Reverse ultrasound-assisted emulsification-microextraction of macrolides from chicken fat followed by electrophoretic determination

Anabela S. Lorenzetti, Adriana G. Lista, Claudia E. Domini

INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina

ARTICLE INFO

Keywords:
- Reverse ultrasound-assisted emulsification-microextraction
- Capillary electrophoresis
- Ionic liquids
- Macrolides
- Chicken fat

ABSTRACT

A new microextraction methodology, called reverse ultrasound-assisted emulsification-microextraction (R-USAEME) was developed to extract Tilmicosin (TILM) and Tylosin (TYL) from chicken fat samples, prior to their determination by capillary electrophoresis with UV-detection. The R-USAEME was based on the use of an aqueous ionic liquid ([Bmim]Cl) solution with sodium tartrate and sodium phosphate as extractant, applying an ultrasound probe (91 W; 7.5 min). A good linearity was obtained in a range from 35 to 200 μg kg⁻¹ with relative standard deviations (RSDs) lower than 13% using matrix-matched calibration on five chicken fat samples. The quantification limits (LOQs), ranged from 17.4 to 55.0 μg kg⁻¹ and from 22.1 to 47.0 μg kg⁻¹ for TILM and TYL respectively. The obtained recoveries were between 73 and 117%. The analytical parameters clearly showed the applicability of the method for the extraction and quantification of macrolides in this complex biological sample.

1. Introduction

In the last decades, there has been a significant increase in the use of antibiotics in veterinary with therapeutic and prophylactic purposes or as growth promoters. The improper use of these drugs in different treatments for animals can leave residues in tissues or food products causing allergic reactions in some hypersensitive individuals and bacterial resistance (Lozano & Trujillo, 2012; McEvoy, 2002; J.; Wang, 2008). Macrolides are used against a wide variety of Gram-positive and Gram-negative bacteria (Tao et al., 2012) in the treatment of respiratory diseases, and to prevent microbial infections in cattle, sheep and poultry. Macrolides are lipophilic molecules, consisting of macrocyclic lactone rings with 14–16 carbons linked to carbohydrate molecules.

Two of the most prevalent macrolides used in veterinary are Tylosin (TYL) and Tilmicosin (TILM). TYL is produced by the microorganism Streptomyces fradiae while TILM is a semi-synthetic compound obtained from TYL (Katz & Baltz, 2016). The presence of these analyte residues in food products derived from animals has a significant impact on human health. Therefore, maximum residue limits (MRLs) for macrolides are established for each animal tissue. According to the Commission Regulation (EU), these limits for TYL and TILM in poultry are: 100 μg kg⁻¹ and 75 μg kg⁻¹ for skin and fat, 100 μg kg⁻¹ and 1000 μg kg⁻¹ for liver, respectively (The European Commission, 2010). For the Codex Alimentarius Commission, these MRLs are 100 μg kg⁻¹ (fat and skin) and 100 μg kg⁻¹ (liver) for TYL and for TILM are 250 μg kg⁻¹, 2400 μg kg⁻¹ (FAO & WHO, 2015, p. 41).

Separation techniques, as liquid chromatography (LC) or capillary electrophoresis (CE) with ultraviolet detection, have been used to determine macrolides in different matrices (Blackwell et al., 2004; García-Mayor, Gallego-Picó, Garcinuño, Fernández-Hernando, & Durand-Alegria, 2012). Nowadays, the LC coupled to mass spectrometry in single or tandem mode (LC-MS, LC-MS/MS) is the most common technique used for macrolides determination in samples such as milk, muscle (Jank et al., 2015), honey (Jin et al., 2017), eggs (K. Wang, Lin, Huang, & Chen, 2017), kidney and liver (Rizzetti, de Souza, Prestes, Adame, & Zanella, 2016).

The most difficult step in the analysis of these biological samples is the pretreatment, which involves the extraction/preconcentration of macrolides. Common procedures used for this are liquid-liquid extraction (LLE) (Patyra, Nebot, Gavilán, Cepeda, & Kwiatek, 2018), solid-phase extraction (SPE) (Feng et al., 2016) and dispersive solid-phase extraction (Boscher, Guignard, Pelle, Hoffmann, & Bohn, 2010), among others. However, these procedures are tedious, time-consuming and use a large volume of toxic organic solvents.

In this context, new microextraction methods, like liquid phase microextraction (LPME), have appeared as they are easier, faster and ecofriendlier sample pretreatment procedures. One of the most used...
ones is the dispersive liquid-liquid microextraction (DLLME) presented by Assadi and co-workers (Rezaee et al., 2006). Even though DLLME is a low-cost simple method which generally uses small amounts of organic solvents as extractant and/or dispersant, these solvents are still highly toxic. In order to solve this problem, the use of environmentally friendly extraction solvents, such as ionic liquids (ILs) and the replacement of the dispersive solvents by ultrasound energy, vortex, temperature, among others, are a good solution (Barfi, Rajabi, & Asghari, 2015).

ILs are organic salts consisting of a combination of organic or inorganic anions and organic cations. The ILs have many characteristic properties such as a wide liquid range, low volatility, good thermal stability and low toxicity (Pavlović, Babić, Horvat, & Kaštelan-Macan, 2007), making possible their use as extraction solvent for a wide array of analytes.

On the other hand, the use of ultrasound energy instead of dispersion solvents improves the performance of DLLME; being this energy an excellent tool to generate fine emulsions from two immiscible liquids with an increased analyte transfer between the two phases. This procedure is called ultrasound-assisted emulsification microextraction (USAEME) (Regueiro, Llopíart, Garcia-Jares, Garcia-Monteagudo, & Cela, 2008). In the last ten years, the reverse phase extraction mode, which uses an aqueous solution as extractant, has emerged as an attractive alternative to the traditional extraction processes, mainly to avoid the use of organic solvents (Fernández, Vidal, & Canals, 2018; Hashemi, Raesi, Ghasvand, & Rahimi, 2010).

In this work, a new methodology based on reverse phase microextraction mode assisted by ultrasound energy was developed to determine TYL and TILM in chicken fat samples. Detection was performed by capillary electrophoresis system equipped with a diode array detector. In the ME method, a small volume of IL, used as extractant, and a hydrophobic sample were employed, giving way to a water-in-oil (W/O) emulsion. The new procedure was named ultrasound-assisted emulsification-microextraction (R-USAEME). The extraction process was improved by adding salts (sodium tartrate and sodium phosphate) to an IL aqueous solution and using the ultrasound probe to accelerate the emulsion formation.

It is important to point out that, to the best of our knowledge, this is the first time that an extraction methodology has been developed to extract TYL and TILM from chicken fat samples.

2. Material and methods

2.1. Reagents and solutions

All reagents were used from analytical grade. TILM and TYL standards were acquired from Sigma–Aldrich (Buenos Aires, Argentina). Individual standard solutions (1000 mg L$^{-1}$) were prepared in methanol (Merck, Buenos Aires, Argentina) and kept in the dark at -18 °C maintaining their stability for at least one month. The standard working solutions were daily prepared by appropriate dilutions of stock solutions with methanol.

Both ILs, 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF$_4$) and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), as well as sodium monobasic phosphate, sodium tartrate and sodium hydroxide were purchased from Merck (Darmstadt, Germany).

The electrophoretic buffer solution was daily prepared dissolving the appropriate amount of sodium dibasic phosphate and phosphoric acid in ultrapure water (18 mΩ) provided by Milli-Q system (Millipore, Bedford, USA).

2.2. Instrumentation

Ultrasound-assisted extractions were carried out using a Sonics Vibra cell, VCX130 with a titanium probe tip (9.5 mm diameter, 130 W nominal power, 20 kHz frequency). A Rotofuge centrifuge was employed to separate the emulsified samples.

A Beckman Coulter CE instrument MDQ equipped with a diode array detector was used. The capillaries were also from Beckman Coulter. Control and data processing were carried out using a 32 Karat software.

2.3. Samples

With the aim of assessing the applicability of the proposed method, five chicken fat samples from different origins were analyzed. The first and second (A and B) were purchased in retail markets and the third (C) in a supermarket. In order to ensure the absence of antibiotics, the last two samples (D and E) came from ecologic farms of the zone of Bahía Blanca city, Buenos Aires province. All samples were from Argentina and they were acquired during 2017.

2.4. Sample preparation and microextraction procedure

The solid chicken fat was heated at 75 ± 1 °C on a hot plate. The liquid fat was filtered under vacuum through a 22 μm paper filter (Fig. 1 a). 5 g of the filtered sample were introduced in a centrifuge tube and 500 μL of extraction solvent ([Bmim]Cl, sodium tartrate and sodium phosphate) were added. The ultrasound probe was immersed in the tube containing the mixture and then it was placed in an ice bath. The microextractions were performed at 91 W for 7.5 min applying ultrasonic cycles of 40 s (on)/20 s (off). As a result, water-in-oil (W/O) emulsion was formed (Fig. 1 b). Then, by centrifugation at 2500 rpm for 5 min, the emulsion was disrupted and the aqueous phase was sedimented at the bottom of the conical tube (Fig. 1 c). After the oil phase was discarded, the aqueous phase was cleaned through a nylon syringe filter (Gamafilt, Buenos Aires, Argentina) and collected in a CE vial for the subsequent detection step. All analytical process is illustrated in Fig. 2.

2.5. CE analysis

The separation was carried out in a fused-silica capillary (62 cm effective length, 50 μm id) with a separation voltage of 22.5 kV at 25 °C. All solutions were filtered through a 0.22 μm filter (Gamafilt, Buenos Aires, Argentina) before being introduced into the electrophoretic system. Then, a mixture of 50 mmol L$^{-1}$ sodium dibasic phosphate and phosphoric acid at pH 4.50 was used as background electrolyte. The
solubility in the oily phase, high extractant is one of the most important parameters. Factors such as: low temperature and applied to real chicken samples in order to demonstrate complete because the contact between both immiscible liquids was not accomplished. In other extraction procedures of macrolides from biological samples, solvents such as methanol, methanol/water, McIlvaine buffer solution, and acetonitrile/water were successfully used (Carmona, Andreu, & Picó, 2017; Jank et al., 2015; Jin et al., 2017). Preliminary tests were performed to assess the above mentioned solvents without achieving good results.

Due to the fact that ILs have a high ability to extract lipophilic molecules (Flieger, Czajkowska-zelazko, Rzadkowska, Szaco, & Matosiuk, 2012), [Bmim]BF4 and [Bmim]Cl were tested. Since the obtained recoveries (between 49.2 and 74.8%) were not satisfactory, an extraction process using both ILs assisted by an ultrasound probe was carried out. However, low recovery values were obtained again.

According to the literature, TYL and TILM increase their water solubility in salt form and, being tartrates and phosphates their most soluble ones (Chen et al., 2014; Hamscher, Limsuwan, Tansakul, & Kietzmann, 2006), the addition of sodium tartrate and sodium phosphate to both IL solutions was tested. The recovery values showed notorious improvement, especially when [Bmim]Cl was used.

An IL aqueous solution with sodium tartrate and sodium phosphate assisted with ultrasound energy, was finally selected as the most appropriate extraction method. This can be explained because a new interphase is created when the cation of the IL undergo adsorption on the hydrophobic surface as a lipophilic specie (Flieger et al., 2012). Besides, the major solubility of TYL and TILM salts favors their extraction from fat samples, and as [Bmim]Cl is less chaotropic (water-destructuring/more hydrated) (Wu, Zhang, & Wang, 2008) than BFa−4, its contact with the oily phase enhances the extraction process.

The IL and both salt concentrations were optimized and the studied ranges and their optimal values are shown in Table 1. Also, the effect of the extraction solvent volume on macrolide recoveries was evaluated. For that, different volumes of the mixture of IL and salts were tested. The results showed that by increasing the volume better recoveries were obtained, however, higher volumes than 500 μL produced a dilution effect (see Table 1).

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Studied range</th>
<th>Optimum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionic liquid [mmol L⁻¹]</td>
<td>0–10</td>
<td>2.5</td>
</tr>
<tr>
<td>Salts [mmol L⁻¹]</td>
<td>0–0.05</td>
<td>0.06625</td>
</tr>
<tr>
<td>Extractant volume [μL]</td>
<td>200–600</td>
<td>500</td>
</tr>
<tr>
<td>Cycles [s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· on</td>
<td>20–60</td>
<td>40</td>
</tr>
<tr>
<td>· off</td>
<td>5–40</td>
<td>20</td>
</tr>
<tr>
<td>Time (on + off) [min]</td>
<td>1–10</td>
<td>7.5</td>
</tr>
<tr>
<td>Power [W]</td>
<td>52–117</td>
<td>91</td>
</tr>
</tbody>
</table>

3. Results and discussion

3.1. Optimization of R-USAEME variables

The variables of the R-USAEME procedure were optimized taking into account the CE separation and using a univariate method. This study was carried out at 290 nm with spiked samples at MRL for TILM (75 μg kg⁻¹) and TYL (100 μg kg⁻¹) allowing for a fast, simple and environmentally friendly methodology. The fortification was performed adding the suitable amount of each analyte to the filtered sample. This mixture was then homogenized for 1 min using a vortex, kept at room temperature and applied to real chicken samples in order to demonstrate the applicability of the new method.

3.1.1. Extraction solvent

In order to develop an efficient extraction, the selection of the extractant is one of the most important parameters. Factors such as: low solubility in the oily phase, high affinity for the target analytes, easy dispersion in oil during sonication process and, in this case, compatibility with CE were considered.

In other extraction procedures of macrolides from biological samples, methanol, methanol/water, McIlvaine buffer solution, and acetonitrile/water were successfully used (Carmona, Andreu, & Picó, 2017; Jank et al., 2015; Jin et al., 2017). Preliminary tests were performed to assess the above mentioned solvents without achieving good results.

Due to the fact that ILs have a high ability to extract lipophilic molecules (Flieger, Czajkowska-zelazko, Rzadkowska, Szaco, & Matosiuk, 2012), [Bmim]BF4 and [Bmim]Cl were tested. Since the obtained recoveries (between 49.2 and 74.8%) were not satisfactory, an extraction process using both ILs assisted by an ultrasound probe was carried out. However, low recovery values were obtained again.

According to the literature, TYL and TILM increase their water solubility in salt form and, being tartrates and phosphates their most soluble ones (Chen et al., 2014; Hamscher, Limsuwan, Tansakul, & Kietzmann, 2006), the addition of sodium tartrate and sodium phosphate to both IL solutions was tested. The recovery values showed notorious improvement, especially when [Bmim]Cl was used.

An IL aqueous solution with sodium tartrate and sodium phosphate assisted with ultrasound energy, was finally selected as the most appropriate extraction method. This can be explained because a new interphase is created when the cation of the IL undergo adsorption on the hydrophobic surface as a lipophilic specie (Flieger et al., 2012). Besides, the major solubility of TYL and TILM salts favors their extraction from fat samples, and as [Bmim]Cl is less chaotropic (water-destructuring/more hydrated) (Wu, Zhang, & Wang, 2008) than BFa−4, its contact with the oily phase enhances the extraction process.

The IL and both salt concentrations were optimized and the studied ranges and their optimal values are shown in Table 1. Also, the effect of the extraction solvent volume on macrolide recoveries was evaluated. For that, different volumes of the mixture of IL and salts were tested. The results showed that by increasing the volume better recoveries were obtained, however, higher volumes than 500 μL produced a dilution effect (see Table 1).

3.1.2. Ultrasound

On the other hand, the ultrasonic probe variables were also tested. It was observed that working at high power and/or continuous sonication, the temperature in the sample exceeded the allowed one by the ultrasound manufacturer, causing an interruption in the sonication process. Therefore, different ultrasonic cycles were evaluated, taking into account that an ultrasonic cycle is determined as the sonication time (on) and the intermittent time (off). Because the temperature was still high, an ice bath was used to keep the temperature constant. By working with low power and/or short time, the emulsification was incomplete because the contact between both immiscible liquids was not reached. This can be due to the fact that oil viscosity hinders the process of dispersion (López-García, Vicente-Martínez, & Hernández-Córdoba, 2014). In conclusion, to obtain the best emulsion formation, the studied...
Table 2 Results of analyzed fat samples by the proposed R-USAEME method, using capillary electrophoresis with UV detection. Recovery and RSD (%) of TILM and TYL spiked at three concentration levels (0.5 MRL, MRL and 1.5 MRL).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Liner range (μg/kg)</th>
<th>Recovery (%)</th>
<th>RSD (%)</th>
<th>Liner range (μg/kg)</th>
<th>Recovery (%)</th>
<th>RSD (%)</th>
<th>Liner range (μg/kg)</th>
<th>Recovery (%)</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>35-200</td>
<td>107.0</td>
<td>6.2</td>
<td>0.5 MRL</td>
<td>73.0</td>
<td>11.1</td>
<td>87.0</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>93.4</td>
<td>117.0</td>
<td>0.5</td>
<td>1.5 MRL</td>
<td>94.5</td>
<td>4.1</td>
<td>101.3</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>80.3</td>
<td>117.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>88.6</td>
<td>117.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*average of three replicates.

a TILM MRL: 75 μg/kg
b TYL MRL: 100 μg/kg

table calculated value for TILM in sample C was 12,454 which was much greater than the calculated (0.025; 6) value (2.44). Therefore, the quantification of the analytes was performed by using matrix-matched standard solutions.

In addition, the homoscedasticity was tested for the matrix-matched calibration curves applying the Hartley test (Andrade et al., 2019; Mann, 1998).
Table 3
Previously described analytical methods for antibiotic extraction from food-producing animals from 1998 to 2018.

<table>
<thead>
<tr>
<th>Sample (amount) – Analytes Detection</th>
<th>Extraction methodology</th>
<th>Extraction solvent Volume of extraction solvent</th>
<th>Recovery</th>
<th>Analytical parameters</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig muscle (3 g) Macrolides</td>
<td>- Solvent extraction (shaking) - 0.1 M EDTA - 70% methanol - 200 μL</td>
<td>Macroldes - Pig muscle: 80–86% - Other muscles: 77–104% - Kidney: 44–68%</td>
<td>Pig muscle LOD 3 μg kg⁻¹</td>
<td>The worst results were obtained for the macrolides which had S/N > 8 at MRL.</td>
<td>Granelli and Branzell (2007)</td>
</tr>
<tr>
<td>Liver and kidney (5.00 ± 0.02 g) Erythromycin, TYL, spiramycin, roxithromycin, TLM and josamycin</td>
<td>- Homogenizing the tissue with extracant solvent and extracted with an Oasis HLB cartridge</td>
<td>TILM, TMY, 1005 μg kg⁻¹</td>
<td>TILM: 1005 μg kg⁻¹</td>
<td></td>
<td>Berrada, Borrull, Font, Moltó, and Marcé (2007)</td>
</tr>
<tr>
<td>Meat (2.50 ± 0.01 g) β-agonists, sulfonamides, quinolones, macrolides, tetracyclines, β-lactams, nitroimidazoles, glucocorticoids, sex hormones, chlomycetins, sedatives, and olaquindox metabolite</td>
<td>- Vortex - Sonication - Waters Oasis PRIME HLB cartridge</td>
<td>Mean recoveries for all analytes ranged from 80 to 116%</td>
<td>LOQ were in the range 0.05–3.0 μg kg⁻¹ and limits of detection were in the range 0.1–10 μg kg⁻¹</td>
<td></td>
<td>Zhang, Li, et al., 2018b</td>
</tr>
<tr>
<td>Chicken muscle (2 g) Fluoroquinolones, sulfonamides, and macrolides (TLM, TYL)</td>
<td>- Vortex</td>
<td>TILM 71–101%</td>
<td>TILM: 71–101%</td>
<td></td>
<td>Zhang, Li, et al., 2018a</td>
</tr>
<tr>
<td>Deep-fried chicken and non-fried (5.0 g) 4 antifolics, 4 benzimidazoles, 5 macrolides, 7 polyethers, 2 quinolones, 7 sulfonamides, and 8 other classes</td>
<td>- InertSep K-solute cartridge</td>
<td>TILM LOQ</td>
<td>- deep-fried chicken: 1 μg kg⁻¹</td>
<td></td>
<td>Yoshikawa et al. (2017)</td>
</tr>
<tr>
<td>Chicken Eggs (2.0 g) Sulfonamides, quinolones, tetracyclines, macrolides, linosamide, nitrofurans, β-lactams, nitromidazoles, and cloramphenicols</td>
<td>- Homogenized by a high-speed dispersion rotor, ultrasonically oscillated, and centrifuged. - ACN – H₂O (90:10, v/v) - 0.1 mol L⁻¹ Na₂EDTA - 7.5 mL</td>
<td>Spiking level 5 μg kg⁻¹</td>
<td>TILM 107.3%</td>
<td></td>
<td>K. Wang et al., 2017</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Sample (amount)</th>
<th>Extraction methodology</th>
<th>Extraction solvent</th>
<th>Volume of extraction solvent</th>
<th>Recovery</th>
<th>Analytical parameters</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swine, cattle and chicken muscles samples</td>
<td>Molecularly imprinted solid-phase extraction</td>
<td>- Sodium borate buffer</td>
<td>- Ethyl acetate</td>
<td>- 1% of acetic acid in a solution of acetonitrile:water (80:20,v/v).</td>
<td>TYL: 9 ng g(^{-1})</td>
<td>LOD: 1 μg g(^{-1}); LOQ: 0.6 μg g(^{-1}); MRL: 10 μg g(^{-1}), respectively, except for TYL that showed a LOD and LOQ of 9.0 and 30.0 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
<tr>
<td>Chicken muscle tissue (2.0 g)</td>
<td>QuEChERS methodology</td>
<td>- 0.3% metaphosphoric acid-methanol (7:3, v/v)</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>TYL: 28 ng g(^{-1}); TILM: 8 ng g(^{-1})</td>
<td>LOD: 1 μg g(^{-1}); LOQ: 0.6 μg g(^{-1}); MRL: 10 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
<tr>
<td>Poultry meat (2 g)</td>
<td>Pressurized liquid extraction-Methanol</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>TYL: 25 μg g(^{-1}); TILM: 10 μg g(^{-1})</td>
<td>LOD: 0.6 μg g(^{-1}); LOQ: 0.2 μg g(^{-1}); MRL: 20 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
<tr>
<td>Poultry muscle (2.5 g)</td>
<td>Pressurized liquid extraction-Methanol</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>TYL: 25 μg g(^{-1}); TILM: 10 μg g(^{-1})</td>
<td>LOD: 0.6 μg g(^{-1}); LOQ: 0.2 μg g(^{-1}); MRL: 20 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
<tr>
<td>Food producing animals (2.5 g)</td>
<td>Pressurized liquid extraction-Methanol</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>TYL: 25 μg g(^{-1}); TILM: 10 μg g(^{-1})</td>
<td>LOD: 0.6 μg g(^{-1}); LOQ: 0.2 μg g(^{-1}); MRL: 20 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
<tr>
<td>Poultry meat and fish (5 g)</td>
<td>Spiking level: 50 μg g(^{-1})</td>
<td>- Ethyl acetate and triphenylmethane dyes solution ofacetonitrile:water (80:20,v/v).</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>TYL: 28 ng g(^{-1}); TILM: 8 ng g(^{-1})</td>
<td>LOD: 1 μg g(^{-1}); LOQ: 0.6 μg g(^{-1}); MRL: 10 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
<tr>
<td>Poultry meat (2 g)</td>
<td>QuEChERS methodology</td>
<td>- 0.3% metaphosphoric acid-methanol (7:3, v/v)</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>TYL: 28 ng g(^{-1}); TILM: 8 ng g(^{-1})</td>
<td>LOD: 1 μg g(^{-1}); LOQ: 0.6 μg g(^{-1}); MRL: 10 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
<tr>
<td>Poultry meat and fish (5 g)</td>
<td>Spiking level: 50 μg g(^{-1})</td>
<td>- Ethyl acetate and triphenylmethane dyes solution ofacetonitrile:water (80:20,v/v).</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>TYL: 28 ng g(^{-1}); TILM: 8 ng g(^{-1})</td>
<td>LOD: 1 μg g(^{-1}); LOQ: 0.6 μg g(^{-1}); MRL: 10 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
<tr>
<td>Poultry meat (2 g)</td>
<td>QuEChERS methodology</td>
<td>- 0.3% metaphosphoric acid-methanol (7:3, v/v)</td>
<td>- Methanol</td>
<td>- Methanol</td>
<td>TYL: 28 ng g(^{-1}); TILM: 8 ng g(^{-1})</td>
<td>LOD: 1 μg g(^{-1}); LOQ: 0.6 μg g(^{-1}); MRL: 10 μg g(^{-1}), respectively, except for TYL.</td>
</tr>
</tbody>
</table>

Table 3 (continued)
<table>
<thead>
<tr>
<th>Sample (amount) – Analytes Detection technique</th>
<th>Extraction method</th>
<th>Extraction solvent</th>
<th>Volume of extraction solvent</th>
<th>Recovery</th>
<th>Analytical parameters</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>josamycin erythromycin and okeandomycin. LC-UV</td>
<td>Homogenization with ultrasonic probe and C18 cartridge for clean up</td>
<td>MeOH</td>
<td>20 ± 1 mL</td>
<td>Abdominal fat, TILM</td>
<td>0.05 μg/g: 80%</td>
<td>Granados, and Prat (2001)</td>
</tr>
<tr>
<td>Chicken, Cattle, Swine, and Sheep Tissues (4.50–5.50 g) TILM LC-UV</td>
<td>- Liquid-liquid extraction and cleaned on Bond Elut C18 cartridges</td>
<td>ACN</td>
<td>10 mL</td>
<td>TILM</td>
<td>1/2 MRL: 61.5%</td>
<td>Stobba-Wiley et al. (2000)</td>
</tr>
<tr>
<td>Pork Muscle (5 g) TILM, TYL, spiramycin, and neospiramycin, LC-UV</td>
<td>- Liq-liq extraction and clean up on a Bond Elut SCX cartridge</td>
<td>0.3% metaphosphoric acid-methanol (7:3, v/v)</td>
<td>100 mL</td>
<td>TYL</td>
<td>1/2 MRL: 55.0%</td>
<td>Juhel-Gaugain, Anger, and Laurentie (1999)</td>
</tr>
<tr>
<td>Chicken muscle and liver, swine muscle, liver and kidney, and cattle muscle and liver (5 g) Josamycin, kitasamycin, mirosamicin, spiramycin and TYL HPLC</td>
<td>Ultrasound-assisted emulsification microextraction (R-USAME)</td>
<td>[Bmim]Cl, sodium tartrate and sodium phosphate</td>
<td>500 μL</td>
<td>TILM: 73–107%</td>
<td>Horie et al. (1998)</td>
<td></td>
</tr>
<tr>
<td>Chicken Fat (5 g) TILM and TYL CE-DAD</td>
<td>- Ultrasound-assisted emulsification microextraction (R-USAME)</td>
<td>TILM: 79–107%</td>
<td></td>
<td>TYL: 73–117%</td>
<td>LOD: 0.05 μg/g</td>
<td>This work</td>
</tr>
</tbody>
</table>
Massart, D. L., Vandeginste, B. G., Buydens, L. M. C., De Jong, S., Lewi, P. J., Smeyers-Verbeke, J., & Mann, K. (1998) and preparing each concentration level by triplicate. In all cases homoscedasticity was not fulfilled. As an example, the values obtained for TILM in sample C were

\[F_{\text{calc}} = \frac{S_{x,1}}{S_{y,1}} = 40.32 \text{ and } F_{\text{critic}}(0.05;2,2) = 39.00. \]

Since the calculated F value was much greater than Fcritic, the variances presented statistically significant differences. Thus, a weighted least-squares regression was used for quantification purpose instead of ordinary least-squares applying the following equation:

\[
\begin{align*}
 b &= \frac{\sum (w_i (x_i - \bar{x}_w)) (y_i - \bar{y}_w)}{\sum (x_i - \bar{x}_w)^2} \\
 a &= \bar{y}_w - b \bar{x}_w
\end{align*}
\]

where \(w_i = \frac{1}{\sigma_i^2} \), \(x_i = \sum w_i x_i w_i \), \(y_i = \sum w_i y_i w_i \), \(x_i \) and \(y_i \) represent the components of each point in the calibration curve.

In addition to the selectivity assessment (in terms of matrix effects), the whole validation method was performed by evaluating the following analytical parameters: linearity, LOD, LOQ, trueness and precision in terms of repeatability.

Linearity was investigated with replicates of matrix-matched standard solutions (n = 3), in the range from 35 to 200 μg kg⁻¹ for both analytes (p < 0.05 for linearity test).

The detection and quantification limits (LODs and LOQs) were both calculated from weighted least-squares regression data (Miller & Miller, 1993). The obtained LOD values were ranged from 5.2 to 18.9 μg kg⁻¹ and from 6.6 to 12.8 μg kg⁻¹ for TILM and TYL respectively. Regarding the LOQ values, they were ranged from 17.4 to 55.0 μg kg⁻¹ and from 22.1 to 47.0 μg kg⁻¹ for TILM and TYL respectively. It is important to point out that all LOQ values were much lower than the MRL ones.

Trueness was assessed from recovery studies. Thus, the fortified samples were prepared taking into account the MRL values for TILM (75 μg kg⁻¹) and TYL (100 μg kg⁻¹). The added concentrations for this study were 0.5 MRL, MRL and 1.5 MRL of each analyte. The obtained values are reported in Table 2, for the five analyzed samples and the two analytes. As it can be seen, satisfactory recoveries between 73 and 117% (calculated as (Valuefound×100%)/Valueadded) were obtained, considering the recommendation criterion (European Commission, 2000), except for the sample E in the TILM determination. In this case, the recovery values were too high at the three concentration levels, probably due to the interaction of TILM with some components of the sample which were co-extracted. Thus, TILM was not determined in this sample.

The repeatability of the method was also evaluated by analyzing 3 replicates of the matrix-matched calibration solutions at the three concentration levels for both analytes. Table 2 shows that the obtained values were lower than 20% (European Commission, 2000). The good results obtained demonstrated the applicability of the method in the determination of TYL and TILM in chicken fat samples.

Table 3 includes different characteristics of previously described analytical methods, highlighting the extraction step in the determination of macrolide antibiotics. It is of utter importance to mention that most of them use large volumes of organic solvents in comparison with the proposed method that utilizes the lowest solvent volume. This can be explained because it takes advantage not only of the ability of water-soluble tartrates and phosphates, but also it is the only one that uses IL and ultrasound energy as strategy for extraction.

4. Conclusion

A new analytical method for the determination of TILM and TYL in chicken fat samples was developed. The extraction as well as the pre-concentration of the analytes using an IL aqueous solution as extractant and an oily sample, was achieved with a new methodology called reverse ultrasound-assisted emulsification-microextraction (R-USAME). This procedure takes just 12.5 min in the extraction process and

without the use any toxic organic solvent. The extractant is directly injected into the CE equipment, taking just 15 min to complete the analysis. The obtained RSD% values were satisfactory (lower than 12.4%) and the LOQs were lower than MRLs established by European Legislation and Codex Alimentarius Commission.

Therefore, we have achieved a simple, fast, low cost and environmentally friendly methodology to detect TILM and TYL in chicken fat samples.

This new procedure is a promising approach which opens the doors to new protocols that may include other lipophilic antibiotics as well as fat from other sources. In this way, it contributes to the monitoring of products of animal origin with the premise of improving their quality as food for human consumption.

Conflicts of interest

The authors declare that the research was carried out in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgements

Universidad Nacional del Sur is gratefully acknowledged. A.S. Lorenzetti and C.E. Domini wish to thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

References

