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Abstract

In this work, zein fibers loaded with phenolic-etwed extracts from pulp, seed and skin
of orange chilto were collected on polyhydroxyaldate (PHA) films through the
electrospinning technique, for their potential asebioactive internal coatings for food
packaging applications. The zein fibers were charemed by scanning electron
microscopy (SEM), Fourier transform infrared (FTIR¥pectroscopy and
thermogravimetric analysis (TGA). The water stapitf the zein fibers was improved
by crosslinking with glutaraldehyde vapors. The agsulation efficiency of all
bioactive phenolic-enriched extracts was greatan t80%. Encapsulation in the zein
fibers improved the thermostability of the extracisvo food simulants (50% ethanol
and 3% acetic acid) were used to evaluate the seled the extracts from the
crosslinked zein fibers. It was observed that dmggag delayed the release of phenolic
compounds (rosmarinic acid, caffeic acid and itsivdges) in both solvents (80%
released after 7 days of contact in 50% ethanol&ndays in 3% acetic acid) and their
antioxidant properties were kept. Therefore, tinigk demonstrates the potential of the
developed zein-based encapsulation structuresinorgahilto extracts to be applied as
antioxidant coatings in food packaging structuresantribute to the preservation of
both hydrophilic and lipophilic food products.
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1. Introduction

Chilto (Solanum betaceur@av) is a native fruit that grows in the Northwesgion of
Argentina. These fruits are popularly consumeds@iads, juices, jams, liquors, and
other regional products) by different aboriginatlaoral communities and their virtues
are currently being rediscovered (Orqueda et QlL72

Solanum betaceunknown as “tamarillo”, “chilto” or “tree tomato’produces edible
fleshy fruits with a growing market in its nativendean countries, as well as in North
America, Europe and Oceania (Prohens & Nuez, 288fuels, 2015). The main types
of fruit are recognized depending on the colorhaf $kin, with dark purple, orange and
red fruits (Prohens, Ruiz, & Nuez, 1996). Currentlye sustainable cultivation of
orange chilto in Argentina is taking place in thengas region (Orqueda et al., 2017).
In a previous work, the interest of the pulp, saed skin of chilto to produce functional
foods was demonstrated. Specifically, the nutrdlomnd phytochemical composition,
as well as the antioxidant activity and the inlabyt capacity of fruit fractions on key
enzymes involved in the metabolic syndromeylucosidaseq-amylase and pancreatic
lipase) were described (Orqueda et al, 2017). &b, these bioactive properties were
demonstrated both before and after simulated ghsbaenal digestion and were
ascribed to the phenolic compounds present inrthelfiomass (Orqueda et al, 2017).
The main phenolic compounds of chilto seed, pulg skin extracts were rosmarinic
acid and its derivatives (Orqueda et al., 2017)sriRarinic acid (RosA), a naturally
water-soluble phenolic compound is an ester of emaffacid and 3, 4-
dihydroxyphenyllactic acid. RosA has gained a gdeatl of attention due to its various
biological activities, such as antibacterial, améily antioxidant and anti-inflammatory
activities (Ngo, Lau, & Chua, 2018; Gongalves et2019).

Moreover, the safety of the polyphenol-rich extsaétom chilto were evaluated,
showing no toxic and mutagenic effect Artemia salinaandSalmonella typhimurium
strains, respectively (Orqueda et al., 2017).

The interesting health-promoting properties of tchilmake these fruits excellent
sources of natural functional food ingredients. Eas reason, pulp, skin and seed
extracts of chilto, previously characterized by @rda et al. (2017), were considered
for inclusion in bioactive food packaging structire

Electrospinning has recently gained significanteiest in the fields of bioactive

encapsulation and functional food development &satrelatively simple, versatile, low
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cost, non-thermal process and does not requireigbeof organic solvents as aqueous-
based solutions have shown their potential asisgadolutions for electrospinning
(Quek, Hadi, & Tanambell, 2019). This non-mechanieahnique involves the use of a
high voltage electrostatic field to charge the acef of a polymer solution droplet,
thereby inducing the ejection of a liquid jet thghua spinneret (Mendes, Stephansen, &
Chronakis, 2017).

Zein has demonstrated to be an excellent matesirakliectrospinning and has been
successfully used to encapsulate diverse bioactimepounds (Gomez-Mascaraque et
al., 2017; Gomez-Mascaraque, Pérez-Masia, GonBadeaie, Periago, & Lopez-Rubio,
2017; Gomez-Mascaraque, Tordera, Fabra, Martinaz;®alL6pez-Rubio, 2019; Quek
et al., 2019) and to generate biodegradable foolaupng layers (Fabra, Lopez-Rubio,
& Lagaron, 2016). Zein is a plant protein that fasnd use in adhesive and coating
materials for pharmaceutical, biomedical, and fegglications, because of its non-
toxicity, biodegradability, biocompatibility and @womic reasons (Moradkhannejhad,
Abdouss, Nikfarjam, Mazinani, & Heydari, 2018; SadthnHamaker, & Wilker, 2018).

It is a hydrophobic protein (prolamin) with highetimal stability and oxygen-barrier
properties (Neo et al., 2013). Electrospun zeinofibars are easily produced giving
raise to homogeneous and flexible structures, bilt poor mechanical properties and
poor water stability, fact which restricts theirpipations. When immersed in water,
zein fibers swell and collapse into films with ansmerable decrease in surface area,
also decreasing the number of interconnected mordgensile strength (Jiang, Reddy,
& Yang, 2010), fact which could hamper its use mmdtive food packaging coating.
However, this can be significantly improved by afpd crosslinking processes (Quek
et al., 2018). Glutaraldehyde is a crosslinkingnagieat has been widely used to modify
biodegradable films based on polyvinyl alcohol (Man Sadahira, Souza, & Mansur,
2008), polyvinyl alcohol/methyl cellulose (Park,rlRa& Ruckenstein, 2001), gelatin
and zein (Fan, Duquette, Dumont, & Simpson, 201&tsMda, Ilwata, Se, & lkada,
1999; Shahbazi, Ahmadi, Seif, & Rajabzadeh, 201%)me advantages of this
crosslinking agent are the low cost, fast reactiore, and ability to crosslink many
amino acid groups present in the protein molec{tiesng et al., 2014). Glutaraldehyde
is more effective than other aldehydes as a crdgslj agent and its application to
crosslink nanofibers upon exposure to its vapossdemonstrated lower or no cytotoxic
effect (Destaye, Lin, & Lee, 2013). In fact, theewd glutaraldehyde in the vapor phase

as crosslinking agent of natural and artificial ymoér blends has proven to be an
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effective procedure that avoids the presence dttmesidues into the materials, as no
effect on cell viability and proliferation, neithéncrease in the cytoplasmic lactate
dehydrogenase release, nor damages on mitochomahdalysosomal functions were

observed (Ramires & Milella, 2002; Shahbazi et2016).

Therefore, the aim of this work was to develop ahdracterize crosslinked electospun
zein fibers loaded with phenolic-rich orange chitdracts with potential as bioactive
food packaging coatings. The base material chosethis work was a commercial

polyhydroxyalkanoate, given the increased inteoéshese materials for biodegradable

food packaging applications.

2. Materials and methods

2.1. Reagents

Zein from corn (grade Z3625), with reported molacwiveight of 22—-24 kDa, was
purchased from Sigma-Aldrich (Spain). 96% (v/v)tacacid was supplied by Scharlab
(Spain). Absolute ethanol (> 99.9%) was purchasech VWR (UK). Glutaraldehyde
solution and hydrochloric acid were obtained froignsa-Aldrich.

The polyhydroxyalkanoate (PHA) film used as bakwe fo deposit the electrospun zein
layer was a polyhydroxybutyrate/polyhydroxyvaler@® - Biopolymer PHB92/PHV 8
film produced by Goodfellow GmbH (Germany) and mmtted by MicroPlanet
Laboratorios, S.L. (Spain).

2,2 -azino-bis (3-ethylbenzo thiazoline-6-sulphoracid) (ABTS), 2,2-azo-bis(2-
amidinopropane) dihydrochloride (AAPH) were purathdrom Sigma-Aldrich (St.
Louis, MO, USA).

2.2. Plant material

Fruits of Solanum betaceur@av. (orange cultivar) were collected in Parquert@ide
San Javier, Tucuman, Argentina, during FebruaryMacth 2014 and 2015. The fruits
were harvested at the ripening stage in which #reyconsumed and were transported
immediately to the laboratory at 4°C. The freshtéravere washed with water. Skin,

pulp and seeds (without jelly portion) were sepatatreeze-dried and powdered.

2.3. Phenolic enriched extracts preparation
The powders of seed, pulp and skin were extraatecbom temperature with 95°

ethanol (1 g of powder per 5 mL of ethanol) asditg ultrasound during 30 min under
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stirring (40 cycles/min). Subsequently, the samplege centrifuged at 12,000 g for 10
min. The supernatants were taken to dryness urelfuced pressure to give the
phenolic-enriched extracts (PEE).

2.4. Preparation of zein fibersthrough eectrospinning

Zein solutions 20% (w/v) were prepared by dissawine protein in 80% (v/v) ethanol
at room temperature under magnetic stirring. PEEAW/w of the total solids content)
were added to the zein solutions and the mixturesewstirred until complete

dissolution. Then, the solutions were electrosmllowing a procedure adapted from
GOmez-Mascaraque, Sanchez, & LoOpez-Rubio (2016)hgusn electrospinning

apparatus assembled in-house, equipped with ablarfagh-voltage 0-30 kV power

supply, at a steady flow-rate of 0.15 mL/h, an eguploltage of 11 kV and a syringe
tip-collector distance of 10 cm. The zein fibersrevelirectly collected onto the PHA
films for 40 min. The amount of electrospun extriiaded zein was calculated by
weighing the film before and after the collectioh fibers (Fabra, Sanchez, Lopez-
Rubio, & Lagaron, 2014).

2.5. Zein fibers Post-Treatment

Once the zein fibers were collected onto PHA filitiey were exposed to 25% v/v
glutaraldehyde (GA) vapors as a crosslinker an85% v/v hydrochloric acid (HCI)
solution to create the necessary conditions faalgsis (Lee, Li, Chen, & Park, 2016).
The crosslinking container was divided into twotpdry a grid. On the bottom, a Petri
dish was placed with the glutaraldehyde solutioth amother with the HCI solution. On
top, PHA films containing the zein fibers were @ddnside Petri dishes. In this way,
the films were exposed to the vapors, in the closmutainer. The crosslinking was
performed for 5h (Treatment A) and 24 h (Treatm@ntAll the crosslinked samples
were rinsed for 30 min in phosphate buffer saliR8%) to eliminate the residual
glutaraldehyde and then they were dried in a datccat 23 + 2°C (Ramires &
Milella, 2002).

Then, the films were spread between two Teflonrayad compressed in a hot press
(Carver 4122, USA) at 45 °C for 2 min. The two plates from the press were put into
contact at the specified conditions, but no extesgure was applied. These conditions
were sufficient to guarantee the adhesion betweezein coating and the PHA film.
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2.6. Characterization of films

2.6.1. Morphological characterization of the particles

Samples were sputter-coated with a gold-palladiurture under vacuum and analyzed
by scanning electron microscopy (SEM) on a Hitacicroscope (Hitachi S-4800),
following the method described in Gomez-Mascaraefual. (2016). Particle diameters
were measured from the SEM micrographs using thegéd software. Size

distributions were obtained from a minimum of 208asurements.

2.6.2. Analysis of the particles by attenuated total reflectance Fourier transform
infrared spectroscopic (ATR-FTIR) and Fourier transform infrared (FT-IR)

FT-IR spectra were collected following the metha@s$atibed in Gmez-Mascaraque et
al. (2016). PEEda. 1-2 mg) were dispersed in about 130 mg of patassiromide and

a pellet was formed by compressing at ca. 150 MPa.

FT-IR spectra were collected in the transmissiordenasing a Bruker (Rheinstetten,
Germany) FT-IR Tensor 37 equipment. Zein fibershwand without PEE were
analyzed without further processing in ATR model #pectra were obtained by

averaging 10 scans at 1 ¢rresolution.

2.6.3. Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) was performed wathT G-STDA Mettler Toledo
model TGA/STDA851e/LF/1600 analyzer. The samples ® mg) were heated from
25 °C to 600 °C at a heating rate of 10 °C/min undgnamic nitrogen flow.
Thermogravimetric curves express the weight of #@mple as a function of

temperature.

2.7. Fiber stability assessment

Stability of the films containing zein fibers wiind without PEE, was assessed using a
protocol adapted from Kiechel & Schauer (2013)eByi the zein fibers collected on
PHA films were cut into pieces of 5 x 5mm. Eachcpievas immersed in 20 mL of
distilled water. After different time intervals,etzein coatings were removed from the
tubes and dried in a desiccator (0% relative huyjidirhe surface morphology of the
dried zein coating was analyzed by SEM as describeslection 2.6.1. The test was
carried out using films with and without crosslingi and with and without press

treatment. All experiments were performed in tdates.
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2.8. Phenolic enriched extract encapsulation efficiency

The total amount of each PEE incorporated withenfthers was estimated by UV-Vis
spectroscopy according to a protocol adapted fraay &t al. (2018). For this purpose,
zein fibers (10 mg/mL) were dissolved in ethand¥®B@/v). The absorbance at 280 nm
was measured using a NanoDrop ND1000 spectrophtdéom@hermo Fisher
Scientific, USA). Calibration curves for each PHEE dathanol 80% were previously
obtained by its absorbance at 280 nnf>@R997). The contribution of zein to the
absorbance at 280 nm was also considered.

The encapsulation efficiency (EE) was then caledladccording to Eq. (1). Three
independent replicates of each sample were analyzed

EE [%j _ Total extract content in the fibers 100 (1)

Theoretical extract content in the fibers

2.9. In vitro release assays

The release of phenolic compounds from the zeierdilwas assessed in two different
food simulants following a method adapted from Algdeini, GOmez-Mascaraque,
Martinez-Sanz, & Lépez-Rubio (2019). 50% ethanad 8&b6 acetic acid (w/v) were
selected as food simulants, according to the CosiamsRegulation 10/2011 EU on
plastic materials and articles intended to come @aintact with food (10/2011/EC). For
this analysis, the fibers (20 mg / mL) were immdrse the release medium during
different times. The absorbance of each system mvaasured at 280 nm using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisloggrfiific, USA), according to
an already established methodology (Moreno e@ll8). With the absorbance values,
the concentration of phenolic components released time was determined using
calibration curves (considering that the fiberstaored 10% extract) of each PEE in
both media (B> 0.9975).

The contribution of zein to the absorbance at 280 was also considered and
subtracted from the total absorbance of the releaselium. Experiments were

performed at room temperature (20 °C) in independeplicates.

2.10. High performance liquid chromatography (HPL C) analysis
The phenolic compounds of each extract and the gliteoomponents released from
zein fibers (2 mg DW/mL) were identified by HPLC-DA The HPLC system
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consisting of a Waters 1525 Binary HPLC Pumps systeth a 1500 Series Column
Heater, a manual injection valve with a 20 loop (Rheodyne Inc., Cotati, CA) and a
Waters 2998 photodiode array detector (PDA) wesslus analyze the extracts eluted
from the zein fibers and the individual extracts. RXbridgeTM 135 C18 column (4.6 x
150 mm, 5um; Waters Corporation, Milford, MA). The solvent ségm for the
separation of components was composed of 0.1%caaetd in water (A) and 0.1%
methanol in acetic acid as follow: 10% to 57% Bro#® min and increasing to 100% B
at 60 min. The flow rate was 0.5 mL/min and theunao¢ injected was 2QL. The
compounds were monitored at 254 nm.

The identification of phenolic compounds was carroait by comparing the retention
times and spectral data (220—-600 nm) of each p&hktose of standards from Sigma-
Aldrich (MO, USA) and Fluka Chemical Corp. (USA)liphenols quantification was
based on external calibration curves from availablenolic standards. Plots were built
by comparison of the area and concentration inrdinge of 1-500 ppm. Results were
expressed as pg equivalents of the standard cordpquar milligram of dry weight.

Experiments were performed in independent tripdisat

2.11.1. Antioxidant activities

In order to determine if the encapsulated extractgers retained antioxidant activity,
ABTS and AAPH assays were performed. For thess,tequilibrium concentrations of
phenolic compounds previously eluted from the Zéiers (between 0.2 and 20 pg
GAE/mL) were used.

2.11.1.1. Total antioxidant capacity assay: The antioxidant power of the extracts loaded
fibers was assayed by the improved ABTS radicaboABTS™) method as described
by Re et al. (1999). Results were expressed ag (8@ncentration of extract necessary
to scavenge 50% of ABTS radical). In all cases,ahtoxidant capacity of zein was

considered.

2.11.1.2. Protection of oxidative hemolysis assay: The method reported by Mendes, de
Freitas, Baptista, & Carvalho (2011) was used tierd@ine the protective activity of
oxidative hemolysis of red blood cells (RBC) usiAdPH as reagent generator of

peroxyl radicals. The reaction mixture (RBC, APPIHdaphenolic compounds
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previously eluted from the zein fibers) was incelolaat 37°C for 1 h in water bath, and
then was centrifuged (4000xg) for 3 min. The abande of supernatant was measured
at 545 nm in spectrophotometer, and the perceokidftive hemolysis was calculated.
ICso values were determined as the concentration ohetst necessary to protect the
RBC from oxidative hemolysis by 50%. The antioxid@apacity of zein was also

determined.

2.12. Statistical analysis

Each experimental value is expressed as the mestanegard deviation (SD). The
statistical analysis of experimental data was peréal using InfoStat software (Student
Version, 2011). The one-way ANOVA with Tukey posstt at a confidence level of
95% was used to evaluate the significance of diffees between groups. The criterion

of statistical significance was takengas 0.05.

3. Resultsand discussion

The aim of this work was to develop bioactive fopdckaging coatings through
electrospinning containing PEE of different pansni orange chilto fruits. The low
compatibility of hydrocolloids like zein and hydfiogbic materials such as
polyhydroxyalcanoates (PHAS) used in this workyprged the use of casting methods
to develop multilayer systems or to combine bothtemals through compression
moulding, since adhesion between the layers waspaor and partial or even complete
delamination between the different layers occuresdpreviously reported for similar
systems (Martinez-Sanz, Lépez-Rubio, & Lagaron, 320Babra, Lépez-Rubio, &
Lagaron, 2016). Thus, in this work, the polypheneixtract of pulp and even of waste
material such as seed, and skin were used. Thesgctsxmainly contained caffeoyl
derivates, RosA and its derivatives and showedrakfienctional properties principally
antioxidant, and antimicrobial that could be usefol active food packaging
applications (Orqueda et al., 2017). A preliminaptimization of the electrospinning
parameters was carried out in order to select th& lsonditions for zein fibers
production. Subsequently, the chilto PEE loadech Zi#hers were produced and
characterized.

3.1. Characterization of films

3.1.1. Morphological characterization of thefibers
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The SEM images and particle size distribution gsaphzein fibers (with and without
PEE from seed, pulp and skin of orange chilto) displayed inFig. 1. This figure
shows the average, maximum and minimum diameteuesgalfor the different
electrospun fibers (um). The diameter of the zdarg without extracts was similar to
those previously reported for electrospun zeinrfildédlehosseini et al., 2019; Li, Lim,
& Kakuda, 2009; Neo et al., 2013), showing an thira fibrillar structure, of
cylindrical shape and homogeneous morpholdgyg.(1). No significant differences
were observed in the average diameter betweenxtinecefree zein fibers and those
loaded with PEE. In all cases, the fiber diamevegse between 0.064-0.274 pum. The
obtained medium values were similar for all theedleped structures, independently of
the type of extract encapsulated.
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3.1.2. Analysis of thefibersby FT-IR

FT-IR analysis was performed to evaluate the ictevas between zein and the
phenolic compounds from chilto PEELg. 2 shows, as an example, the FT-IR spectra
of the zein fibers containing chilto seed extragether with the spectrum of the zein
fibers without extracts, analyzed in ATR mode. HIeIR spectrum of the chilto seed
extract is also shown iRig. 2. The spectra of the pulp and skin extracts and fleers
with and without extracts are included in tBapplementary Material (Fig. S1).
Typical zein bands were present in the differebefficoatings at 3290, 2950, 1640,
1530, 1440 and 1245 chthat are derived from Amide A (N-H stretching \ation),
Amide B (asymmetric stretching vibration of =C-HdaaNHs"), Amide | band (80%
C=0 stretching, 10% C-N stretching), Amide Il bged% N-H bending, 30% C-N
stretching and 10% C—C stretching), and Amide &ihdd (complex band resulting from
several coordinate displacements), respectivelgh{@sseini et al., 2019; Costamagna et
al., 2017; Deng, Kang, Liu, Feng, & Zhang, 2018;a81, Sun-Waterhouse, Perera, &
Waterhouse, 2012).

The spectra of the PEE were characterized by thsepce of absorption bands at 3325-
3395 cm, 2920 cnt, 1740-1700 ci and 1600-800 cihregion attributed to the
stretching, bending and deformation vibrations alffyphenolic compounds (Gannasin,
Adzahan, Hamzah, Mustafa, & Muhammad, 2015; Morehal., 2018; Sivam et al.,
2012). The peak at 1710 &nis assigned to the stretching vibration of carbh@mgups
(Stehfest, Boese, Kerns, Piry, & Wilhelm, 2004)eTjeaks at 1612 ¢l 1520 cnit
and 1463 cil are ascribed to benzene ring stretching vibrat{Gtshfest, et al., 2004).
The spectral vibrations of the PEE loaded zeinrfilend unloaded zein fibers showed
small spectral variations. For instance, a disptearg to greater wavenumbers (~ 10-30
cm?) was observed in the Amide | and Amide Il bandsadidition, a slight narrowing
in the Amide A band was observed, which is gengidille to changes in the hydrogen
bonding structure of the protein (Doyle, Bendit,Bfout, 1975). These changes could
be attributed to possible intermolecular interatti®etween the zein and the hydroxyl
groups of rosmarinic acid and caffeic acid anddésivatives present in the chilto
extracts or between free carboxyl group of phenodimpounds with the freeamino
groups from the protein to form amide bands.

Fig. 3 also shows a magnification of the regions of igelin which the arrows point

out to the spectral differences. Moreover, a charetic absorption peak of the extract
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can be observed at 1050 ¢risee arrow), which confirms its incorporation itie zein

fibers.

1.2 H
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Figure 2. FT-IR spectra of chilto seeds extract, togethehwinloaded and extract-
loaded zein fibers. Arrows in the magnified spdatage point out to the main spectral

changes as a consequence of extract incorporation.

3.1.3. Thermal stability of PEE-loaded zein fibers

The thermal stability of the extracts-loaded zaberfs was also determinedrig. 3
shows, as an example, the thermogravimetric cuoldained for PEE from orange
chilto skin and those for zein fibers with and veit PEE.

The zein fibers were stable at 45° C, temperatges un the heat press treatment. An
initial weight loss of 2-4% was observed in thenzébers between 60° and 150°C,
probably due to water evaporation. The main mass &b zein fibers took place around
300°C, which could be ascribed to the thermal didmjran of the polymer structure
(Erdogan, Demir, & Bayraktar, 2015), only retainengund 17% of the initial mass.
The thermal degradation of the PEE from the clskm started at a lower temperature
and showed a more gradual mass loss in the temperainge froniIL00°C to 450°C.
When comparing the thermal stability of the elgotno fibers containing the three
different extracts from chilto, with that from thanloaded zein fibers, a very similar

degradation profile was seen, which normally isriaed to a thermal stabilization of
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the encapsulated compounds. However, taking intowat the small contribution of the
extracts to the total mass of material, frBrgure 3 (as a representative example), it can
only be stated that the incorporation of the PEEmdit affect the thermal stability of the

zein fibers.

Extract

= Zein fibers with extract

Nlass (%)

« Eein fibers without extract

o FLe ] 200 300 00 =00 B0 700

Temperatare (°C)

Figure 3. Thermogravimetric curves of PEE orange chilto sand zein fibers with and
without PEE.

3.2. Water resistance properties of thezein fibers

As most food products contain relatively high watemtents, the integrity of the
packaging coating upon water exposure was evaluatesl surface morphology of the
coated PHA films was thus analyzed by SEM and tfeeteof crosslinking on the water
resistance of the coatings was evaluated. The elsamgthe surface morphology at
different water immersion time periods, are showiiig. 4 for zein fibers containing
orange chilto skin extract as an example.

When no crosslinking was applied, the fibrillar mploology of the electrospun zein
coatings was completely lost after 6 h of immersiorwater Fig 4A and Fig 4B)
similarly as previously reported by other auth@isrfg et al., 2010; Li et al., 2009). The
fibers collapsed in the water and were released tiee PHA base film.

In contrast, a better stability was observed foe tboatings crosslinked using
glutaraldehyde vapors in an acid environment. Gildehyde has been previously used
as a crosslinking reagent to produce electrospim fagers with improved physical
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properties and solvent resistance (Selling, Wo8@ssa, & Biswas, 2008) and for the
modification of biodegradable films (Shahbazi et &016), demonstrating that the
films crosslinked by this method did not displayy atytotoxic effects on fibroblast
cells. Ramires & Milella (2002) evaluated the harh#ffects of glutaraldehyde residues
released from crosslinked membranes through-vitro cytotoxicity and
cytocompatibility tests, showing that these do nave toxic effectsFig. 4C and 4E
show the morphology of the fibers after the crodshg treatment A and B,
respectively, before water immersion, whiteg. 4D and4F show the same materials
after 24 h immersion in water. It can be observed while the shorter treatment A led
to a certain degree of swelling after this immarsiime, the fibers crosslinked for a
longer period (treatment B), kept the integrity heitit significant morphological
changes after being 24h in watéid. 4F). For this reason, treatment B was selected to
check how the integrity of the fibers upon watemersion was kept at longer time
periods Fig. S2, Supplementary Material). It could be seen that the crosslinking
treatment was very effective in protecting the gty of the coating even after 12 days
of immersing the coated PHA film in water, althodgbm day 9 a significant swelling
occurred which led to a partial collapse of theft

Glutaraldehyde interacts with amino, carboxy, amidied other protein groups
(Jayakrishnan, & Jameela, 1996). These bonds fodugdg crosslinking should be the
main responsible for the best water stability of ttrosslinked samples. In addition,
crosslinking reduces the interstitial spaces betmtee protein chains, thus decreasing
molecular motion and preventing swelling of theefth (Fan et al., 2018; Jiang et al.,
2010).

The cross-sections of the coated films were alsalyaad. Fig. 5A shows, as an
example, the cross-section of coated PHA filmsthis case with the zein fibers
containing the chilto skin extract. A clear delaation of the coating was observed and,
thus, ahot press treatment was applied to improve adhesfidhe coating to the PHA
base film. This treatment effectively improved thdhesion of the fibers to the PHA
film, being even better when the fibers were prasigp crosslinked with treatments A
and B(Figs. 5B, 5C and5D).
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Figure 4. SEM micrographs of electrospun coatings containingnge chilto skin
extract after immersion in water for different timperiods: As-obtained fibers without
crosslinking, before (A) and after immersion in @raduring 6 h B); Fibers crosslinked
for 5 h, before (C) and after immersion in waterig 24 h D.); Fibers crosslinked for
24 h, before (E) and after immersion in water féh2().
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Figure 5. SEM Cross-section images of PHA films with the zdimer coatings
containing the chilto skin extractA. Non-crosslinked coating without hot press
treatment (delamination is clearly seeB); Non-crosslinked coating after hot press
treatment (better adhesiong; Coating crosslinked for 5 h with hot press treatmB.

Coating crosslinked for 24 h with hot press treatme

3.3. Extracts encapsulation efficiency

In order to estimate the amount of each extraatcéffely incorporated within the
developed coatings, the encapsulation efficiencyg walculated according to Eq. (1)
and the results are summarized eble 1.

All extracts showed similar encapsulation efficiesc(90.2 - 94.3%). These values
were considerably high and similar to those presiypureported for the
microencapsulation of other natural compounds tjnouelectrohydrodynamic
processing, using zein as an encapsulation matehfsseini et al., 2019; Fabra et al.,
2016; Neo et al., 2013; Wang et al., 2017). Thé legcapsulation efficiency values
obtained highlight the interest of the electrospigntechnique for encapsulation
purposes, not only derived from the high efficieraytained, but also to additional
advantages, such as the use of aqueous solutidmaithconditions (not requiring high
temperatures for drying out the structures obtgintd this specific work, it is also
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demonstrated that these type of structures cansilees constitute an alternative form
of delivering bioactive compounds to foods in tbend of inner coatings of packaging

materials.

Table 1. Extracts encapsulation efficiency (%) for the depeld coatings.

Zein fibers
Solanum betaceum  Seeds 90.2+6%1
Cav. (orange) Pulp 94.3+4.2

Skin 92.4+4.4

Values are reported as mean + standard deviatibmpditates. The values in the same
column with a common letter are not significantlifetent according to Tukey's test (p
<0.05).

3.4. Release of PEE from the electrospun coatings

The objective of the developed coatings, as alrea€ytioned, was to gradually release
the extracts to the actual food product from thekpging structure. Therefore, the
diffusion of the encapsulated bioactive compoundsnfthe zein coatings into 50%
ethanol and 3% acetic acid solutions used as foodlants was evaluated. The aqueous
ethanolic solution can be used to simulate fattgdfgroducts, foods capable of
extracting lipophilic substances, as well as altichimods with an alcoholic strength
greater than 20% or oil- in-water emulsions. On thieer hand, 3% acetic acid is
normally used as a simulant of hydrophilic foods foods capable of extracting
hydrophilic substances, with pH less than 4.5. Balvents can simulate food type
turbid drinks, juices, nectars, canned meats, yogregam, cheese, etc (10/2011 / CE).
Given the previous results obtained, only the dnulssd materials were used for the
release experimentssig. 6 shows the release profiles obtained for the differ
formulations in both food simulants. The releases wgaeater and faster with 50%
ethanol, being superior to 90% after 24 h in treeaaf the coating crosslinked for lower
time period (treatment Arig. 6A), and over 80% after 7 days of experiment for the
different coatings crosslinked for 24h (treatmenER). 6B). When 3% acetic acid was
used as a release medium, a release higher tham@8%btained for the crosslinking
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treatment A after 7 day$ig. 6A), while for treatment B, release values over 708tew
obtained after 14 days, reaching 80-86% after 38 daexperimentKig. 6B).

The longer crosslinking (treatment B) effectivelglaled the release of the extracts in

both simulating solvents, which is desirable fa thtended application. The release of

phenolic compounds in ethanol 50% is faster becautigs medium both the zein and

the extracts are more soluble and thus, a parabtlition of the fibers is expected,

thus promoting a greater and quicker release. mtrast, only swelling took place when

using 3 % acetic acid, thus allowing a slower ettralease.
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Figure 6. Release of PEE from the electrospun fibers aftesstinking during 5 hA)
and during 24 hR) in 50% ethanol (Fand 3% acetic acid (AA

3.5. HPLC analysis

HPLC-DAD was used to analyze the individual phencbbmpounds released from the
fibers, as well as to evaluate the recovery of phercompounds after the release
experiments. The chromatography profile of eaclthefn was similar to each extract
used in this study.

Fig. 3 (Supplementary Material) shows the profile obtained for the eluate from the
orange chilto skin fibers with the crosslinkingatment B, after 7 days of release in
50% ethanol. Peaks 1 and 2 were identified as fé@gf quinic acid and rosmarinic
acid hexoside derivative, respectively. Previou€lsqueda et al. (2017) showed that the
main phenolic compounds found in the chilto exsastere RosA and caffeic acid
derivatives.

Under our experimental conditions, the percent vepp of the compounds 3-
caffeoylquinic acid and rosmarinic acid hexosiderivdgive was 98 and 54%,
respectively in 50% ethanol and 78% and 43%, rdsbg in 3% acetic acidFig. 3,
Supplementary Material). Orqueda et al. (2017) reported for the orangéockkin
extract a content of 1724.1 + 80.7 and 871.8 £¢h/ 100 g of dry weight of 3-
caffeoylquinic acid and rosmarinic acid, respedyiv@reviously, Espin et al. (2016)
reported values between 25.04 and 163.62 mg / 108f dry weight for 3-O-
caffeoylquinic acid (CaQA) and between 12.22 antl.82 mg / 100 g of dry weight for
RosA, respectively, for samples of chilto from Edoa CaQA and RosA and its
derivatives, are characterized as natural antiokgdand potential natural anti-diabetic
and anti-obesity compounds, because they are gtases and amylase inhibitors
(McCue & Shetty, 2004; Chen et al., 2014; Ngo et24118; Goncalves et al., 2019) and
lipase inhibitors (Mohamed, 2014). Therefore, itliso feasible that the effect of chilto
extracts on enzyme related to metabolic syndromadcbe attributed to CaQA and

RoOsA and its derivatives present in the extractg|(@da et al., 2017).

3.6. Antioxidant activity of extractsreleased from PEE loaded zein fibers
The antioxidant activity of orange chilto seedns&nd pulp extracts in cell free systems
was previously reported (Orqueda et al., 2017}hig work, the antioxidant capacity of

PEE was compared with the activity of the phenolalsased from the fiber coatings.
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The released phenolics were able not only to reédBES but also to prevent and limit
the release of lysosomal enzymes from human reatlatell to the extracellular matrix.
In agreement with the results obtained for the encapsulated extracts, the antioxidant
capacity of the phenolic compounds from skin reddaffom the coatings was higher
than that from the coatings containing seeds atyl gxtracts Table 2). In general, no
significant differences were observed between th&o@dant activity of free and
released extracts, thus confirming that encapsulatirough electrospinning does not

affect the bioactivity of the compounds.

Table 2. Antioxidant activity ofS. betaceurpolyphenolic extracts before and after

encapsulating procedure.

Sample S6 (LgGAE/mML) | 1Cs0(ngGAE/mL)

S. betaceum ABTS AAPH

Seeds PEE 1.38+0.05 0.91 +0.08
PEE loaded 2.69+0.0% 1.12+0.05
fiber

Pulp PEE 1.09+0.10 0.40 + 0.03
PEE loaded 0.90+0.02 0.53+0.01
fiber

Skin PEE 0.80+0.10 0.50 = 0.00
PEE loaded|  0.49+0.002 0.78+0.02
fiber

SGs: Concentration of polyphenolic extract necessargcavenge 50% of ABTS.
ICso: Concentration of polyphenolic extract necessarynhibit 50% of oxidative hemolysis. Different
letters or number in the same column for each exiralicated significant differences in the antitat

activity according to Tukey's tegi € 0.05).

4. Conclusions

In this work, bioactive coatings consisting on zBbers with orange chilto PEE were
collected onto PHA films through the electrospimnitechnique, with encapsulation
efficiencies greater than 90%.

Zein electrospun nanofiber coatings showed poorhanr@cal properties and stability in
agueous environments, which were improved by drdseh with glutaraldehyde

vapors.
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The crosslinked zein fibers showed better morphoébgstability and were able to
maintain their fibrous structure after immersiomiater for more than 12 days.

In addition, the crosslinking of the zein fibers 4h (treatment B), allowed for a
gradual release of the encapsulated extract indiferent food simulants, showing a
slower and more limited release in 3% acetic asith a total polyphenolic release of
80-86% after 23 days. Given the similar compositadnthe three different extracts
evaluated, they all showed similar release behaaiut, thus, the proven health benefits
ascribed to chilto fruits (skin, pulp and seeds) ba exploited for inclusion in bioactive
packaging structures. This work has demonstratadittis possible to develop bioactive
coating structures based on zein fibers contaicimgfo PEE, which could result in
added value applications of these fruits that areently commercially underexploited,
as well as in the valorization of the skin and ¢lkeeds from these fruits that are usually
discarded. These coatings can be optimized forggael structures in contact with

more hydrophilic or lipophilic food products.
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Highlights

» Bioactive coatings for food packaging were obtained by electrospinning

Chilto extracts with antioxidant capacity were included in the coatings

The encapsul ation efficiency of extracts within the coating was greater than 90%

Cross-linking of zein fibers improved coating integrity upon water contact

A sustained release of the extracts in food simul ants was observed



