of the dominant lithic fragments within 

the different ignimbrite flow units reveal how the caldera collapse developed. According 

to the succession of deposits, in particular the lack of an initial fallout and the presence 

of co-ignimbrite lag breccias associated with the different ignimbrite units, we interpret 

this caldera-forming eruption as a pulsating boiling-over event in which the caldera 

collapse developed immediately after the onset of the eruption, favored by a transtensive 

tectonic system. Within the central part of the caldera, there is Cerro Coranzulí, a 

resurgent dome that exposes a thick intracaldera ignimbrite succession covered by ~ 100-

m-thick dacite lava flows that erupted at the end of caldera formation. 
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1. Introduction  

 After Tibet, the Altiplano-Puna is the second largest and second highest plateau 

in the world (e.g. Allmendinger et al., 1997). This elevated plateau and its magmatism 

are mainly the result of the subduction of the Nazca plate beneath the South American 

plate. The Central Volcanic Zone of the Andes extends within the latitudinal segment 16–

28°S (e.g. de Silva, 1989) and contains abundant volcanism that has taken place over 

much of this area since about 26 Ma (Fig. 1). In its central segment lies the Altiplano-

Puna Volcanic Complex (APVC: 21–24°S; de Silva, 1989), which has been studied 

extensively because it contains one of the largest ignimbrite provinces in the world (~ 

15000 km3) (de Silva et al., 2015). Most of these ignimbrites originated from collapse 

calderas that were active mainly from ca. 11–3 Ma, the exception being the ~ 1 Ma Purico 

caldera. The largest calderas in the APVC are La Pacana (2500 km3; Lindsay et al., 2001), 

Vilama (1200 km3; Soler et al., 2007), Kapina (1000 km3; de Silva, 1989; Salisbury et al., 

2011), Pastos Grandes (1500 km3; Salisbury et al., 2011), Cerro Guacha caldera complex 

(2500 km3; Grocke et al., 2017), Panizos (652 km3; Ort, 1993) and Coranzulí (650 km3; 

Seggiaro et al., 1987).  

 Previous studies on the Coranzulí caldera (Seggiaro et al., 1987, 2014a, 2014b, 

2015; Seggiaro and Aniel, 1989; Seggiaro, 1994; Seggiaro and Hongn, 1994), permitted 

establishing the general stratigraphy, composition, and volume of its products, and the 

relation of the caldera to the local tectonic system, but the eruption dynamics and the 

mechanisms of caldera collapse remain poorly defined. According to these studies, the 
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Coranzulí caldera developed under strong structural controls due to its location at the 

intersection of several regional fault systems orientated N-S, NW-SE and NE-SW (Fig. 

2). Like the other northeastern Puna calderas (Panizos; Ort, 1993; Vilama; Soler et al., 

2007; Abra Granada volcanic complex; Caffe et al., 2008), it is dacitic-to-rhyodacitic and 

peraluminous in composition, and generated large volumes of crystal-rich ignimbrites.  

 The aim of this contribution is to establish the eruption dynamics and the 

mechanisms that led to the formation of the Coranzulí caldera. To achieve this objective, 

we reviewed the previous literature and conducted new field work, in order to constrain 

the stratigraphy, structural controls, and evolution of this caldera. We obtained a large 

number of new stratigraphic logs that, combined with previous information, offer a more 

detailed picture of the stratigraphic succession of the Coranzulí ignimbrite deposits. We 

also analyzed the contents and types of lithic fragments as a way of deciphering the source 

area of each ignimbritic flow unit. We also established a structural framework for the 

caldera and discuss how previous tectonic structures could have influenced its formation. 

Finally, we interpret the whole caldera-forming process in light of the evidence obtained.  

 

2. Geological setting of the Coranzulí caldera 

 The Altiplano-Puna plateau is located to the east of an active volcanic arc and 

represents the internal part of the Andean orogen. It has an average elevation of 3,700 m 

a.s.l. and is characterized by an arid climate and endorheic drainage. The crust of the Puna 

is very thick, reaching up to 70 km in places (e.g. Beck et al., 2015). Although the 

deformation of the Puna and Eastern Cordillera started in the Paleogene (e.g. Hongn et 

al., 2007), the major uplift of the Puna did not take place until the Middle-Upper Miocene 

(e.g. Isacks, 1988; Allmendinger et al., 1986).  
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 The present uplifted topography of the Puna has been interpreted as a result of 

tectonic shortening induced by the subducting Nazca plate and, to some extent, magmatic 

addition (Isacks, 1988; Allmendinger and Gubbels, 1996; Oncken et al., 2006). Between 

22° and 24°S, the orogenic front of the Andes, located in the foreland fold and thrust belt 

of the Sub Andean Ranges, developed a thin-skin system (Aramayo Flores, 1989). On the 

other hand, the Eastern Cordillera and Puna have a thick-skin system, characterized by 

frequent reactivations of Paleozoic and Cretaceous faults. The regional detachment level 

has a smooth dip of ca. 6° from the orogenic front westwards, reaching an approximate 

depth of 20 km in the Puna region (Seggiaro and Hongn, 1999).  

 The Altiplano-Puna plateau is characterized by the presence of N-S, NW-SE and 

NE-SW trending lineaments, which define an area of sedimentation acting as highs that 

compartmentalize a series of basins (e.g. Salfity, 1985; Riller and Oncken, 2003; Riller 

et al., 2012). It has been recognized that the NW-SE major faults have, generally, oblique 

left-lateral slip components, whereas the NE-SW faults tend to have right-lateral 

movement (e.g. Riller and Oncken, 2003). Most volcanic centers in the Puna are situated 

within NW-SE trending lineaments. It is notable that the tectonic activity in the northern 

Puna and the Altiplano diminished considerably from ca. 8.8–7 Ma onwards (Cladouhos 

et al., 1994; Lamb and Hoke, 1997), as shown by the San Juan de Oro erosion surface 

(e.g. Gubbels et al., 1993). However, the Coranzulí and the Panizos ignimbrites erupted 

later (ca. 6–7 Ma) during a period in which records of deformation are scarce and are 

concentrated on the borders of the Altiplano (e.g. Sébrier et al., 1985).  

 The sedimentary basement at the Coranzulí area is formed by marine Ordovician 

deposits (pelites, sandstones, and quartzites), interlayered with a volcano-plutonic 

sequence (Coira, 1973). Although no outcrops of the pre-Ordovician basement are found 

in the northern Puna, the presence of accidental lithic fragments of sillimanitic gneiss 
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within the Coranzulí ignimbrites points to the existence of an unexposed basement 

beneath the Ordovician sediments (Seggiaro, 1994). The Cretaceous Pirgua Subgroup 

crops out in the Tanque Range (Fig. 2) and consists of red beds related to a rifting system; 

the contact between these rocks and the Ordovician beds is at a fault. Outcrops from the 

Cretaceous-Paleocene Balbuena Subgroup are only visible south of the Coyaguayma 

lineament. Paleogene fluvial successions and Neogene volcano-sedimentary successions 

can also be observed in the area (Alonso, 1986; Seggiaro and Aniel, 1989; Fig. 2). 

   

3. Methods 

 
 In order to map the geology of the area including volcanic deposits and to establish 

its stratigraphy, facies correlations, and structural relations, we used Landsat 7 Enhanced 

Thematic Mapper (ETM) satellite images and earlier maps of the area (Seggiaro et al., 

1987; Seggiaro, 1994; Coira et al., 2004; Seggiaro et al., 2014a; Seggiaro et al., 2015), 

and also conducted fieldwork. We established eleven new stratigraphic sections and 

describe their main vertical and lateral variations, as well as their thicknesses. These 

representative stratigraphic sections were compared to those previously established by 

Seggiaro et al. (1987) and used to complete a detailed description including all rock types 

and contacts, as well as petrographic and geochemical analyses that are beyond the scope 

of this contribution and will be presented elsewhere. All selected stratigraphic sections 

are shown in Figs. 3 and 4.  

Stratigraphic descriptions include componentry analyses identifying the nature of 

the lithic fragments and their relative percentages. Lithic fragment types were 

discriminated in the field and verified through thin sections using a binocular microscope, 

while their relative percentages were estimated through visual comparison with 

percentage charts at every description point. Standard descriptions include color, degree 
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of induration and an account of textures and fabrics. The cartography of all the deposits 

was overlain on a geographical information system (GIS) platform (QGIS Geographic 

Information System: http://qgis.osgeo.org). 

 Previous structural data (e.g. Seggiaro et al., 1987; Seggiaro, 1994; Seggiaro and 

Hongn, 1994) including the attitude of the fault planes (strike and dip) and their sense of 

movement, were analyzed and complemented with new geologic mapping in order to help 

interpret the displacement of the major faults limiting the Coranzulí caldera.  

  
4. Stratigraphy of Coranzulí caldera 

 The volcanic deposits at Coranzulí include a thick succession of syn-caldera 

ignimbrites emplaced inside and outside the caldera depression, along with a succession 

of 100-m-thick post-caldera dacitic lava flows emplaced inside the caldera (Figs. 2, 5). 

Some pre-caldera volcanic rocks now partially covered by syn-caldera ignimbrites are 

exposed in the north; they are block and ash-flow deposits formed by gravitational 

collapses of dacitic lava domes (see Las Cuevas stratigraphic section in Fig. 4).  

 The syn-caldera succession is composed entirely of ignimbrite deposits. No 

Plinian fallout deposits or any other type of volcanic tephra that may have immediately 

preceded the emplacement of these ignimbrites has been found. The Coranzulí 

ignimbritic succession unconformably covers Ordovician, Cretaceous, and/or Cenozoic 

deposits that form the volcano-sedimentary basement of this region (Fig. 2). According 

to previous studies (Seggiaro, 1994; Seggiaro et al., 1987; Seggiaro et al., 2014a) we also 

identified four major ignimbritic flow units emitted from the Coranzulí caldera. They all 

spread mainly north-, east-, south- and northwestwards from the caldera, reaching 

distances of up to 45 km from the vent. The contacts between the ignimbrite units are 

locally marked by sharp planar contacts, by the presence of a thin, crystal-rich, fines- 

depleted surge layer, between two ignimbrite depositional units, or by the presence of co-
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ignimbrite lag breccias in proximal areas. In many other places the contacts are less well-

defined and the ignimbrite successions even appear as a single unit, despite changing 

laterally into a deposit composed of several flow units (see stratigraphic sections of 

Quebrada Lulchaijo and Abra Grande in Fig. 3). All ignimbritic deposits are gray, crystal-

rich, and poorly-to-densely welded (Fig. 6 a, b), with variable pumice content (5–30%, 

exceptionally 50 vol.%) and lithic fragment content (usually < 10 vol.%; exceptionally 

25%). Pumices in all these ignimbrites have dacitic composition (see Seggiaro et al., 

1987).  

 Subrounded-to-subangular lithic fragments of dacitic lavas are found throughout 

the ignimbritic succession but mostly in the basal unit. Ordovician metapelites and 

quartzites predominate in the second unit. The third and fourth units contain small 

amounts of sillimanitic gneiss derived from an unexposed basement, in addition to the 

same types as in the lower units. Lithic fragments of dacitic ignimbrites are only observed 

in the uppermost unit. Other lithic fragments present in the succession but in minor 

proportions include granitoids, porphyritic dacites and red pelites.  

 Juvenile fragments are very similar in all the Coranzulí ignimbrites and consist of 

variably vesicular, white-to-yellowish pumice (Fig. 6 a), which depending on the 

ignimbrite unit and their position in the vertical succession, may appear from subrounded-

to-highly-welded fiamme, pink, gray or black in color (Fig. 6 b); the maximum observed 

size of juvenile fragments is 40 cm. A third type of juvenile fragment are fine-to-coarse-

grained, dense, gray co-magmatic holocrystalline subrounded (crystal mush) clasts (Fig. 

6 c). They are usually bigger and more abundant near caldera rims, reaching up to 3 vol.%. 

and up to 30 cm in size (exceptionally 70 cm). Both pumices and co-magmatic crystal-

rich fragments (crystal mushes) have the same mineralogy and composition but a different 

degree of crystallinity. 
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 The Coranzulí ignimbrites are dacitic (66–68 wt.% of SiO2; Seggiaro et al., 1987) 

in composition and are crystal-rich, in terms of both their matrix (45–60 vol.%) and 

pumice (30–50 vol.%) content. The phenocrysts include plagioclases, biotites, quartz, 

minor sanidine, Fe-Ti oxides, apatite and zircon (Fig. 7 a, b).  

 The lack of erosional surfaces, sedimentary deposits, or paleosoils between the 

ignimbrite units suggest that each flow unit was emplaced by successive pulses during a 

single eruptive event. Some of the units overlap and cover most of the topographic 

depressions around the caldera, and form an ignimbritic plateau (Fig. 6 d). The maximum 

thicknesses of the individual deposits are in the range 40–130 m, with a maximum 

cumulative thickness of 380 m in an extra-caldera setting (stratigraphic section of 

Quebrada Lulchaijo; Fig. 3) where the base of the succession is exposed.  

 Seggiaro (1994) obtained three K-Ar ages of 6.8 ± 0.15, 6.6 ± 0.15, and 6.45 ± 

0.15 Ma for the biotite crystals in the Coranzulí ignimbrites, with an average age of 6.6 ± 

0.15 Ma representing the age of the eruption. Aquater (1979) obtained a K-Ar age of 6.73 

± 0.2 Ma in biotites for the rhyodacites to the south of Cerro Coranzulí in the post-caldera 

lavas, which suggests that the emplacement of these lavas occurred shortly after the 

formation of the caldera. 

 The lowermost ignimbrite unit unconformably covers pre-caldera volcanic 

deposits (block and ash-flow deposits) to the north of the caldera. It was emplaced north- 

and northwestwards from the caldera and has an average thickness of 50 m. At some 

locations, the caldera-related succession begins with a thin, 6-m-thick, laminated 

pyroclastic surge deposit that is succeeded transitionally by a 10-m-thick indurated, 

pyroclastic breccia with abundant pumice (60 vol.%), subangular lithic fragments of 

dacitic lava and minor Ordovician metapelites within a fine ash matrix (see Las Cuevas 

stratigraphic section in Fig. 4). In agreement with Seggiaro et al (1987), we interpret this 
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breccia as a co-ignimbrite lag breccia found only on the north flank of Coranzulí volcano, 

where it is partially covered by the second and third ignimbrite units. In medial facies to 

the NW of Cerro Coranzulí, the first ignimbrite is characterized by the presence of lithic 

fragments (5 vol.%) of dacitic lava, similar to those present in the proximal basal breccia, 

together with minor contents of Ordovician metapelites and quartzites. It is rich in quartz, 

plagioclase and biotite crystals (~ 40 vol.%) and moderately welded.  Pumice is variable 

in size, reaching up to 25 cm in diameter, and generally appears slightly deformed in 

proximal facies, although towards the top the unit is more welded exhibiting columnar 

jointing and elongated fiamme. 

 The second ignimbrite unit was dispersed in all directions (see Fig. 5) and its 

thickness ranges from 60 to 130 m. The contact with the first unit is observed in the 

Quebrada Lulchaijo stratigraphic section (Fig. 3), where a 2-cm-thick crystal-rich ash 

layer followed by a 15-cm-thick crystal-rich pyroclastic surge deposit of stratified lapilli 

with parallel and cross stratification are visible. This deposit is interpreted as formed from 

an ash-cloud surge accompanying the emplacement of the first ignimbrite flow unit. 

However, in proximal facies (Las Cuevas stratigraphic section; Fig. 4) this contact is 

marked by a co-ignimbrite breccia formed of large blocks of dacitic lava and smaller—

but more abundant—lithic clasts of Ordovician metapelite immersed in a pyroclastic 

matrix. Locally this massive ignimbrite is densely-welded and crystal-rich (35–40 vol.%) 

and has some layers with concentrations of pumices, probably related to local changes in 

topography (e.g. Pittari et al., 2005). In some zones its texture is eutaxitic and it is defined 

by parallel, intensely flattened fiamme.  

 The third ignimbrite unit was emplaced east-, north- and northwestwards for short 

distances but mainly southwards over distances of up to 45 km, with an average thickness 

of 40 m. The contact with the second unit is marked by a 6-m-thick co-ignimbrite lag 
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breccia found in the Casa Blanca stratigraphic profile (see Fig. 4), and by a lithified ash 

layer at Lulchaijo (see Fig 3). The breccia consists of large blocks, up to 80 cm in length, 

which consist of Ordovician metapelites, dacitic lavas, minor gneiss and abundant co-

magmatic dense lithic fragments (Fig. 6 c), and smaller lithic fragments of around 5 cm 

of the same nature. The ignimbrite is massive and crystal-rich (above 40 vol.%) with 

variable degrees of welding, increasing towards the top and with distance. In some 

sections there are levels rich in pumices (Baños Termales stratigraphic section; Fig. 4) 

and lenticular layers concentrated in lithic fragments (Norte de Coranzulí stratigraphic 

section; Fig. 4). Pumice is rich in phenocrysts and appears stretched parallel to the flow 

direction, mainly concentrated towards the upper part of the ignimbrite unit, where the 

ignimbrite is usually welded showing abundant fiamme and columnar jointing (Fig. 6 e). 

This unit contains lithic fragments of various types including two types of dacite, one 

porphyritic and other aphanitic; metapelites and quartzites from the Ordovician basement; 

a few sillimanitic gneiss; and red pelites and sandstones. In comparison with the previous 

units, this unit is poorer in lithics, although its bulk content of pumice fragments is greater 

than that of the other pyroclastic units.   

The fourth ignimbrite unit was emplaced only to the south. In proximal settings 

(Section 11 in Fig. 4) the succession outcrops, albeit without an exposed base. In its lower 

part a co-ignimbritic lag breccia occurs, containing blocks of up to 50 cm in length of a 

dacitic ignimbrite, and lithics of Ordovician metapelite, dacitic lava, and metamorphic 

basement fragments. The breccia grades into alternating stratified and massive layers of 

pumice-rich (ca. 15–30 vol.%) ignimbrite, up to 70 m in thickness, which is rich in dense 

co-magmatic fragments that reach 30 cm in diameter. It is densely welded and exhibits 

well-developed columnar jointing. 
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The intra-caldera ignimbritic succession was uplifted several hundred metres by 

a resurgent dome (Fig. 6 f), which is poorly exposed and affected by strong hydrothermal 

alteration (Fig. 6 g), thereby hampering the recognition of original lithological features. 

 Post-caldera volcanism erupted dacitic lavas that cover the intra-caldera 

ignimbrites at Cerro Coranzulí (Figs. 2 and 6 g). In all, there are three lava flows in the 

central area of the caldera that are massive-to-banded and occasionally brecciated. These 

lavas have a short run-out and reach thicknesses of up to 100 m. They are porphyritic or 

seriate, and contain phenocrysts of plagioclase, amphibole, quartz, pyroxene and minor 

biotite, K-feldspar and Fe-Ti oxides.  

  

5. Coranzulí tectonic framework 

From Neogene times onwards, the trend of convergence between the Nazca and 

South American plates has been N75°E (Pardo-Casas and Molnar, 1987), but the 

principal horizontal shortening direction is E-W (Isacks, 1988; Allmendinger et al., 1997; 

Kley and Monaldi, 1998). The Altiplano-Puna is characterized by the presence of N-S, 

NW-SE and NE-SW regional faults (e.g. Salfity, 1985; Riller and Oncken, 2003), the first 

ones being orogen-parallel sinistral thrust faults that have driven Paleozoic rocks over 

Cenozoic ones (e.g. Allmendinger et al., 1997; Riller and Oncken, 2003). The other faults 

are either dextral, reverse faults (in the case of the NE-SW trending faults) or strike-slip 

faults formed mainly under an overall left‐lateral transtension (NW-SE trending faults) 

(e.g. Allmendinger et al., 1983; Acocella et al., 2011; Riller et al., 2012). The interaction 

of these three fault systems defines rhomboid-shaped deformation domains— internally 

drained basins—in the upper crust that are a result of its segmentation by shortening 

(Riller and Oncken, 2003) and defines transpressive deformation (e.g. Coutand et al., 

2001). In the northern Puna, due to the above-mentioned crustal shortening gradient 

(Riller et al., 2012), the rhomboid-shaped basins are smaller but are also more abundant 

than in southern Puna. 
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The Coranzulí complex is emplaced at the convergence of faults with N-S, NE-

SW and NW-SE strikes (Figs. 2 and 5). Seggiaro and Hongn (1994) recognized that all 

of these faults were active before the formation of the caldera and were then reactivated 

during the caldera eruption. However, their sense of movement was interpreted only 

based on some striae data (Seggiaro, 1994; Seggiaro and Hongn, 1994). Our new field 

observations allowed revision of the structural framework of the Cerro Coranzulí, giving 

more weight to the main displacements observed by the major faults that uplifted ranges 

and the ones that produced subhorizontal displacements. The geological mapping of the 

area (Fig. 2) allows us to interpret the main movements by taking into account the relative 

ages of the affected units. The approximately N-S faults are responsible for main thrusts 

with opposite vergences, whereas the transversal faults generally behave by means of 

lateral transference zones that compensate those differential thrusts displacements. These 

lateral structures are in many cases induced by basement anisotropies due to old faults or 

from sudden lithologic changes (e.g. Hongn et al., 2010). North and South of the 

Coranzulí caldera, two ranges were uplifted by thrusts with opposite main vergences 

leading to the formation of a NW-SE transference zone. North of the Coranzulí caldera, 

the Carahuasi Range is oriented approximately N-S, (see Fig. 2) and resulted from the 

uplift of Ordovician sedimentary deposits over a Miocene volcano-sedimentary 

succession by a thrust with west vergence (Fig. 2). South of the Coranzulí caldera, the 

Tanque Range (Fig. 2) is affected by a set of overthrusts, involving several units 

(Ordovician granitoids, Salta Group sedimentary sequences and Neogene volcano 

sedimentary successions) with opposite vergences, of which the most significant has 

eastward vergence (Fig. 2). The lithologic changes between the Carahuasi and Tanque 

ranges (Fig. 2) and their opposite vergences may indicate that they had behaved as a 

structural weakness zone that favored the differential displacement of about 10 km 

between them, thus leading to the transversal NW-SE belt of the Coyaguayma lineament, 

including the Coyaguayma and Ramallo faults with sinistral kinematics (Figs. 2, 5). 

Hence, based on a detailed geologic map of the area, the sense of displacement of these 

faults is reinterpreted from the formerly dextral movement interpreted by Seggiaro and 
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Hongn (1994) based on striae data of secondary faults measured in Miocene volcano-

sedimentary sequences. 

The Ramallo and Coyaguayma faults delimited a Miocene volcano-sedimentary 

basin, formed previous to the eruption of the Coranzulí caldera. Other important tectonic 

activity in the area just before the Coranzulí eruption is recorded in the area affected by 

the Tanque fault system, where Coranzulí ignimbrites lay in angular unconformity above 

deformed Neogene volcano-sedimentary successions dated at 6.9 Ma (Alonso, 1986), 

thus delimiting a tectonic activity interval prior to the Coranzulí eruption— between 6.9 

and 6.8 Ma (Trumbull et al., 2006). The continuation of the Tanque thrust system to the 

north of Cerro Coranzulí adopts a NE-SW strike represented by the Doncellas Fault of 

dextral transcurrent kinematics (Seggiaro, 1994; Seggiaro and Hongn, 1994). 

 
The Coranzulí complex is thus emplaced at the convergence of several regional fault 

systems: the Coyaguayma and Ramallo NW-SE sinistral strike-slip faults, the Doncellas 

NE-SW dextral strike-slip fault, and the Tanque and Carahuasi N-S thrust faults with 

opposite vergences (Figs. 2 and 5). All of these faults were active before the formation of 

the caldera and were then reactivated during the caldera eruption (Seggiaro and Hongn, 

1994). Indeed, the caldera boundaries coincide in part with the Coyaguayma fault 

(southern border), the Ramallo fault (northwestern border), the intersection of the 

Ramallo and Doncellas faults (northern border) and the Tanque fault in addition to all of 

their associated secondary faults (western border) (Fig. 5), which is evidence of how these 

pre-existing fault systems helped define the Coranzulí caldera ring-fault.  In Figure 5 we 

show the orientation and sense of movement of the main faults in the Coranzulí caldera, 

in which the extensional axis runs approximately, NNE-SSW relative to the convergence 

of the Doncellas, Ramallo, Coyaguayma, Tanque and Carahuasi faults and their senses 

of displacement.  
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6. Discussion 

 We postulate that the intersection and relative movement of regional faults such 

as the ones described above played a fundamental role during the Upper Miocene in the 

accumulation of a large volume of silicic magma in the upper crust below the Coranzulí 

volcanic complex. Moreover, the convergence of the Carahuasi, Tanque, Doncellas, 

Ramallo, and Coyaguayma faults and their relative senses of displacement, allowed 

defining an extensional axis running in a NNE-SSW direction in the Coranzulí area (see 

Fig. 5) that was paramount to the formation of the caldera.  

The Coranzulí caldera-forming eruption generated four main ignimbritic pulses 

that emplaced the four principal ignimbrite units in different directions from the caldera. 

The lack of any erosional surfaces, sedimentary deposits, or paleosoils separating the 

ignimbrite units suggests that they were emplaced almost uninterrupted in time, probably 

in a nearly continuous mass supply from the caldera.  

The absence of any Plinian fallout deposits at the base of the ignimbrite succession 

highlights the fact that the pyroclastic currents formed as soon as the eruption began, as 

previously suggested by Seggiaro et al. (1987). Therefore, the caldera collapse occurred 

at the beginning of the eruption, without any previous significant decompression of the 

magma chamber (see Martí et al., 2009; Costa and Martí, 2016), which suggests a possible 

tectonic trigger and strong tectonic influence in the formation and control of the ring faults 

(see Costa and Martí, 2016). In fact, the local extensional stress field found at the site of 

the Coranzulí complex would have favored ascent and accumulation of silicic magma 

below the current Coranzulí caldera, the subsequent conduit opening and extrusion of the 

pyroclastic material and the formation of the caldera. 

 Moreover, the relatively minor depletion of fines (i.e. relatively similar crystal 

content of pumices and matrix in each ignimbrite unit) through elutriation in the 
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Coranzulí ignimbrites indicates that the flows that fed the pyroclastic currents were 

concentrated and not much thicker than the resulting deposits. The high degree of welding 

of some deposits, both in proximal and distal facies, also supports this interpretation as it 

indicates thermal conservation within the flow. If deposits are to travel long distances and 

maintain these characteristics, the flows must have been fed by long-lasting eruptive 

pulses that produced very low eruptive columns that collapsed almost immediately, i.e. 

boiling-over eruptions (e.g. Soler et al., 2007; Guzmán and Petrinovic, 2010; Pacheco-

Hoyos et al., 2018) providing a high mass flow rate (e.g. Cas et al., 2011; Costa and Martí, 

2016).  

Co-ignimbrite lag breccias are common in many ignimbrites derived from 

collapse calderas and they are mostly interpreted as representing the vent opening phases 

(Druitt and Sparks, 1982; Walker, 1985; Druitt, 1985; Druitt and Bacon, 1986; Suzuki-

Kamata et al., 1993; Rosi et al., 1996; Pittari et al., 2008; Petrinovic et al., 2010). These 

breccias contain fragments from the rocks that form the stratigraphic succession above 

the magma chamber. The presence of co-magmatic crystal-rich (“crystal mush”) 

fragments in these breccias is the evidence that fragmentation was reaching the magma 

chamber (see Fulignati et al., 2004; Costa and Martí, 2016), so in the case of the Coranzulí 

caldera we interpret this as evidence for the initiation of caldera collapse. The fact that 

the co-ignimbrite lag breccias contain accidental lithic fragments of a different nature in 

the different ignimbrites is considered to be evidence for the opening of the ring fault at 

different times depending on the affected sector of the caldera (e.g. Suzuki-Kamata et al., 

1993; Pittari et al., 2008), which implies that the caldera collapse process was not always 

homogeneous (i.e. it did not occur in a purely piston-like fashion). 

The irregular distribution (i.e. non-radial) of some of the ignimbrites and the 

distribution and composition of their associated co-ignimbrite lag breccias help to infer 
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the location of the vents (i.e. which sector of the caldera rims), suggesting that caldera 

collapse occurred with different ring fault sectors operating at different times. This 

implies that caldera collapse evolved sequentially throughout the whole ring fault, 

favored by the combined effect of the above mentioned Ramallo, Coyaguayma, 

Carahuasi, Tanque and Doncellas fault systems. The existence of erosion or coverage by 

newer deposits hinders the recognition of ring fractures in some sectors of the Coranzulí 

caldera. While the western border does show vertical faults accommodating the collapse 

(see Fig. 6 h), the eastern border is the least evident, having been partially eroded and 

covered by new deposits.  

However, as discussed before, the location of co-ignimbritic lag breccias was very 

important for the identification of the caldera rims. On its northern border the presence 

of the co-ignimbritic lag breccias associated with the lowermost ignimbrite unit indicates 

that this caldera border opened early in the eruption and was driven by the Doncellas and 

Ramallo faults, which acted as the main structural control during these first stages of the 

Coranzulí caldera collapse. The distribution of the first ignimbrite being only north-to-

northwestwards also suggests ‘trapdoor’ behavior during the first pulse of the caldera 

collapse (Fig. 8 a). Conversely, the second ignimbrite flow unit was emplaced radially 

around the Coranzulí volcanic complex, thereby indicating the presence of an eruption 

throughout the whole (or, most of) the caldera ring-fault, and more continuous subsidence 

of the caldera block (i.e. piston-like) (Fig. 8 b). The third ignimbrite flow unit, also 

associated with a prominent co-ignimbrite lag breccia, was largely emplaced radially, 

albeit with very limited eastward flows (Fig. 8 c). In this succession, there are some 

metamorphic lithic fragments, which may indicate a deeper level of fragmentation in this 

third caldera collapse pulse as these rocks do not crop out in the surroundings. Finally, 

the fourth ignimbrite is associated with a co-ignimbrite lag breccia containing lithic clast 
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fragments of ignimbrites in addition to the same lithic fragments observed in the lower 

ignimbrite units. This indicates a widening of the caldera rim and a change in the collapse 

dynamics, this time behaving again as a ‘trapdoor’ (Fig. 8 d), as this flow unit is only 

observed to be oriented in a southward direction. The fact that this last ignimbrite is so 

restricted in its present occurrence may be either an erosional feature or because the 

volume of compressible magma remaining (i.e. it is able to expand and fragment) was 

much less in this last pulse, or both. The inferred structural rim of the caldera is thus 16 

x 12 km, elongated in a N-S to NNE-SSW direction, and reflects the potential influence 

of local and regional tectonics in its formation and definition.  

Cerro Coranzulí is a resurgence dome in the central part of the caldera where 

hundreds of meters of intensely altered intracaldera ignimbrites are exposed (see Fig. 6 

g), visible from satellite images. The top of Cerro Coranzulí is covered by post-caldera 

lavas (Figs. 2; 6 g; 8 e).  

 The interpreted evolution for the collapse of Coranzulí caldera is also confirmed 

by the distribution of lithic fragments throughout the Coranzulí ignimbrite succession. As 

noted by Seggiaro et al. (1987) and Seggiaro (1994), the dominant lithic composition 

varies throughout the whole ignimbritic succession and differs according to the flow 

directions. This may be explained by the diverse composition of the caldera substrate (e.g. 

Suzuki-Kamata et al., 1993; Pittari et al., 2008) and/or by varying disruption levels during 

caldera collapse (Seggiaro, 1994). In this sense, the sequential opening of the ring fault 

described above suggests that the first caldera collapse pulse was localized at the northern 

and western rims. This is suggested by the fact that the main lithics at the base of the first 

ignimbrite unit are dacitic lavas but also include Ordovician metapelites throughout most 

of the remaining pyroclastic sequence. There is no solid evidence to help us interpret 

when and how the collapse proceeded along the eastern rim, although the radial 
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distribution of the second ignimbrite unit suggests that the eastern margin was probably 

already opened at that time. The southern margin was probably the last to be activated or, 

rather was where the final activity representing caldera widening was concentrated.  

Despite there being no direct evidence, we speculate that the fact that the 

Coranzulí caldera behaved as a trapdoor collapse, and then collapsing along all of the ring 

faults, before switching back again to trapdoor collapse, is due to the control that the local 

tectonic structure and the different strengths of basement rocks located at different sectors 

of the Coranzulí complex, affected how the magma chamber opened to the surface and 

on how the ring fault system progressed during caldera collapse. The central Andes offers 

a wide range of collapse calderas developed under the influence of local and regional 

tectonics (e.g. de Silva, 1989; Petrinovic et al., 2010; Folkes et al., 2011), but the exact 

interplay between volcanism and tectonics during caldera formation is still not well 

understood in most of them. The Coranzulí caldera is just a particular example showing 

this combination of trapdoor to full-on collapse, but it may not be the only one that shows 

evidence of a heterogeneous collapse event, as seems to have also occurred in the Panizos 

caldera (Ort, 1993). Fault opening depends on the configuration of tectonic stresses 

around the fault plane and on the strength of the rock along it (see Gudmundsson, 2011, 

2013; Boneh and Reches, 2018). In the case of caldera faults in which part of them may 

be lubricated by the presence of overpressurized magma, the situation may be even more 

complex, as the slip along lubricated and non-lubricated fault planes may be totally 

different, thus affecting the rate and style of collapse (Spray, 1997; Kokelaar, 2007). 

These anisotropies along the ring fault systems may be difficult to test through 

experimental or numerical models, currently being widely used to understand and explain 

caldera collapse dynamics (see Martí et al., 2008; Geyer and Martí, 2014, for recent 

reviews on caldera modeling), but may be inferred and approached through the inspection 
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of natural examples, such as the one presented herein. With this, we point towards the 

importance of knowing more about tectonic influence and fault behavior in order to 

understand caldera dynamics, in particular for those of large dimensions.  

 

7. Conclusions 

The Coranzulí caldera (23°00’S-66°15’W) is the easternmost caldera of the 

northern Puna and is probably one of the least known in the whole region, despite it 

presenting interesting clues to understand caldera collapse processes.   

 The formation of the Coranzulí caldera was structurally controlled and did not 

require any significant pre-caldera decompression in the magma chamber. The 

intersection of several faults where the caldera is located was the main factor causing 

conduit opening, ascent and extrusion of the pyroclastic material and caldera collapse. 

These faults display N-S, NW-SE, and NE-SW trends and an extensional axis with a 

NNE-SSW trend, coinciding with the elongation of the 16 x 12 km caldera. The 

ignimbritic flows were fed by a boiling-over type eruption that generated a very low 

eruptive column with high mass flow rates but with no Plinian fallout deposits.  

 Four different ignimbrite flow units are recognized, each representing different 

successive pulses within a single eruption. The irregular distribution shown by some of 

the Coranzulí ignimbrites and the emplacement of co-ignimbrite lag breccias record the 

position of the caldera ring-faults. At the beginning of the eruption the ring fault opened 

north- and northwestwards in a ‘trapdoor’ fashion, thereby generating the first ignimbrite 

flow unit. Immediately afterwards, the whole ring fault opened during the eruption of the 

second flow unit and continued to do so during the eruption of the third flow unit. The 

final stage of the caldera evolution involved a widening of the ring fault and a change in 
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the collapse style towards a ‘trapdoor’ caldera that emitted the fourth ignimbrite flow unit 

southwards.  

 The dominant composition of the lithic fragments within the ignimbrites varies 

stratigraphically, with dacitic lava fragments predominating the first ignimbrite unit, 

Ordovician metapelites, and quartzites that are mostly concentrated in the second and 

third ignimbrites; with sillimanitic gneiss appearing only in the third and fourth 

ignimbrite units, this last one also contains dacitic ignimbrite lithic fragments. 

Sillimanitic gneiss is not exposed elsewhere in the area, and so its appearance indicates 

that the final stages of the collapse reached deeper levels. 
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Figure captions: 

Fig. 1: Location of Miocene calderas and associated deposits in the 21–28°S segment of 

the Central Volcanic Zone of the Andes. After Petrinovic et al (2010) and Guzmán et al 

(2017). The inset at the upper right angle is the main figure. The rectangle shows the 

study area of this contribution. 

 

Fig. 2: Geologic map of the Coranzulí caldera and surroundings.  

 

Fig. 3: Stratigraphic profiles of the medial and distal facies of the Coranzulí ignimbrites.  

 

Fig. 4: Stratigraphic profiles of the proximal facies of the Coranzulí ignimbrites.  

 

Fig. 5: Different volcanic units in the Coranzulí caldera. The inferred caldera rim, main 

faults and extension axis, and location of profiles from Figs. 3 and 4 are also shown. 

 

Fig. 6: Field photographs of the Coranzulí ignimbrites: (a) poorly welded facies (note the 

subrounded pumice fragments); (b) densely welded facies (note the elongated fiamme in 

the central part of the photograph); (c) co-ignimbrite lag breccia forming the base of the 

second flow unit (note the abundant dense gray co-magmatic lithic fragments); (d) 

Coranzulí ignimbrites forming a plateau, view from the south; (e) well-developed 

columnar jointing in the third ignimbrite flow unit; (f) Cerro Coranzulí resurgent dome 

and lavas; viewed looking NE; (g) the Coranzulí resurgent dome (note the altered 

ignimbrites at the base and lavas at the top); and (h) the normal fault on the western rim 

of the caldera. 
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Fig. 7: Microphotographs of the Coranzulí ignimbrites: (a) densely welded facies; (b) 

poorly welded facies. The white dashed line outlines the pumice fragments. In (b) one 

pumice makes up the upper portion of the image. Bt: biotite, Pl: plagioclase, Qz: quartz. 

 

Fig. 8. Sketch illustrating the evolution of the Coranzulí caldera-forming eruption. White 

lines indicate the orientation of the cross sections and red line the caldera rim.  
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Research highlights 

 Coranzulí caldera collapse was tectonically driven 6.6 My ago 

 Collapse was not homogeneous and occurred along different sectors of the ring fault 

 Collapse occurred early in the eruption during a pulsating boiling-over event 

 Co-ignimbrite lag breccias reveal the dynamics of caldera collapse  

 4 crystal-rich dacitic ignimbrites with diverse main lithic fragments were emplaced  
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