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ABSTRACT 

Obesity has been implicated in the genesis of metabolic syndromes including insulin 

resistance and Type 2 Diabetes Mellitus (T2DM). Given the association between T2DM 

and the risk of hepatocellular carcinoma (HCC), our specific goal was to determine 

whether the liver of HFD-induced T2DM mice is more sensitive to the carcinogen 

diethylnitrosamine (DEN), due to a modification of the molecular pathways implicated in 

the early stages of HCC pathogenesis. C57BL/6 male mice (five-week-old) were 

divided into 4 groups: C, C+DEN, HFD and HFD+DEN. Mice were euthanized twenty-

five weeks after DEN-injection. Livers of HDF-fed mice showed a higher proliferative 

index than Control groups. In line with this, HFD groups showed an increase of nuclear 

β-catenin, and interestingly, DEN treatment led to a slight increase in the expression of 

this protein in HFD group. Based on these results, and to confirm this effect, we 

analyzed β-catenin target genes, finding that DEN treatment in HFD group led to a 

significant increase of Vegf, c-myc, c-jun and cyclin D1 expression levels. According to 

our results, the expression of TCF4 showed to be significantly increased in HFD+DEN 

vs. HFD. In this regard, the β-catenin/TCF4 complex enhanced its association with 

pSmads 2/3, as we observed an increase of nuclear Smads expression in HFD+DEN, 

suggesting a possible role of TGF-β1/Smads signaling pathway in this phenomenon. 

Our results show that the liver of HFD fed model that resembles early T2DM pathology 

in mice, is more sensitive to DEN, by inducing both Wnt/β-catenin and TGF β1/Smads 

tumorigenic pathways. 
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1. INTRODUCTION 

Obesity is a major cause of insulin resistance and could be aggravated by 

metabolic dysregulation, including hypertension and dyslipidemia (it is collectively 

known as metabolic syndrome) which is a precursor of Type 2 Diabetes mellitus 

(T2DM). T2DM represents a significant global health problem. The incidence of 

disease increases with age, obesity, physical inactivity, unhealthy diet, and ethnicity 

(Hispanics, Africans, and Aboriginals) and the rates are increasing among children [1, 

2]. In the last years, several studies have demonstrated that chronic and low-grade 

inflammation is closely involved in the development of T2DM. Experimental models of 

high-fat diet (HFD) feeding in mice elevates circulatory fatty acids and influences 

glucose and fat metabolism, inducing the genesis of metabolic syndromes including 

insulin resistance and T2DM [3]. 

Extensive epidemiological studies have revealed that the diabetic population is at 

higher risk of developing cancers of the liver, pancreas, endometrium, colon and 

others. Such increased risk may be attributed to diabetes treatment, hormonal 

disorders, chronic inflammation and metabolic alterations underlying the diseases. 

Given the increase in the prevalence of overweight, obesity and T2DM, the incidence 

of metabolic disease-related hepatocellular carcinoma (HCC) is expected to rise, 

further increasing the burden of liver diseases in years to come. In this connection, 

HCC is the most common type of liver cancer and among the leading causes of 

cancer-related death in humans [4, 5]. Rodent models of HCC have been proven useful 

in revealing aspects of its multistep pathogenesis and preclinical testing of anti-HCC 

treatments. Mice have been shown to be particularly useful in this case and a wide 

variety of genetically engineered, xenograft and chemically induced models are 

available for HCC research. Among them, the experimental model that utilizes 

diethylnitrosamine (DEN) for HCC initiation is widely used and is well-characterized. 

This model recapitulates aspects of liver injury, fibrosis and hepatitis, the basis of 

human HCC [6, 7]. For this reason, and because it is comparable to its human 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

counterpart in terms of cancer-associated gene expression patterns and carcinogenic 

pathways, it is considered among the best-fit experimental models of HCC [8]. 

Common molecular mechanisms of HCC pathogenesis involve alterations in 

Wnt/β-catenin pathways. Wnt genes encode a large family of secreted glycoproteins 

that act as extracellular cell signaling molecules. Their binding to the transmembrane 

Frizzled (FZD) receptors activates the Wnt/β-catenin pathway that eventually results in 

cytoplasmic accumulation and nuclear translocation of the β-catenin protein (a well-

known tumor marker) [9]. Even more, intranuclear β-catenin binding to T-cell factor 4 

(TCF4) consequently upregulates the expression of many different cancer-related 

genes, including c-myc, c-jun and cyclin D1 [10], and also, genes involved in the 

regulation of angiogenic factors, such as vascular endothelial growth factor (Vegf) [11]. 

When nuclear β-catenin and TCF4 form an active complex, the activated receptor of 

Smad 2 synergistically enhances the transcriptional activity of Wnt/β-catenin targets 

genes [12–14]. Smad 2 is phosphorylated when TGF-β1 activates its type 1 receptor, 

which in turns phosphorylates Smad 2 and Smad 3 proteins. These activated proteins, 

then associated with Smad 4, translocate to the nucleus where they regulate 

transcription, by associating to nuclear transcription factors and/or by binding directly to 

DNA [15]. Edlund et al. (2005), suggested that the specific effects of β-catenin on 

different promoters are modulated by alterations in the nuclear amounts of the β-

catenin/TCF4 complex, as well as of Smad 2/3 and Smad 4 [16]. 

Wang Y. et al. (2009) demonstrated that the hepatic carcinogenesis induced by a 

non-necrogenic dose of DEN was enhanced in a dietary model of nonalcoholic 

steatohepatitis in Sprague-Dawley rats [17]; however, reports about the molecular 

pathways involved in this phenomena are not available. In this regard, we aimed at 

deepening the study of the involvement of Wnt/-catenin and TGF-1/Smads molecular 

pathways in these processes. In line with this, and to our knowledge, there are very few 

studies that analyze the early alterations in the initiation of hepatocarcinogenesis 

induced by DEN associated to chronic inflammation and to the metabolic alterations 
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underlying diabetes in mice [18, 19]. Thus, our specific goal was to determine whether 

the liver of HFD-induced T2DM mice is more sensitive to DEN-induced alterations in 

Wnt/β-catenin and/or TGF-β1/Smads molecular pathways that are implicated in the 

early stages of HCC pathogenesis. 

 

2. MATERIALS AND METHODS 

 

2.1 Animals and experimental design 

Five-week-old C57BL/6 male mice were provided by the School of Medicine, 

National University of Rosario, and were maintained at the animal facilities of the 

School of Biochemistry of National University of Rosario. Animals received humane 

care according to criteria outlined in the “Guide for the Care and Use of Laboratory 

Animals” (National Research Council, Washington D.C.: National Academy Press, 

1996). All the experimental protocols were performed according to the Regulation for 

the Care and Use of Laboratory Animals (Expedient 6109/012 E.C. Resolution 267/02) 

and approved by the Institutional Committee for Animal Use of the National University 

of Rosario, Argentina. 

Mice were randomly divided into 4 experimental groups (n=5 per group), housed 

in plastic cages, kept on hardwood bedding, in animal facilities with a 12-hour light/dark 

cycle, controlled temperature (23 ± 2 °C) and ventilation. Water and diets were 

provided ad libitum throughout the experiment. Mice of two groups were fed with 

regular chow diet (C) (GEPSA, http://www.gepsa.com) or with a 40% HFD, ad libitum 

for 41 weeks [20]. The C and HFD (HFD-induced T2DM) groups were injected i.p. with 

saline solution DEN-vehicle at week 21, or injected i.p. with a single dose of DEN (75 

mg/kg body weight) leading to C+DEN and HFD+DEN groups [19]. During the whole 

treatment, body weight and food intake were recorded every ten days. Mice were 

euthanized twenty-five weeks after saline solution or DEN injection with a mixture of 

ketamine (100 mg/kg bw) and xylazine (10 mg/ kg bw). After O/N fasting, blood was 
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obtained by cardiac puncture and glucose levels were spectrophotometrically 

determined (Wiener Lab, Rosario, Argentina) in plasma samples. Livers were promptly 

removed, frozen in liquid nitrogen and stored at -70 °C until analytical assays were 

performed. Samples of liver tissue were fixed in 4% buffered formalin for 

immunohistochemistry studies [20]. A scheme of the experimental protocol is shown in 

Figure 1. 

 

2.2 Determination of proliferative index (PI) 

To assess alterations in the proliferation activity among the experimental groups, 

liver slides were examined by immunohistochemical staining with anti-Proliferating Cell 

Nuclear Antigen (PCNA) antibody [21]. The PCNA proliferative index is defined as the 

number of proliferative cells (in G1, S, G2, and M phases) per 100 hepatocytes 

counted in ten high-power fields [19]. 

PCNA, as a naturally occurring cell marker of proliferating cells, offers an 

alternative method for investigating cell proliferation. Molecular studies indicate that the 

synthesis of PCNA is initiated in the nucleus in late G1 phase and continues during the 

S phase. The different staining patterns recognized in this study are believed to reflect 

individual phases of the cell cycle. Cells expressing no staining in the nucleus or 

cytoplasm are expected to be quiescent Go phase cells. Minimal nuclear staining 

would be consistent with G1 phase cells. Deep red nuclear staining is characteristic of 

S phase. G2 cells present speckled nuclear and cytoplasmic staining. In mitosis (M) the 

nucleoplasm and cytoplasm coalesce with the loss of nuclear boundaries. This could 

account for the diffuse speckled cytoplasmic staining specifically observed in all 

actively mitotic cells [22]. 

 

2.3 Immunoblot assay 

Tissue samples were homogenized in 300 mM sucrose with protease inhibitors. 

Cytosolic and nuclear extracts were prepared as described previously [19]. Protein 
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concentration was determined by the Lowry method [23]. Equal amounts of protein 

were resolved by 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

(SDS-PAGE) and electro-blotted (Bio-Rad, Hercules, CA, USA) onto polyvinyl 

difluoride (PVDF) membranes (Perkin Elmer Life Sciences, Inc., Boston, MA). 

Membranes were blocked with PBS-Tween-10% non-fat milk, washed, and incubated 

overnight at 4°C with primary antibodies (Cyclin D1 (H-295): sc-753, Cyclin E1 (E-4): 

sc-25303, TCF-4 (H-125): sc-13027, PCNA (PC10): sc-56, pSmad2/3 (Ser423/425): 

sc-11769, p-b-catenin (BC-22): sc-57535, Santa Cruz Biotechnology (Santa Cruz, CA, 

USA), Smad4 #9515, GAPDH (D4C6R) #97166 Cell Signaling Technology (Boston, 

MA, USA), β-catenin BD: 610154, GSK-3β pY216 BD: 612312, GSK-3β BD: 610201 

BD Biosciences (San Jose, CA, USA). Finally, membranes were incubated with 

peroxidase-conjugated secondary antibodies and bands were detected by enhanced 

chemiluminescence (ECL) detection system (Thermo Fisher Scientific, Rockford, IL). 

The immunoreactive bands were quantified by densitometry using the Image J 

software (imagej.nih.gov). Equal loading and protein transference were checked: 

cytosolic fraction by GAPDH, and nuclear fraction by Ponceau S staining of the 

membranes. According to the literature, several nuclear loading controls are modified 

in diabetes or HCC; then, Ponceau S staining is a reliable loading control in nucleus of 

HFD or DEN-treated liver tissue [24, 25]. 

 

2.4 RNA isolation, cDNA synthesis and real time quantitative polymerase chain 

reaction 

Total liver RNA was isolated by the TriZOL method (Life Technologies, Inc., 

Gaithersburg, MD, USA) according to manufacturer’s instructions. One microgram of 

total liver RNA was treated with DNase I (Thermo Fisher Scientific) and cDNA was 

synthesized using an oligo-dT primer and M-MLV reverse transcriptase (Promega, 

Madison, WI, USA). Polymerase chain reaction (PCR) assay was performed using the 

StepOne™ Real-Time PCR System (Applied Biosystems, U.S.A.) with SYBR Green I 
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(Invitrogen). The PCR conditions were: 10 min at 95 °C, followed by 40 cycles of a two-

step PCR denaturation at 95 C for 15 s and annealing/extension at 60 °C for 60 s. For 

each sample we analyzed β-actin expression to normalize target gene expression. 

Primers were designed using Primer3 software [26], and were then manufactured by 

Invitrogen. The list of genes with their primer sequences is given in Table 1. Relative 

changes in gene expression were determined by the 2-∆∆Ct method [27]. 

Table 1. 
 

Gene Primer sequence 

 
Vegf 

F: 5’- AACGATGAAGCCCTGGAGTG -3’ 

R: 5’- GCTGGCTTTGGTGAGGTTTG -3’ 

 
c-myc 

F: 5’-CCTAGTGCTGCATGAGGAGA-3’ 

R: 5’-TCCACAGACACCACATCAATTT-3’ 

 
c-jun 

F: 5’-CCAGAAGATGGTGTGGTGTTT-3’ 

R: 5’-CTGACCCTCTCCCCTTGC-3’ 

 
Ccnd1 
 

F: 5’-CCGTCCATGCGGAAGATC-3’ 

R: 5’- GAAGACCTCCTCCTCGCACT-3’ 

 
ββββ-actin 

F: 5’-CTTCCTCCCTGGAGAAGAGC-3’ 

R: 5’-AAGGAAGGCTGGAAAAGAGC-3’ 

Gene Identity and sequence of primers used in Real-Time Quantitative Polymerase Chain 
Reaction. F, forward primer; R, reverse primer 

 

2.5 In vitro studies. Isolation and culture of mouse hepatocytes 

In another set of experiments, hepatocytes were isolated from non-fasting male 

mice from the 4 experimental groups by collagenase perfusion [20]. Cells were 

cultivated in 6-wells plates and cultured in DMEM/F12 medium supplemented with 100 

U/ml penicillin, 100 µg/ml streptomycin and 10% FBS for 4 h. Cells were serum-starved 

for 2 h and further stimulated with TGF-β1 (5ng/ml) for 16 h. Tissue culture plates were 

from Falcon (Becton Dickinson Labware, Franklin Lakes, NJ, USA). Tissue culture 

media were from Gibco (InvitrogenTM, Grand Island, NY, USA). 
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2.6 Data analysis 

Data are expressed as means ± SEM. Statistical significance was determined by 

Student's t-test or the one-way analysis of variance followed by Tukey's test. To assess 

a significant relationship between two variables, Pearson’s correlation was calculated. 

Analysis was performed by using the statistical software GraphPad Prism 5. A p<0.05 

was considered statistically significant. 

 

3. RESULTS 

 

3.1 Determination of DEN effect on weight gain curves and blood glucose 

levels 

Heydemann et al. (2016) reviewed evidence that support that high fat diet (HFD)-

induced diabetes with obesity has proved to be the most popular experimental model in 

rodents, being closely correlated to the known pathology of T2DM [28]. In line with this, 

we have worked with a HFD-feeding model that resembles early pathogenesis of 

T2DM in mice. In this regard, our group developed and validated a model of HFD-

induced obesity and insulin resistance in mice that resembles hallmarks of the disease 

assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT) [20]. In 

addition, biochemical assays as glycaemia, plasma insulin, cholesterol and 

triglycerides levels were measured in order to characterize the our model of insulin 

resistance and have been recently published by our group [20]. Aiming at corroborating 

that DEN treatment does not modify the establishment of HFD-induced obesity and 

insulin resistance in our model, we analyzed weight gain curves and blood glucose 

levels. Weight gain curves were performed by periodically determining animals weight 

for 46 weeks (Figure 2A). As we previously described, HFD groups showed an 

increase in body mass when compared to C [20]. Likewise, DEN treatment did not 

modify the effect of HFD on weight gain. Besides, plasma levels of glucose in O/N-
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fasted HFD mice at 46 weeks showed to be higher than those of C group, and DEN 

treatment did not modify the effect of HFD (Figure 2B). 

 

3.2 Analyses of proliferative status 

Figure 3A shows representative images for immunohistochemical detection of 

PCNA- positive cells in liver slices of the 4 experimental groups. As it is depicted in 

Figure 3B, livers showed the quiescent status of normal adult liver [19] while DEN 

treatment led to a significant increase in cell proliferation. When we analyzed the 

differences between HFD+DEN and HFD, we observed an increase in the PI 

associated to DEN treatment (+99 % vs. HFD), whilst between C and C+DEN such 

increase was of 21%. This suggests that there is a higher sensitivity to DEN treatment 

in HFD-fed mice livers. Additionally, we determined the percentages of hepatocytes in 

each phase of the cell cycle (Figure 3C). Significantly higher percentages of cells in G1 

phase were observed in HFD+DEN group when compared to HFD (+54%). In line with 

this, a similar pattern of increase in the number of cells in S phase was found in 

HFD+DEN (+23% vs. HFD), suggesting a higher rate of entrance into the cell cycle. 

Accordingly, HFD+DEN group showed an increase in the percentage of cells in M 

phase. Even there is a significant increase in the percentage of cells in all phases of 

the cell cycle in HFD livers when compared to C that correlates with an increased PI, 

we underline the fact that there is a major sensitivity of HFD-fed mice livers to DEN. 

 

3.3 Expression of cell cycle regulatory proteins 

Cyclin D1 and cyclin E1 nuclear expression are depicted in Figure 4A and B, 

respectively. These proteins are hallmarks of the G1 to S phase progression in the cell 

cycle. We found an increase of cyclin D1 nuclear localization in HFD group when 

compared to C groups. Also, the nuclear localization of cyclin E1 in HFD showed a 

similar pattern. Anyway, we did not find differences between HFD and HFD DEN-

treated group. These results suggest that HFD-fed condition is sufficient to promote 
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nuclear accumulation of two important cyclins that regulate the cell cycle. 

 

3.4 Evaluation Wnt/ββββ-catenin pathway 

Nuclear localization of β-catenin is a key feature of Wnt/β-catenin signaling 

dysregulation, and it is a well-known tumor marker [29]; for this reason we analyzed the 

expression of β-catenin in nuclear extracts. As shown in Figure 5A, levels of nuclear β-

catenin are significantly increased in HFD groups, highlighting the role of HFD in 

promoting β-catenin nuclear accumulation. On the other hand, we found a slight 

increase in the nuclear localization of this protein induced by DEN-treatment in HFD 

group. 

Additionally, we determined total expression of β-catenin in liver extracts, finding 

a significant increase only in HFD+DEN group (Figure 5B). These results allowed us to 

hypothesize that in the HFD group there could be an increase in β-catenin 

phosphorylation, since its phosphorylation in Ser37, Thr41 and Ser33 turns this protein 

recognizable for ubiquitination and subsequent microsomal degradation [30]. As shown 

in Figure 5C, we observed that phosphorylated β-catenin levels are significantly higher 

in HFD+DEN when compared to HFD. 

Based on these results, we wanted to determine if there could be an alteration in 

the expression of the enzyme involved in the phosphorylation of β-catenin in HFD, so 

we evaluated the cytosolic expression of total glycogen synthase kinase 3β (total GSK-

3β) and the inactive form GSK-3β pY216, in the 4 experimental groups. Figure 5D 

shows a significantly increase of total GSK-3β levels in both HFD groups. According to 

these results, we observed a diminution of GSK-3β pY2016 in HFD and HFD+DEN 

(Figure 5E). Given all the results obtained so far, we suggest that phosphorylated β-

catenin is degraded in HFD groups, thus explaining the lack of increase observed in 

cytosol. Besides, in HFD+DEN the accumulation of phosphorylated β-catenin in 

cytosol, could be due, at least in part, to an alteration in the degradation process [31, 
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32].  

Based on the slight increase of nuclear β-catenin localization observed in 

HFD+DEN when compared to HFD, we set out to analyze several β-catenin target 

genes in these groups in order to confirm a likely functional effect. We analyzed the 

main target genes of β-catenin: Vegf, c-myc, c-jun and cyclin D1 by quantitative PCR 

[10, 11]. As shown in Figure 6A we found a significant increase in mRNA of each of the 

genes analyzed in the HFD+DEN group compared to HFD, suggesting that the slight 

increase observed in β-catenin nuclear accumulation is enough to induce an enhanced 

response of the target genes in DEN-treated HFD mice. Taking into account these 

data, and knowing that transcription of target genes is activated when non-

phosphorylated active β-catenin is translocate into the nucleus to form a complex with 

T-cell factor 4 (TCF4) [33], we evaluated the expression of TCF4 in nuclear fraction. 

Indeed, we found that after HFD feeding, there exists a positive correlation between β-

catenin and TCF4 nuclear expression (Pearson r=0.9764, p=0.0236). Moreover, and it 

is depicted in Figure 6B, there is a significant increase in the nuclear levels of TCF4 in 

HFD+DEN vs. HFD groups, in agreement with the increase observed in the levels of 

the evaluated target genes. These results demonstrate that HFD induced a greater 

sensitivity to the treatment with the carcinogen DEN, as can be seen by the higher 

increase in TCF4 expression found in HFD+DEN group. 

 

3.5 Evaluation TGF-ββββ1/Smads pathway 

Several studies have demonstrated a functional interaction between the 

canonical Wnt/β-catenin and TGF-β1 signaling pathways [34]. In order to assess 

whether the increase observed in nuclear β-catenin protein level affects the contents of 

Smads proteins, we evaluated TGF-β1/Smads signaling in our model. The hallmark of 

TGF-β1 signaling activation is the increment of phosphorylated Smad 2/3 and their 

association with Smad 4 [15]. The amounts of phosphorylated Smad 2/3, were 
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significantly higher in nuclear extracts of HFD groups, and showed a positive 

correlation with β-catenin nuclear expression (Pearson r=0.9808, p=0.0192). It should 

be noted that the increase is significantly greater in HFD+DEN, evidencing an additive 

effect of DEN to the HFD condition (Figure 7A). As can be seen in Figure 7B, levels of 

Smad 4 only showed a tendency to increase in the HFD group, whereas it increased 

significantly in HFD+DEN when compared to control groups. These data indicate that 

Smad 2/3 and Smad 4 levels are increased in HFD and HFD+DEN groups, in 

accordance with the observed rise of both β-catenin and TCF-4 in nuclear fraction, 

suggesting a potential synergism between these two signaling pathways in our model. 

 

3.6 In vitro studies: incubation with TGF-ββββ1 cytokine 

Taking into account the precedent data, we performed a new set of experiments 

in which isolated and cultured hepatocytes from non-fasting mice of the 4 experimental 

groups were stimulated with TGF-β1. 

As shown in Figure 8A, TGF-β1 induced a significant increase of pSmad2/3 

levels in hepatocytes from both HFD (+29%) and HFD+DEN (+39%) when compared 

to its corresponding controls. In addition, we analyzed the expression of nuclear β-

catenin, and we observed that treatment with TGF-β1 led to higher levels of β-catenin 

in hepatocytes isolated from HFD groups, and that this increase was greater in 

HFD+DEN group (Figure 8B). These results could explain our observations in the in 

vivo studies, suggesting that pSmad 2/3 and β-catenin pathways modification could be 

driven by TGF-β1. In accordance with other studies [14, 35], we observed an 

interaction between the β-catenin and TGF-β1 pathways. 

 

4. DISCUSSION 
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Obesity, insulin resistance and its associated complications such as metabolic 

syndrome, dyslipidemia, hypertension and T2DM, are increasing dramatically and have 

become an important global health issue. T2DM results in a status of relative insulin 

deficiency leading to hyperglycemia, and presents a skeletal muscle defect in insulin 

action and accounts for the overhelming majority of cases of insulin resistance reported 

for the human condition [36]. Diabetes-related factors including steatosis, nonalcoholic 

fatty liver disease (NAFLD), and cirrhosis, may also enhance susceptibility to liver 

cancer (HCC) [37]. Moreover, there is now clear evidence that T2DM and HCC are 

closely linked, owing to their association with obesity, impaired insulin sensitivity and 

NAFLD [38] . Very few studies address the early alterations in the initiation of 

hepatocarcinogenesis with the background of diseases such as metabolic syndrome 

and T2DM. In the present study we used mice with a C57BL/6 genetic background that 

are reported to be more susceptible to obesity and diabetes when subjected to a HFD 

[39, 40]. This model has been exhaustively analyzed, and the authors suggested that a 

straightforward HFD may be the optimal diet to model early T2DM hallmarks in mice. 

Likewise, among the variety of basic approaches used to uncover the pathogenesis of 

complications in T2DM, high fat diet (HFD)-induced diabetes with obesity has proved to 

be the most popular experimental model in rodents, being closely correlated to the 

known pathology of T2DM [28, 41–43]. In this sense we have work with a HFD fed 

mice that it is a model early T2DM.  

HFD-treated mice showed an increase in body mass and higher levels of plasma 

glucose, when compared to Control. On the other hand, we used the genotoxic agent 

DEN to induce HCC. As we were interested in analyzing the very early events of the 

initiation of HCC, we performed a single injection of DEN and carried out our studies 25 

weeks later [18, 19]. Treatment with DEN did not modify the effect of HFD on the 

studied markers of the experimental model. 

The relationship between factors involved in cell cycle regulation and cancer has 

been extensively reported. In this regard, Masaki et al. (2000), described the roles of 
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cell cycle-related proteins in spontaneous HCC in Long-Evans Cinnamon rats, and 

suggested that cyclin D1 and cyclin E1 are involved in the transition from normal liver 

to HCC [44]. The cyclin D1 proto-oncogene is an important regulator of G1 to S-phase 

transition in numerous cell types from diverse tissues. During cell cycle progression, 

protein levels of cyclin D1 begin to rise early in G1, prior to its rapid nuclear export and 

degradation within the cytoplasm. Interestingly, the nuclear export and/or degradation 

of cyclin D1 is required for S-phase progression as failure to remove the cyclin results 

in G1 arrest [45]. Therefore, this protein is considered the “rate-limiting” step in 

hepatocyte proliferation, suggesting that administration of DEN leads to up-regulation 

of the cell cycle and the expression level of cyclin D1, the inhibition of apoptosis and 

consequently, it may lead to HCC [18]. In this study, we observed that HFD represents 

a risk factor that increase the sensitivity to DEN-induced hepatic cell cycle alteration 

indicated by an increased PI, which is essential, in the early stages, for malignant 

transformation. On the other hand, our results demonstrate that in livers of HFD mice 

there are higher nuclear levels of proteins involved in cell cycle regulation as cyclin D1 

and cyclin E1. The strong effect of HFD-induced T2DM in the promotion of both cyclins 

activation could explain the lack of an increase after DEN treatment. 

Recent evidence suggests that deregulation of the Wnt/β-catenin signaling 

pathway contributes to HCC development and growth. Moreover, β-catenin is a central 

player in Wnt signaling pathway and plays a key role in the genesis and development 

of tumors. When β-catenin is phosphorylated by GSK-3β, which is in turn activated by 

dephosphorylation of GSK-3β pY216, and ubiquitin-dependent degradation is inhibited, 

β-catenin concentrates in the cytoplasm and it forms a complex with the transcription 

factor TCF, which is subsequently transported into cell nuclei. This transcription 

complex activates the expression of downstream target genes, resulting in abnormal 

cell proliferation and cell carcinogenesis [46, 47]. We analyzed the expression of both 

GSK-3β and GSK-3β pY216, and we observed a similar over-expression of GSK-3β in 
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HFD and HFD+DEN groups. Besides, we observed a decrease of GSK-3β pY216  in 

both HFD groups. Then, we assessed the expression of phosphorylated β-catenin in 

cytosol fraction, and we found higher levels in HFD+DEN group. As phosphorylated β-

catenin undergoes ubiquitination and degradation, its increase in cytoplasm in 

HFD+DEN group could be due to a functional inactivation of the destruction complex 

as it was described in other experimental models [32]. Further analyses would be 

necessary to confirm this presumption. 

It is known that Wnt/β-catenin signal cascade is an important player in liver 

development and growth when β-catenin accumulates and translocate to the nucleus to 

activate target genes. In this connection, we assessed whether β-catenin pathway is 

involved in the sensitization of the liver of HFD-treated mice to DEN in the early stages 

of HCC development. In this regard, we observed a significant increase of nuclear β-

catenin in HFD groups and, interestingly, a slight increase in HFD+DEN, when 

compared to HFD. Aberrant activation of Wnt/β-catenin pathway gives rise to the 

accumulation of β-catenin in the nucleus and promotes the transcription of many 

oncogenes [30] . In this sense, an increase of nuclear β-catenin expression in HFD 

reveals a sensitization of the liver derived from the dietary model that would predispose 

it to the development of HCC. Interestingly, we found that nuclear β-catenin expression 

was slightly higher in HDF-DEN group. In the nucleus, β-catenin forms a complex with 

a member of the TCF/LEF family of DNA binding proteins, TCF4, an effector of the Wnt 

pathway that promote the transcription of target genes such as jun, c-myc and cyclinD-

1 most of which encode oncoproteins [29]. Herein, the expression of nuclear TCF4 was 

found increased after HFD feeding and showed a positive correlation with β-catenin 

nuclear expression. Moreover, the increment found was greater in HFD+DEN group. 

Based on these results, we analyzed β-catenin target genes Vegf, c-myc, c-jun and 

cyclinD1 in the HFD and HFD+DEN groups, observing a significant increase of the 

expression levels of all these genes in HFD+DEN, when compared to HFD. Ours 
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results demonstrate that HFD+DEN increased TCF4/β-catenin complex capability and 

transcriptional activity, associated with an upregulation of the endogenous TCF4/β-

catenin target genes, suggesting an enhanced sensitivity of HFD fed mice to DEN 

action. 

It is known that both Wnt/β-catenin and TGF-β1/Smads pathways coordinately 

regulate pattern formation during tumor initiation and progression. Moreover, in 

mesenchymal cells, activation of TGF-β1 signaling synergistically induces the 

transcriptional activity of canonical Wnt/β-catenin signaling to control cell growth. 

Global gene expression analysis of genetically manipulated mice revealed that TGF-

β1/Smad and Wnt/β-catenin signaling pathways are firmly intertwined [48]. 

After recognition of HFD and HFD+DEN impact on Wnt/β-catenin pathway, we 

decided to analyze TGF-β1 pathway. We found a nuclear increase of pSmad2/3 and 

Smad4 that could implicate an enhanced sensitization of the liver of HFD mice, which 

might lead to the development of HCC. 

In addition, it has been observed that plasma TGF-β1 is augmented in 

hypertension and other cardiovascular diseases, indicative of its role in metabolic 

syndrome. Even more, elevated TGF-β1 has been associated with a higher risk for 

T2DM in a prospective case-cohort study [49]. Importantly, circulating TGF-β1 levels 

are significantly elevated in obese humans, ob/ob mice, and HFD-induced obese mice 

[44, 45]. By regulating expression of its target genes, such as PGC-1α and PPAR-γ, 

elevated TGF-β1/Smad 3 signaling is associated with systemic insulin resistance and 

hepatic steatosis [51, 52]. Taking this into account, and based in the data obtained in 

ours in vivo studies, we explored if TGF-β1 was involved in DEN-induced liver 

sensitization in HFD-induced T2DM mice. To achieve this, we performed in vitro 

studies using isolated hepatocyte cultures from the 4 experimental groups that were 

used exclusively for this experimental design, which were incubated in the presence or 

absence of TGF-β1. A potentially relevant observation of our study was that TGF-β1 
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increased not only the level for nuclear pSmad 2/3, but there also was observed a 

significant increase in nuclear β-catenin, thus suggesting a potential synergism 

between these two signaling pathways in our model. Our results of the synergism 

between both tumouric pathways are in agreement with what has been demonstrated 

by other authors in different systems [53, 54]. 

In conclusion, in a HFD fed model that resembles early T2DM pathology in mice, 

our results suggest that in HFD-fed group, liver cells are not quiescent and exhibit 

alterations in some proteins involved in cell cycle progression. Besides, the exposure to 

a carcinogen such as DEN could lead to an enhanced progression of the 

hepatocarcinogenic process after HFD-treatment. In this sense, it becomes highly 

relevant that both tumorigenic pathways Wnt/β-catenin and TGF-β1/Smads are basally 

deregulated in liver of HFD group, prior to the stimulation with DEN. Our results 

support the notion that TGF-β1 would be involved in this liver sensitization by activating 

both tumorigenic pathways. In this regard, our work was focused in the very early 

stages of the initiation of HCC, when no manifestation of neoplasia is observable and 

there are only alterations in some signaling pathways. This makes our work totally 

original, thus enabling new information to shed light to the subject of study. 

Identifying the molecules involved and understanding the processes that underlie 

T2DM-associated hepatocarcinoma will empower the development of new therapies for 

the prevention of the development of this specific type of cancer in diabetic patients. 

Understanding the cellular and molecular mechanisms leading to HCC in HFD-induced 

T2DM, and most importantly those connected to systemic/metabolic influences, has 

therefore become an urgent and imperative issue. Without this knowledge, developing 

efficient preventive, diagnostic and therapeutic counter-measures is bound to fail. 
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FIGURES LEGENDS 

 

Figure 1. Experimental protocol. Five-week-old male mice C57BL/6 were randomly divided 

into 4 experimental groups (n = 5 per group) in two similar rounds. Mice of two groups were fed with 

regular chow diet (C) or with a 40% high-fat diet (HFD), ad libitum for 41 weeks. The C (Chow diet) 

and HFD (HFD-induced T2DM) groups were injected i.p. with saline solution DEN-vehicle at week 

21, or injected i.p. with a single dose of DEN (75 mg/kg body weight) leading to C+DEN and 

HFD+DEN groups. During the whole treatment, body weight and food intake were recorded every 

ten days. Mice were euthanized 25 weeks after saline solution or DEN injection (at 46 weeks of age). 

 

Figure 2. Determination of DEN effect on weight gain curves and blood glucose levels. A) 

Body weight was registered periodically in all groups. B) Glucose plasma levels were measured. 

Data are expressed as percentage of C group and mean ± S.E.M., a representative experiment from 

two similar rounds (n =5). *p < 0.05 vs C, #p < 0.05 vs C+DEN group. 

 

Figure 3. Proliferative status of liver. A) Representative images of proliferating cell nuclear 

antigen (PCNA)-positive cells obtained by optical microscopy (objective: 20x and ocular: 10x). B) 

Proliferative Index (Number of Proliferative Cells in each phase/100 hepatocytes). C) Percentage of 

hepatocytes in each phase of the cell cycle. Data are expressed as mean ± S.E.M., a representative 

experiment from two similar rounds. *p < 0.05 vs C; #p < 0.05 vs C+DEN and †p < 0.05 vs HFD 

group. 

 

Figure 4. Expression of cell cycle regulatory proteins. Markers of cell cycle progression were 

determined by Western blot in nuclear fraction: A) cyclin D1 and B) cyclin E1 expression. Ponceau S 

was probed as loading control in nuclear fraction. Data are expressed as percentage of C group and 

mean ± S.E.M., a representative experiment from two similar rounds. *p < 0.05 vs C; #p < 0.05 vs 

C+DEN group. 
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Figure 5. Expression levels of Wnt/β-catenin pathway. A) Nuclear β-catenin, B) Total β-

catenin, C) p-β-catenin, D) GSK-3β and E) GSK-3β pY216 were analyzed by Western blot. Ponceau 

S was probed as loading control in nuclear fraction and GAPDH was probed as loading control in 

cytosolic fraction. Data are expressed as percentage of C group and mean ± S.E.M., a 

representative experiment from two similar rounds. *p < 0.05 vs C; #p < 0.05 vs C+DEN group and †p 

< 0.05 vs HFD group. 

 

Figure 6. Expression levels of β-catenin target genes mRNA and TCF-4. A) Vegf, c-myc, c-jun 

and cyclin D1 mRNA expression level was measure in liver by RT-qPCR. β-actin was probed as 

loading control and B) TCF-4 protein were evaluated by Western blot in nuclear extracts. Ponceau S 

was probed as loading control in nuclear fraction and. Data are expressed as percentage of C group 

and mean ± S.E.M., a representative experiment from two similar rounds. †p < 0.05 vs HFD group. 

 

Figure 7. Expression levels of Smads pathway. A) p-Smad2/3 and B) Smad4 were analyzed 

by Western blot. Ponceau S was probed as loading control in nuclear fraction. Data are expressed 

as percentage of C group and mean ± S.E.M., a representative experiment from two similar rounds. 

*p < 0.05 vs C; #p < 0.05 vs C+DEN group and †p < 0.05 vs HFD group. 

 

Figure 8. In vitro studies: expression levels of proteins triggered by TGF-β1. A) p-Smad2/3 

and B) β-catenin were analyzed by Western blot. Ponceau S was probed as loading control in 

nuclear fraction. Data are expressed as fold change of 5 ng/ml respect to 0 ng/ml mean ± S.E.M., a 

representative experiment from two similar rounds. *p < 0.05 vs C; #p < 0.05 vs C+DEN and †p < 

0.05 vs HFD group. 
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HIGHLIGHTS 
 

• HFD-induced type 2 diabetes sensitizes mice to DEN-induced HCC. 

• Wnt/βcatenin and TGF-β1/Smads molecular pathways are implicated in early HCC. 

• New insights into molecular mechanisms leading to HCC in T2DM are describe.
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