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ABSTRACT 

Intestinal multidrug resistance-associated protein 2 is an ABC transporter that 

limits the absorption of xenobiotics ingested orally, thus acting as essential component 

of the intestinal biochemical barrier. Metabolic Syndrome (MetS) is a pathological 

condition characterized by dyslipidemia, hyperinsulinemia, insulin resistance, chronic 

inflammation, and oxidative stress (OS). In a previous study we demonstrated that 

MetS-like conditions induced by fructose in drinking water (10% v/v, during 21 days), 

significantly reduced the expression and activity of intestinal Mrp2 in rats. We here 

evaluated the potential beneficial effect of geraniol or vitamin C supplementation, 

natural compounds with anti-inflammatory and anti-oxidant properties, in reverse 

fructose-induced Mrp2 alterations. After MetS-like conditions were induced (21 days), 

animals were cotreated with geraniol or vitamin C or vehicle for another 14 days. 

Decreased expression of Mrp2 protein and mRNA due to fructose administration was 

reversed by geraniol and by vitamin C, consistent with restoration of Mrp2 activity 

evaluated in everted intestinal sacs. Concomitantly, increased intestinal IL-1β and IL-6 

levels induced by fructose were totally and partially counterbalanced, respectively, by 

geraniol administration. The intestinal redox unbalance generated by fructose was 

improved by geraniol and vitamin C, as evidenced by decreasing lipid peroxidation 

products and activity of Superoxide Dismutase and by normalizing glutathione 

reduced/oxidized glutathione ratio. The restoration effects exhibited by geraniol and 

vitamin C suggest that local inflammatory response and OS generated under MetS-like 

conditions represent important mediators of the intestinal Mrp2 down-regulation. 

Additionally, both agents could be considered of potential therapeutic value to preserve 

Mrp2 function under MetS conditions 

 

 

Key words: fructose-rich diet, metabolic syndrome, insulin resistance, intestine, Mrp2, 

oxidative stress, inflammation, geraniol, vitamin C. 

 

Abbreviations: ABC, ATP-Binding Cassette; AUC, area under the curve; BBM, brush 

border membrane; b.wt., body weight; CAT, Catalase; CDNB, 1-chloro-2,4-

dinitrobenzene; C, control; DNP-SG, dinitrophenyl-S-glutathione; GSH, reduced 

glutathione; GSSG, oxidized glutathione; IPGTT, intraperitoneal glucose tolerance test; 
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ITT, insulin tolerance test; HOMA, homoeostasis model assessment; IL-1β, Interleukin-

1β; IL-6, Interleukin-6; IR, insulin resistance; LPO, lipid peroxidation; Mrp2, multidrug 

resistance-associated protein 2; OS, oxidative stress; SOD, Superoxide Dismutase; 

TAG, triacylglycerol; TBARS, thiobarbituric acid reactive substances. 
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INTRODUCTION 

Metabolic syndrome (MetS) is a contemporary condition defined by a cluster of 

physiological interconnected biochemical, clinical, and metabolic factors consisting of 

elevated blood pressure, hypertriglyceridemia, reduced serum high-density lipoprotein- 

cholesterol, glucose intolerance, hyperinsulinemia, and insulin resistance. These factors 

increase the risk of individuals to develop cardiovascular disease and Type 2 Diabetes 

[1-3]. MetS and its associated complications have become one of major health problems 

worldwide, with an increase incidence due to improper nutrition and sedentary lifestyle 

[4]. In the last decades a marked increase in average fructose intake in the way of 

sweeteners used by food industry has been documented [5]; at the same time, there is 

growing evidence indicating that excessive fructose consumption is causally linked to 

MetS prevalence [6-8]. Rats fed with a fructose-rich diet constitute a valid model of 

diet-induced insulin resistance, associated with hyperinsulinemia, glucose intolerance, 

hypertriglyceridemia, as well as inflammation and oxidative stress (OS) in different 

tissues [9-11]. Although the precise molecular mechanism by which fructose-rich diet 

induces MetS remains in discussion, it has been postulated that an increase in OS plays 

a key role in its pathogenesis and subsequent complications [12-14]. In support to this 

assumption, epidemiologic studies show that anti-oxidants (e.g., vitamin A, C, and E) 

are associated with reduced risk of MetS [15,16], consistent with their effects in 

reducing main alterations induced by fructose-rich diet [17,18].  

Interestingly, high fructose consumption correlates with increased intestinal 

permeability, as a significant component of fructose-induced MetS [19,20]. 

Consumption of fructose raises fructokinase-C expression in small intestine [21]; 

consequently, the acceleration of intestinal fructolysis originates local OS and 

inflammation and reduces the expression of relevant tight junction proteins, ultimately 

resulting in increased paracellular permeability [22]. Regarding the transcellular 

component of intestinal barrier function, we have recently reported a significant 

reduction in Multidrug resistance protein 2 (Mrp2, ABCC2) expression in normal rats 

fed with a fructose-rich diet for 21 days [23], resulting in impaired activity and 

consequently, increased absorption of Mrp2 substrates. Mrp2 is a drug efflux pump 

belonging to the ATP-Binding Cassette (ABC) transporter superfamily and is 

constitutively expressed in the apical membrane of enterocytes, mainly from proximal 

jejunum, where it acts in concert with biotransformation enzymes to prevent absorption 
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of food contaminants and drugs incorporated orally [24, 25]. Thus, any alteration in the 

intestinal Mrp2 activity will increase the toxicity of xenobiotics as well as it will affect 

the bioavailability and eventually the safety of therapeutic drugs. 

The specific mechanisms underlying the reduction of intestinal Mrp2 under MetS 

conditions are still unknown. However, it is tempting to speculate that OS and 

inflammation may play a significant role as they occurred in simultaneous with Mrp2 

down-regulation induced by fructose administration [26]. Both factors were previously 

shown to be important regulators of Mrp2 expression under other experimental 

pathological conditions such as LPS-induced endotoxemia and obstructive cholestasis 

[27-29]. Therefore, administration of anti-oxidant and anti-inflammatory agents to rats 

with MetS could be a useful tool to support our hypothesis. Geraniol, is an important 

monoterpene alcohol naturally found in the essential oils of lemon, rose, ginger, orange, 

among others [30]. Pharmacological studies involving geraniol have shown that it 

possesses potent anti-oxidant and anti-inflammatory properties [31, 32]. While the 

antidiabetic, anti-oxidant and anti-inflammatory effect of this monoterpene in 

experimental MetS-rats model has previously been well documented [33], studies 

regarding its efficacy in reversing intestinal Mrp2 alterations have not been performed 

until the present. 

On the other hand, given that OS has a central role in the etiology of MetS and that 

MetS patients have a deficient endogenous anti-oxidant capacity [34], it was also our 

interest to evaluate the effect of vitamin C on Mrp2 down-regulation in our 

experimental model of MetS. Vitamin C constitutes an important non-enzymatic anti-

oxidative defense and its supplementation was proven effective to decrease the 

incidence of MetS in patients [35, 36]. Accordingly, the aim of this study was to 

validate the efficacy of geraniol (as anti-oxidant and anti-inflammatory agent) and 

vitamin C (as anti-oxidant agent) in revert intestinal Mrp2 down-regulation in an insulin 

resistant rat model that mimics aspects of MetS, with the final purpose of identifying the 

possible components of this pathological condition responsible for Mrp2 alteration. 
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2. MATERIALS AND METHODS 

2.1. Chemicals 

Fructose was obtained from Laboratorio Cicarelli (Bs. As, Argentina). Geraniol, 

vitamin C, leupeptin, phenylmethylsulfonyl fluoride, pepstatin A, 3-isobutyl-1-

methylxanthine, glutathione, dithiothreitol, 1-chloro-2,4-dinitrobenzene (CDNB), 2-

thiobarbituric acid, nitroblue tetrazolium, and hydrogen peroxide (H2O2) were obtained 

from Sigma-Aldrich (St. Louis, USA). 2-vinylpyridine was obtained from Fluka 

Chemical Corp (Milwaukee, USA). All other chemicals and reagents used were 

commercial products of analytical-grade purity. 

 

2.2. Animals and treatments 

Adult male Wistar rats (220–250 g b.wt.; 70-day old) were purchased from 

Centro de Medicina Comparada-Instituto de Cs. Veterinarias del Litoral (UNL-

CONICET, Esperanza, Argentina). Animals received standard commercial diet ad 

libitum and either tap water (C group), or tap water with 10% (w/v) fructose (FRU 

group), for 21 days to induce MetS-like conditions [23,36,37] (Fig.1). Animals were 

grouped (two animals per cage) and kept under controlled conditions (23 ± 2°C) with a 

fixed 12-h light–dark cycle (06:00–18:00 h). Installation of MetS was verified by 

plasma TAG (triacylglycerol) and immunoreactive insulin levels and by the 

intraperitoneal glucose tolerance test (IPGTT) (data not shown). At day 21, either MetS 

or control rats were randomly divided into 8 subgroups as shown in Fig. 1: four groups 

belonging to the protocol of reversion by geraniol and four groups belonging to the 

protocol of reversion by vitamin C. In the first protocol (Fig. 1A), control and MetS rats 

were daily administered with 1% Tween 80 (C and FRU groups) or geraniol in 1% 

Tween 80 (250 mg/kg/day, p.o [37]; GO and FRU+GO groups). In the second protocol 

(Fig. 1B), control and MetS rats were daily administered with tap water (C and FRU 

groups) or with vitamin C (100 mg/kg/day, p.o [38]; VitC and FRU+VitC groups). 

Rats of all experimental groups were subjected to the IPGTT and to the insulin 

tolerance test (ITT) at the end of the treatments, after overnight and 6 hours fasting 

respectively. Liquid intake was monitored every other day and body weight once a week 

throughout the treatment. Total drinking volume of animals housed together was 

averaged and considered as a single data. All the experimental protocols were 

performed according to the Regulation for the Care and Use of Laboratory Animals 
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(Expedient 6109/012 E.C. Resolution 267/02) and were approved by the Institutional 

Animal Use Committee of the National University of Rosario, Argentina. 

 

2.3. Specimen collection 

Animals were fasted 12 h before sacrifice, performed under intraperitoneal 

anesthesia [ketamine: 100 mg (0.42 mmol)/kg b.wt.; xylazine: 15 mg (0.07 mmol)/kg 

b.wt.] between 08:00 and 09:00 h. After an abdominal incision, blood samples were 

taken through cardiac puncture and placed into heparinized tubes to measure plasma 

glucose, triacylglycerol (TAG) and immunoreactive insulin levels. For collection of 

jejunum specimens, the first 15 cm starting from the pyloric valve and corresponding to 

the duodenum were excluded and the following 30 cm were taken and considered as the 

proximal jejunum. This segment was carefully rinsed with ice-cold saline and dried with 

filter paper. For western blot studies, the jejunum was immediately opened lengthwise, 

the mucus layer was carefully removed, and the mucosa was obtained by scraping, 

weighed, and used for brush border membrane (BBM) preparation. For total RNA 

isolation, small rings were cut from this same region of the intestine, frozen in liquid 

nitrogen and kept at -70°C until isolation by using TRIzol reagent (Invitrogen, Carlsbad, 

USA) following the manufacturer’s protocol. For Mrp2 transport studies in vitro, 3-cm 

segments of the proximal jejunum were immediately used in preparation of everted 

sacs. Aliquots of proximal jejunum were homogenized in saline (1:2) for assessment of 

glutathione content, lipid peroxidation and anti-oxidant enzyme activities, or in 

phosphate-buffered saline (pH: 7.40) (1:2) for assessment of IL-1β and IL-6 when it 

corresponds.  

 

2.4. Biochemical assays 

Plasma glucose and TAG levels were determined spectrophotometrically using 

commercial kits (Wiener Laboratorios, Rosario, Argentina). Plasma insulin levels were 

measured by RIA using a commercial kit (Rat insulin, Millipore Corporation, Billerica, 

USA). 

The IPGTT was performed 3 days before the animals were sacrificed as 

described previously [23]. For the calculation of the area under the curve (AUC) the 

GraphPad Prism 5 software was used and the values were expressed in mM/120 min.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

9 

 

For the ITT, 2 days before the experiments, the rats were fasted for 6 hours and 

then a blood sample was taken from the tail vein (basal glycemia, 0 min). The animals 

were immediately injected i.p. with 0.75 units/kg human recombinant insulin (Denver 

Farma S.A, Buenos Aires, Argentina) [39] and additional blood samples were taken at 

30, 60, and 90 min also from the tail vein. For the calculation of the area under the 

curve (AUC) the GraphPad Prism 5 software was used and the values were expressed in 

mM/90 min. 

Serum insulin and fasting blood glucose values were used to estimate IR (insulin 

resistance) by HOMA (homoeostatic model assessment)-IR index, using the equation: 

serum insulin (µUI/ml)×fasting blood glucose (mmol/l)/22.5 [40]. When the value of 

HOMA-IR increases, IR augments, thus indicating a decrease in insulin sensitivity. 

 

2.5. Western blot studies 

BBM were prepared from mucosa samples as described previously [24]. Protein 

concentration was measured by using bovine serum albumin as standard [41]. Aliquots 

of the BBM preparations were kept on ice and used the same day in western blot 

studies. Mrp2 was detected in BBMs as described previously [24]. Equal loading and 

transference of protein was systematically checked by both detection of β-actin and 

staining of the membranes with Ponceau S. Primary antibodies used were anti-MRP2 

(M2 III-6, Alexis Laboratories, San Diego, USA) and anti-β-actin (A-2228, Sigma–

Aldrich). Immunoreactive bands were quantified with Gel-Pro Analyzer software 

(Media Cybernetics, Inc., Bethesda, USA). 

 

2.6. Real-Time Polymerase Chain Reaction (PCR) studies 

Quantitative real-time PCR studies of ABCC2 mRNA were performed as 

described previously [42] using the following primer pairs: forward, 5’-

accttccacgtagtgatcct-3’ and reverse, 5’-acctgctaagatggacggtc-3 for ABCC2 and forward, 

5’-gtaacccgttgaaccccatt-3’ and reverse, 5’-ccatccaatcggtagtagcg-3’ for 18S rRNA 

(housekeeping gene). 

 

2.7. Assessment of Mrp2 activity in vitro 

To characterize the effect of the different treatments on intestinal Mrp2 efflux 

activity, the in vitro model of everted sacs was chosen. The everted sacs, prepared from 
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proximal jejunum, were incubated for 30 min in the presence of 100 µM CDNB in the 

mucosal compartment as described previously [43]. After diffusion of CDNB into the 

enterocyte, and further endogenous conjugation with glutathione, the product 

dinitrophenyl-S-glutathione (DNP-SG) was detected by high-performance liquid 

chromatography in the same mucosal compartment as described [43].  

 

2.8. Determination of intestinal glutathione content and lipid peroxidation 

(LPO) 

Total glutathione [reduced (GSH) + oxidized (GSSG)] and GSSG were assessed 

as described previously [44], in supernatants of proximal jejunum homogenates 

prepared as it was previously described [23]. GSH values were determined from total 

glutathione and GSSG concentrations and oxidative stress index was calculated from 

the GSH/GSSG ratio and expressed as % of controls. 

LPO was estimated by measuring thiobarbituric acid reactive substances 

(TBARS) using the procedure of Ohkawa et al. [45] in intestinal homogenates as 

described previously [23].  

 

2.9. Assessment of anti-oxidant enzyme activities 

Enzyme activities were assessed in supernatants of jejunum homogenates 

prepared as was previously described [23]. Protein concentration was measured by 

using bovine serum albumin as standard [41]. Superoxide Dismutase (SOD) assay was 

based on the method of Beauchchamp and Fridovich [46] with modifications of 

Donahue et al. [47], which measures the SOD inhibition of photochemical reduction of 

nitroblue tetrazolium. Catalase (CAT) activity was determined by monitoring the rate of 

decomposition of H2O2 as a function of decrease in absorbance at 240 nm for 2 min 

[48]. Both enzyme activities were expressed as % of controls. 

 

2.10. Assessment of interleukins  

IL-1β and IL-6 levels were determined in jejunum homogenates as described 

previously [23] and expressed as % of controls. 

 

2.11. Statistical Analysis 
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Data are presented as mean ± S.D. All statistical analyses were performed using 

one-way ANOVA followed by Newman-Keuls test. Values of P0.05 were considered 

statistically significant. 
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3 RESULTS  

3.1. Protocol of reversion by geraniol administration 

3.1.1. Effect of geraniol on body weight and food/water intake 

Following 35 days of treatment, body weight gain did not differ among the 

different experimental groups (93±21, 111±11, 93±9, 96±21 g for C, FRU, GO and 

FRU+GO, respectively). Liquid consumption was higher for FRU animals than for C 

(50.23±0.64 vs. 38.00±0.04 ml/day, respectively; P<0.05), whereas coadministration of 

geraniol did not change water intake respect to administration of fructose alone 

(46.72±4.90 vs. 50.23±0.64 ml/day for FRU+GO and FRU, respectively). Food intake 

was significantly lower in FRU, GO and FRU+GO groups respect to C (15.23±0.27, 

16.31±0.50 and 14.70±0.27 vs 22.20±0.72 g/day, respectively; P<0.05). In contrast, 

calories consumption was significantly higher in FRU and FRU+GO groups respect to 

C and GO groups (47.20±0.90 and 44.80±0.90 vs 39.50±5.40 and 29.04±0.90 kcal/day, 

respectively; P<0.05). 

 

3.1.2. Effect of geraniol on altered glucose homeostasis and plasma TAG level 

induced by fructose administration 

Plasma biochemical determinations as well as IPGTT and ITT curves of 

experimental groups are shown in Table 1 and in Figure 2, respectively. Concerning the 

fasting level of blood glucose, there were no significant differences among the four 

groups studied (Table 1). However, FRU group displayed an impaired glucose tolerance 

as indicated by increased AUC value in the IPGTT measure (Fig. 2A). ITT analysis also 

revealed an impaired insulin sensitivity in FRU vs. C rats (a greater AUC value, Fig. 

2B), which together with elevated fasting insulin levels and HOMA-IR index indicated 

the establishment of IR in these rats. Treatment with geraniol significantly improved the 

response to glucose overload and insulin administration and restored the HOMA-IR 

index in fructose fed rats as well, consistent with reversion of the IR condition (Table 

1). Also, the increase of TAG plasma levels induced by fructose administration, were 

completely reverted by coadministration with geraniol (Table 1).  

 

3.1.3.  Effect of geraniol on Mrp2 down-regulation induced by fructose 

administration 
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Figure 3A shows that Mrp2 expression, detected in BBM, was significantly 

decreased in FRU group with respect to C (77% decrease), as we previously described 

[26]. Cotreatment with geraniol was able to reverse Mrp2 down-regulation to the extent 

that densitometry revealed no difference with respect to C (Fig. 3A). Geraniol 

administered alone did not affect Mrp2 expression with respect to control rats. 

We performed real-time PCR studies to evaluate the involvement of a 

transcriptional mechanism and found that fructose administration indeed reduced 

ABCC2 mRNA levels respect to C (40% decrease) and that geraniol reverted such effect 

(Fig. 3B). 

Mrp2 activity was evaluated by the luminal secretion of DNP-SG, a typical Mrp2 

substrate, using the in vitro model of everted intestinal sacs. Consistent with western 

blot studies, the amount of DNP-SG accumulated in the mucosal compartment 

decreased in FRU group with respect to C (43% decrease) and returned to the normal 

value in the cotreated group (Fig. 3C). 

 

3.1.4.  Effect of geraniol on altered intestinal redox balance and anti-oxidant 

defenses induced by fructose administration 

To evaluate the anti-oxidant properties of geraniol, we tested GSH/GSSG ratio 

and TBARS levels. Figure 4A shows that reduction of the GSH/GSSG ratio induced by 

fructose (38% decrease) was completely restored by cotreatment with geraniol. At the 

same time, GSSG intestinal content was increased in FRU group (58% increase) and 

preserved in FRU+GO when compared to C, while GSH content remained unchanged 

irrespective of the treatment (data not shown). Fructose administration increased 

TBARS levels respect to C (60% increase), whereas geraniol coadministration lowered 

such measure under control value (27% decrease) (Fig. 4B). Also, cotreatment with 

geraniol counteracted the increase in SOD activity observed for FRU group (61% 

increase) (Fig. 4C), whereas CAT activity did not vary among the different 

experimental groups (Fig. 4D). Geraniol administration alone did not affect GSH/GSSG 

ratio, TBARS levels or SOD activity. 

 

3.1.5.  Effect of geraniol on increased intestinal proinflammatory cytokine levels 

induced by fructose administration 
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Panels A and B from Figure 5 show that both IL-1β and IL-6 levels increased 

significantly in proximal jejunum from FRU group when compared to control group 

(58% and 123% increases, respectively). Cotreatment with geraniol completely restored 

IL-1β levels and only partially those of IL-6. 

 

3.2. Protocol of reversion by vitamin C administration 

3.2.1.  Effect of vitamin C on body weight and food/water intake 

After 35 days of treatment, body weight gain did not differ between 

experimental groups (83±8, 87±3, 77±9 and 87±3 g for C, FRU, VitC and FRU+VitC, 

respectively). Liquid consumption was higher for FRU animals than for C (55.60±1.30 

vs. 34.40±1.70 ml/day, respectively; P<0.05), whereas this measure was similar 

between FRU+VitC and FRU groups (54.08±6.50 vs. 55.60±1.30 ml/day, respectively). 

Food consumption was significantly lower in FRU group respect to C (22.33±1.82 vs. 

26.07±0.50 g/day, respectively; P<0.05), while in FRU+ VitC group this parameter 

remained unchanged respect to FRU group (22.25±1.13 vs. 22.33±1.82g/day, 

respectively). Calories consumption were significantly higher in FRU and FRU+VitC 

groups respect to C and VitC groups (46.01±2.80 and 45.50±0.43 vs 40.12±0.60 and 

41.25±0.35 kcal/day, respectively; P<0.05).  

 

3.2.2.  Effect of vitamin C on altered glucose homeostasis and plasma TAG levels 

induced by fructose administration 

Biochemical measures are shown in Table 2. There were no significant 

differences in basal blood glucose levels among groups. Plasma TAG and insulin levels 

were significantly increased by fructose administration and completely reverted by 

vitamin C. In addition, key parameters of glucose homeostasis were assessed in all 

experimental groups and are shown in Figure 6. The highest glycemia levels in the 

IPGTT and ITT curves (Fig. 6), demonstrated by a significantly elevated AUC values 

(inserts in Fig. 6), as well as in the HOMA-IR value (Table 2) found in FRU group 

confirmed development of IR. Rats that underwent vitamin C cotreatment demonstrated 

better glucose tolerance (Fig. 6A and Table 2) and insulin sensitivity (Fig. 6B) than 

those receiving only fructose. Cotreatment with vitamin C also normalized the altered 

insulin sensitivity index (Table 2), whereas administration with vitamin C alone did not 

affect any of the parameters studied. 
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3.2.3.  Effect of vitamin C on Mrp2 down-regulation induced by fructose 

administration 

Fructose administration caused a significant decrease in Mrp2 protein expression 

with respect to C (75% decrease) in proximal jejunum. However, the decreased levels of 

Mrp2 protein were significantly attenuated in rats cotreated with vitamin C (Fig. 7A). 

Likewise, detection of mRNA levels revealed that fructose administration decreased 

Mrp2 expression with respect to C (56% decrease), whereas this measure returned to 

normal values in the FRU+ VitC group (Fig. 7B). Figure 7C shows that variations in 

Mrp2 activity in response to fructose and/or vitamin C administration were consistent 

with those of mRNA, indicating a 42% decrease in FRU group respect to C and 

restoration under cotreatment conditions. Vitamin C administered alone did not affect 

Mrp2 expression or activity with respect to control rats. 

 

3.2.4. Effect of vitamin C on altered intestinal redox balance and anti-oxidant 

defenses induced by fructose administration 

Figure 8A shows that reduction of the GSH/GSSG ratio induced by fructose 

(36% decrease) was completely restored by cotreatment with vitamin C. At the same 

time, GSSG intestinal content was higher in FRU group (60% increase) and was 

normalized in FRU+VitC as compared to C, while GSH content remained unchanged 

(data not shown). Similarly, the increase of TBARS levels induced by fructose (65% 

increase) returned to normal value after vitamin C administration, as shown in Figure 

8B. Regarding the anti-oxidant defense, SOD activity was increased in FRU group 

(63% increase) and restored in FRU+VitC rats (Fig. 8C). CAT activity was not affected 

by fructose administration but significantly reduced in both VitC and FRU+VitC groups 

when compared to control animals (37 and 38% decrease respectively) (Fig. 8D). 
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DISCUSSION 

Fructose is a sugar widely found in natural foods, as fruits and vegetables, and is 

also used as a supplement in a variety of processed foods. Excessive fructose 

consumption is an important risk factor contributing to development of MetS, with 

associated dysfunctions in multiple tissues and organs including liver, adipose, 

pancreatic islet, skeletal muscle and intestine, among others [49, 50]. Although the 

exact pathogenesis of MetS is still under debate, it is firmly postulated that primary 

metabolites of fructose, produced in organs where fructokinase-C is expressed, play a 

central role initially inducing systemic and local insulin resistance, as well as triggering 

overproduction of reactive oxygen species. These primary alterations subsequently lead 

to exacerbated secretion of inflammatory cytokines, adiponectin, endotoxin and leptin, 

which cause systemic or local inflammation response, lipid accumulation, and 

endothelial dysfunction, in addition to hyperphagia [50]. Clearly, OS is a key event 

contributing to the etiopathogenesis of MetS. 

Evidence from animal models as well as human studies indicate that insulin 

resistance associated with overconsumption of fructose induces important alterations in 

the intestinal mucosa, possibly due to fructose metabolism in the intestinal wall since 

this tissue also expresses fructokinase-C [51, 21]. Some of these alterations are 

increased intestinal permeability, consequence of local inflammation and reduction of 

expression of tight junction proteins such as occludin and zone occludes-1 [52]. In line 

with this, we recently demonstrated a significant down-regulation of the drug 

transporter Mrp2 in proximal jejunum of fructose-fed rats, not associated with erosive 

alterations of the intestinal epithelium, but rather with a specific regulation, at least in 

part, at transcriptional level [23]. Interestingly, such regulation occurred in parallel with 

alteration of the redox balance and increased inflammatory response in intestinal tissue 

[23]. Down-regulation of Mrp2 protein by the systemic pro-inflammatory cytokine IL-

1 was previously observed in the duodenum of extrahepatic cholestasic rats, with 

concomitant reduction of its mRNA levels resulting from its transcriptional regulation 

[28]. Similarly, IL-1 appears to be the major regulator of Mrp2 expression under 

endotoxemic conditions, since its blockade led to a complete preservation of the 

transporter expression (protein and mRNA) [53]. On the other hand, exposure to OS 

was found to produce a marked decrease in hepatic Mrp2 protein expression, mainly 

through a post-transcriptional regulation [27,54]. Thus, it is possible that IL-1 (as a 
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main mediator of inflammatory response) and/or OS mediate down-regulation of 

intestinal Mrp2 under MetS conditions induced by fructose administration. In order to 

confirm this supposition, we evaluated the effect of coadministration with geraniol or 

vitamin C. 

Geraniol is an acyclic monoterpene alcohol found in medicinal plants and used 

traditionally for several medical purposes including diabetes [55]. Geraniol possesses 

pharmacological effects such as anti-oxidant, anticancer and anti-inflammatory 

properties [56,57,58]. Under the present experimental conditions, geraniol per se did not 

affect body weight gain, plasma glucose, TGA or insulin levels. However, under MetS-

like conditions, geraniol reduced plasma TGA levels to normal values and also restored 

insulin sensitivity, indicated by reduction of HOMA-IR index and by a better response 

to both the ITT and IPGTT, as was previously reported [32]. As expected, OS indicators 

were also reversed by geraniol supplementation, agreeing well with previous studies 

demonstrating the anti-oxidant potential of geraniol in vivo [59]. Similarly, geraniol 

totally counteracted the increase in IL-1β production and partially neutralized the 

increase of IL-6 induced by fructose administration, consistent with its anti-

inflammatory action. More importantly, geraniol treatment totally reversed loss of Mrp2 

expression and activity. A direct action of geraniol on expression of Mrp2 seems 

unlikely since GO group exhibited similar levels of protein and mRNA when compared 

to control rats. Therefore, it is possible to postulate that the modulation of both OS and 

inflammatory response by geraniol contributed to ameliorate Mrp2 down-regulation 

under MetS conditions. 

Vitamin C is a recognized natural anti-oxidant of therapeutic application [15]. 

Our data indicate that vitamin C restored the intestinal redox unbalance induced by 

fructose, as evidenced by reduction of LPO and concomitant normalization of 

GSH/GSSG ratio and SOD activity. Catalase activity was reduced in both VitC and 

FRU+VitC groups respect to control rats. This is likely due to formation of 

semidehydroascorbate, an intermediate in vitamin C oxidation, which exhibits 

inhibitory action on catalase activity [60]. Our results demonstrate for the first time that 

administration of vitamin C alleviates MetS in rat model, essentially by reducing insulin 

resistance, as demonstrated by reduction of HOMA-IR index as well as by a better 

response to both the ITT and IPGTT. This is in accordance with previous 

epidemiological studies demonstrating that high intake of vitamin A and C were 
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associated with lower risk of MetS in women and that MetS patients had considerably 

lower plasma levels of vitamin A, C and E compared to healthy subjects [35,16]. 

Significantly, vitamin C administration was also able to reverse intestinal Mrp2 down-

regulation, restoring its activity as well as protein and mRNA levels. Consequently, it is 

possible to postulate that OS plays a central role in the regulation of intestinal Mrp2 

expression under MetS conditions. Whether vitamin C corrected also, directly or 

indirectly, the inflammatory response was not explored in this study. However, this 

possibility should not be ruled out since, as was mentioned above, the sequential link 

between a fructose-rich diet, OS and inflammatory response has been largely 

demonstrated [61-63]. Even more, recent studies had revealed anti-inflammatory 

properties of vitamin C, whose mechanism have been attributed to its ability to 

modulate NF-ĸB-DNA binding activity and down-regulate hepatic mRNA expression of 

TNF- and IL-6, among other actions [64-66]. Clearly, more direct studies are 

necessary to elucidate to what extent OS or inflammation is responsible for down-

regulation of intestinal Mrp2. 

In conclusion, we demonstrate for the first time that geraniol or vitamin C 

administration can completely revert down-regulation of intestinal Mrp2 in fructose-fed 

rats, strongly suggesting that OS and the inflammatory response are critical factors 

leading to the impairment of Mrp2 function. Our study suggests that modulation of 

Mrp2, as a relevant member of the intestinal transcellular barrier that conditions drug 

bioavailability and xenobiotics toxicity, represent an additional beneficial effect of 

geraniol and vitamin C as natural therapeutic agents for the treatment of MetS. 
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FIGURE LEGENDS 

Fig. 1: Schematic representation of treatment protocols 

Two treatment protocols were used, named: A, Protocol of reversion by geraniol 

(Groups: C, FRU, GO, and FRU+GO; n6-8), and B, Protocol of reversion by vitamin 

C (Groups: C, FRU, GO, and FRU+VitC; n6-12). The duration of both protocols was 

35 days in total. The initial 21 days correspond to the installation of Mets, which was 

verified by plasma TAG (triacylclicerol) and inmunoreactive insulin levels, and by the 

intraperitoneal glucose tolerance test (IPGTT). Treatment with geraniol and vitamin C 

was initiated at day 22, while fructose administration was maintained. Animals were 

fasted 12 hours before sample collection. 

 

Fig. 2. Effect of geraniol on glucose homeostasis 

Response curves during the intraperitoneal glucose tolerance (IPGTT) (A) and insulin 

tolerance (ITT) (B) tests. Serum glucose concentrations under IPGTT and ITT 

conditions are shown in mM (mmol/L). Inserts depict quantification of cumulative 

glucose clearance in the IPGTT and the ITT by integration of the area under the curve 

(AUC), in mM/120 min or mM/90 min respectively. 

Data are expressed as means±S.D. of 6 rats per group. 

*, significantly different from C, GO and FRU+GO, P < 0.05.  

 

Fig. 3: Effect of geraniol on Mrp2 down-regulation induced by fructose 

administration 

A, Western blot analysis of Mrp2 in BBM vesicles from proximal jejunum. Equal 

amounts of total protein (20 µg) were loaded in all lanes. Uniformity of loading and 

transfer from gel to nitrocellulose membrane was controlled with Ponceau S and 

detection of β-actin. Densitometry data were related to β-actin and presented as % of 

controls (C). B, Quantitative real-time PCR assessment of ABCC2 mRNA levels in 

proximal jejunum. Results were referred to 18s rRNA and expressed as % of controls 

(C). C, Cumulative content of DNP-SG in the mucosal compartment of everted 

intestinal sacs at 30 min of incubation. Results were expressed as % of controls (C). 

Data are expressed as means±S.D. of 6 to 8 rats per group. 

*, significantly different from C, GO and FRU+GO, P < 0.05.  
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Fig. 4: Effect of geraniol on altered intestinal redox balance and anti-oxidant 

defenses induced by fructose administration 

GSH/GSSG ratio (A), thiobarbituric acid reactive substances (TBARS) (B), superoxide 

dismutase (SOD) activity (C), and catalase (CAT) activity (D) were determined in 

intestinal homogenate of rats from C, FRU, GO and FRU + GO groups. All results were 

expressed as % of controls (C). 

Data are expressed as means±S.D. of 6 to 8 rats per group. 

*, significantly different from C, GO and FRU+GO, P< 0.05. 

&
, significantly different from C, P<0.05. 

 

Fig. 5: Effect of geraniol on increased intestinal proinflammatory cytokine levels 

induced by fructose administration 

Interleukin1β (IL-1β) (A) and interleukin 6 (IL-6) (B) were determined in intestinal 

homogenate of rats from C, FRU, GO and FRU + GO groups. All results were 

expressed as % of controls (C). 

Data are expressed as means±S.D. of 6 to 8 rats per group. 

ω
, significantly different from C and FRU+GO, P< 0.05. 

&
, significantly different from C, P<0.05. 

 

Fig. 6. Effect of vitamin C on glucose homeostasis 

Response curves during the intraperitoneal glucose tolerance (IPGTT) (A) and insulin 

tolerance (ITT) (B) tests. Serum glucose concentrations under IPGTT and ITT 

conditions are shown in mM (mmol/L). Inserts depict quantification of cumulative 

glucose clearance in the IPGTT and the ITT by integration of the area under the curve 

(AUC), in mM/120 min or mM/90 min respectively. 

Data are expressed as means±S.D. of 6 rats per group. 

#
, significantly different from C, VitC and FRU+VitC, P < 0.05. 

 

Fig.7: Effect of vitamin C on Mrp2 down-regulation induced by fructose 

administration 

A, Western blot analysis of Mrp2 in BBM vesicles from proximal jejunum. Equal 

amounts of total protein (20 µg) were loaded in all lanes. Uniformity of loading and 
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transfer from gel to nitrocellulose membrane was controlled with Ponceau S and 

detection of β-actin. Densitometry data were related to β-actin and presented as % of 

controls (C). B, Quantitative real-time PCR assessment of Mrp2 mRNA levels in 

proximal jejunum. Results were referred to 18s rRNA and expressed as % of controls 

(C). C, Cumulative content of DNP-SG in the mucosal compartment of everted 

intestinal sacs after 30 min of incubation. Results were expressed as % of controls (C). 

Data are expressed as means±S.D. of 10 to 12 rats per group. 

#
, significantly different from C, VitC and FRU+VitC, P < 0.05. 

 

Fig. 8: Effect of vitamin C on altered intestinal redox balance and anti-oxidant 

defenses induced by fructose administration 

GSH/GSSG ratio (A), thiobarbituric acid reactive substances (TBARS) (B), superoxide 

dismutase (SOD) activity (C), and catalase (CAT) activity (D) were determined in 

intestinal homogenate of rats from C, FRU, VitC and FRU + VitC groups. All results 

were expressed as % of controls (C). 

Data are expressed as means±S.D. of 10 to 12 rats per group. 

#
, significantly different from C, VitC and FRU+VitC, P< 0.05. 

&
, significantly different from C, P<0.05. 
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TABLES 

Table 1. Serum markers of MetS 

 C FRU GO FRU+GO 

Plasma glucose (mmol/l)  5,71 ± 0,44 6,21 ± 0,50 5,27± 0,72 5,44± 0,11 

Plasma triglycerides(mmol/l) 0,98 ± 0,09 1,40 ± 0,08* 0,72± 0,17 0,94± 0,06 

Plasma insulin (ng/ml) 1,24 ± 0,12 2,58 ± 0,37* 1,16± 0,36 1,21 ± 0,12 

HOMA-IR 5,85 ± 3,82 14,81 ± 6,67* 6,60 ± 1,19 6,78± 0,92 

     

The HOMA-IR was calculated with the formula: serum insulin (µUI/ml)×fasting blood 

glucose (mmol/l)/22.5. An increment in the HOMA–IR index indicates an insulin 

resistance state in FRU rats. 

Data are expressed as means±S.D. of 6 to 8 rats per group. 

*, significantly different from C, GO and FRU+GO, P < 0.05.  

 

Table 2. Serum markers of MetS 

 C FRU VitC FRU+VitC 

Plasma glucose (mmol/l)  5,38 ± 0,77 5,51 ± 0,19 5,15 ± 0,16 5,35 ± 0,09 

Plasma triglycerides(mmol/l) 0,95 ± 0,11 1,34 ± 0,29
#
 0,64 ± 0,04 0,91 ± 0,09 

Plasma insulin (ng/ml) 1,58 ± 0,18 3,10 ± 0,34
#
 1,58 ± 0,12 1,78 ± 0,18 

HOMA-IR 5,46 ± 1,20 9,20 ± 1,78
#
 4,79 ± 0,48 6,30 ± 1,28 

     

The HOMA-IR was calculated with the formula: serum insulin (µUI/ml)×fasting blood 

glucose (mmol/l)/22.5. An increment in the HOMA–IR index indicates an insulin 

resistance state in FRU rats. 

Data are expressed as means±S.D. of 6 to 8 rats per group. 

#
, significantly different from C, VitC and FRU+VitC, P < 0.05. 
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