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Abstract

Conservation planning relies on integrating existing knowledge, social-environmental con-

texts, and potential threats to identify gaps and opportunities for action. Here we present a

case study on how priority areas for conservation can be determined using existing informa-

tion on biodiversity occurrence and threats. Specifically, our goals are: (1) to model the eco-

logical niche of twelve endemic snake species in the Dry Chaco Forest, (2) to quantify the

impact of the deforestation rates on their distributions, (3) to propose high priority areas for

conservation in order to improve the actual protected area system, and (4) to evaluate the

influence of the human footprint on the optimization of selected priority areas. Our results

demonstrate that Argentinian Dry Chaco represent, on average, ~74% of the distribution of

endemic snake species and deforestation has reduced suitable areas of all snake species in

the region. Further, the current protected areas are likely insufficient to conserve these spe-

cies as only very low percentages (3.27%) of snakes’ ranges occur within existing protected

areas. Our models identified high priority areas in the north of the Chaco forest where contin-

uous, well-conserved forest still exists. These high priority areas include transition zones

within the foothill forest and areas that could connect patches of forest between the western

and eastern Chaco forest. Our findings identify spatial priorities that minimize conflicts with

human activities, a key issue for this biodiversity hotspot area. We argue that consultation

with stakeholders and decision-makers are urgently needed in order to take concrete

actions to protect the habitat, or we risk losing the best conservation opportunities to protect

endemic snakes that inhabit the Argentinian Dry Chaco.
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Introduction

The loss and fragmentation of native forests due to the expansion of the agricultural frontier
have affected the abundance, diversity and distribution of species in tropical and subtropical eco-
systems [1–3]. At a global scale, the expansion and intensification of agriculture [4,5] were
achieved by prioritizing economic and political interests. In contrast, ecological attributes, such
as distinctive habitats, species richness and population abundances, connections between the dif-
ferent patches of remaining forest, among others, often were not considered when decisions
were made regarding transformation of land. The failure to consider the maintenance of struc-
ture and functionality of forests’ ecosystems in environmental policies and decision-making
regarding development may result in the loss of socio-economic benefits that these natural eco-
systems provide to human populations [6,7]. Moreover, the existing protected areas in Latin
America are insufficient and generally, they were not designed focusing on biodiversity conser-
vation goals [8]. Currently, in many places the expansion of the agricultural frontier has enclosed
protected areas, thereby transforming them into ‘islands’ where plant and animal populations
become isolated [9]. It is in this dynamic scenario of changing land use and inadequate protected
area systems, where studies are needed to predict species distributions in order to identify prior-
ity areas for conservation and propose effective strategies for their long-term protection.

The tropical dry biomes, currently considered among the most worldwide endangered eco-
systems, exemplifies a system where land use changes are rampant and existing protected areas
are insufficient to achieve conservation objectives. Further, these biomes have received relatively
little attention from both ecologists and conservationists [10–12]. In fact, the few studies focused
on the identification of conservation areas for these ecosystems showed that current representa-
tiveness levels (i.e., represent the range of expected biological variation) are inadequate, includ-
ing the tropical seasonally dry forests [13], the Cerrado [14,15] and the Gran Chaco [16]. The
‘Gran Chaco’ is the second largest forest in South America, after the Amazon rainforest [17].
This ecoregion corresponds to Chaco Biogeographic Province encompassing both the Dry and
Humid Chaco sub eco-regions [18,19] and it extends through Argentina, Bolivia, Paraguay and
southwestern Brazil [20]. From an ecosystem service perspective, this forest is extremely impor-
tant as it harbors one of the largest extra-tropical carbon stocks in the southern hemisphere
[21–23]. Despite being characterized by heterogeneous environments and high species diversity
[20], this forest is currently considered as one of the world’s most threatened wooded subtropi-
cal ecosystems as a consequence of an intense anthropogenic disturbance as a consequence of
logging and agricultural activities [12,22,24,25]. In fact, the main driver of high deforestation
rates (200,000 ha/year -1) in the Chaco forest is agribusiness expansion [12,26]. This transfor-
mation produces high carbon emissions [27], landscape configuration changes [28], habitat
degradation [29], and species extinctions [1]. Likewise, despite the fact that Argentina has the
largest area of Chaco (approx. 62% of the total area) [26], we observed that only 1.7% of the Dry
Chaco is within the current Protected Areas system (PAs) [30,31]. Moreover, increasing evi-
dence indicates that distribution and survival of inhabiting species on dry ecosystems could also
be also affected by climate change which could lead to widespread reduction of current species
richness and ecological integrity (e.g. [32–34]). Therefore, in order to identify priority areas and
to develop management decisions and conservation strategies, information on species distribu-
tions and their vulnerability to land use change is needed [7,35–37].

Establishing a priority areas network that adequately represents the biodiversity within the
Dry Chaco with clear conservation goals, while at the same time compatible with the sustained
human development is urgently needed [16]. In this sense, different conservation planning
schemes have been developed over the last decade [38–40] promoting a representative and
connected network of PAs that contributes to the viability of biodiversity and ecosystems [41].
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These approaches are based on the distribution of key biodiversity features and anthropic vari-
ables, and identifying the most important sites for conservation and sites, which are compati-
ble with sustainable use [42,43]. From this perspective, the integration of species-level
surrogates is necessary to ensure that critical habitats and ecosystems within the region are not
missed [13,16,44,45]. Snakes have received little attention in land use changes studies [46,47],
despite the fact that habitat loss and degradation are one of the main factors driving declines in
reptile populations [48–51]. Some studies have shown that habitat loss and the spatial patterns
of remaining vegetation affect the physical condition, as well as the distribution of snakes in
the landscape [52,53]. Moreover, snakes are killed by humans, despite their important role as
prey and predators in ecosystems [54]. Indeed, unpopular animals like snakes have attracted
less attention than charismatic vertebrates [55–57], and as a consequence, conservation action
plans rarely consider snakes. While PAs are important to preserve snake communities unaf-
fected by human modifications, few reserves have been established that represent snakes ade-
quately [53,58,59]. The Dry Chaco is not an exception to this scenario. In fact, compared to
other taxonomic groups, we know little about the natural history, ecology and distribution of
most snake species associated with this region [53]. Thus, analyzing the suitable habitats of
endemic snakes in the Dry Chaco forest is a crucial step to evaluate and identify conservation
priority areas that require immediate protection actions [47].

Nevertheless, delimiting the distribution of a species is a complex task that involves many
determining both factors, both biotic and a biotic, which are difficult to assess through fieldwork
[60,61]. Generally, species distribution ranges are frequently represented by polygons [62] and are
often used for conservation decisions [16]. However, these approaches suffer from the effects of
multi-level conflicts among scales and resolutions and are likely to frequently include many areas
not holding populations or exclude others where populations actually occur [60,63]. Thus, data-
driven techniques (e.g., Ecological Niche Models [ENMs]) have been developed to predict the
potential distribution of species, via identifying suitable areas for species occurrence, as well as
pointing to the most relevant bioclimatic variables that predict occurrence [61,64,65].These
approaches offer widely accepted methods for summarizing species’ distributional patterns for
conservation applications [63,66]. Therefore, the use of ENMs and systematic conservation plan-
ning methods are useful to achieve conservation goals as they provide critical information on spa-
tial areas required for species conservation [67] and guide conservation decision-making
processes regarding actions and policies needed for the long-term protection of biodiversity.

The main objective of this study is to analyze the relationship between the expansion of the
agricultural frontier and the distribution of endemic snake species in the Dry Chaco forest. To
accomplish this, we use geographical information of 12 snake species endemic to Dry Chaco
forest as focal group, and employ ENMs and conservation planning tools. We address the fol-
lowing questions: (1) what are the predicted geographic distributions of the endemic snakes in
Argentinean dry Chaco?; (2) which bioclimatic variables that best determine these snake spe-
cies distributions?; (3) how has agricultural expansion impacted distribution of snake species?;
(4) what are the priority areas for conservation of these endemic snakes and what proportion
of these areas are represented in the current protected areas system? [68–71]; and, (5) how has
human activity (human footprint) influenced the spatial prioritization of an optimal/ represen-
tative priority area network?

Materials and methods

Occurrence data

We selected 12 snake species, which are endemic to the Dry Chaco forest as focal taxa
(Table 1). We obtained occurrence records from reviewing museum collections, reliable
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literature records and from high-intensity sampling in Argentina for over 28 years (S1 Table).
These data were complemented with information obtained from the Global Biodiversity Facil-
ity network (GBIF) [72]. Using multiple data sources provided complementarity and served to
minimize biases in our data [59,73].Because the information of occurrence records for species
has many shortcomings, we filtered the information to avoid inadequate taxonomy and iden-
tify problematic or imprecise locality records [74]. We compared the spatial distribution of
records obtained with the ranges for species, checking this information with help of specialists
(Giraudo pers. obs.), and removed all those mismatched records. For specimens without geo-
graphic coordinates, we used Google Earth to define a georeferenced location using informa-
tion provided with the record. We omitted, however, those records where geographical
information could not be verified. We compared these museum and on-line data with expert
maps and our knowledge [53] and determined that these data resulted in well-represented geo-
graphic coverage of the focal taxa. The combination between expert maps that are in fact an
excellent resource for delimiting the broad areas outside which a species is not expected to
occur [75] and the well-understood distributions by specialists could be considered the best
approach to define empirical geographical distributions [76,77]. Then, using ’ecospat’ package
in R software [78–80], we removed records repeated in multiple sources and retained only
unique localities within a vicinity of 10 km2.

Climatic data

The dry Chaco forest [18] is seasonal with a dry winter and a rainy summer [20]. We obtained
data layers from the WorldClim v1.4 at 30” spatial resolution, which includes a set of 19 climatic
variables summarizing aspects of precipitation and temperature for the earth’s surface for the
period 1950–2000 [81]. After a review of the natural history of the species, a jackknife test of var-
iable importance provided by Maxent (i.e. variables with highest gain when used in isolation
and variables that decreased the gain the most when they were omitted) and a Pearson correla-
tion analysis between all the variables, we discarded highly correlated variables (r> 0.8) and
selected the following seven variables: BIO2 = Mean Diurnal Range; BIO4 = Temperature

Table 1. Summary of the bioclimatic variables with their percentage contributions (%) in models predicting snake distribution.

Species N Percentage contribution per variable

BIO2 BIO4 BIO5 BIO6 BIO13 BIO14 BIO15

Boa constrictor occidentalis 44 10 0 70.8 7.6 9.7 0 1.9

Epicrates alvarezi 34 23.2 3.3 56.5 12.1 4.8 0 0

Erythrolamprus albertguentheri 16 16.5 0 20.9 0 5 9 48.5

Erythrolamprus sagittifer modestus 45 0 8.2 77.6 0 2.6 1.1 10.5

Leptodeira annulata pulchriceps 15 0 0 100 0 0 0 0

Philodryas baroni 63 46.2 3.7 17 16 14.1 0.6 2.4

Philodryas erlandi 27 0 0 90 0 8.9 1.1 0

Phimophis vittatus 22 5.2 2.1 81.2 0 11.5 0 0

Psomophis genimaculatus 6 0 0 84.9 15.1 0 0 0

Sibynomorphus lavillai 8 0 0 99.8 0 0.2 0 0

Thamnodynastes chaquensis 8 0 0.9 81.4 0.2 17.1 0.4 0

Xenodon pulcher 72 0.2 7.3 66.3 3.6 15.9 5.5 1.2

N = number of occurrence records used in models. BIO2 = Mean Diurnal Range (Mean of monthly (max temp—min temp)); BIO4 = Temperature Seasonality

(standard deviation ⇤100); BIO5 = Max Temperature of Warmest Month; BIO6 = Min Temperature of Coldest Month; BIO13 = Precipitation of Wettest Month;

BIO14 = Precipitation of Driest Month; BIO15 = Precipitation Seasonality (Coefficient of Variation).

https://doi.org/10.1371/journal.pone.0221901.t001
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Seasonality; BIO5 = Maximum Temperature of Warmest Month; BIO6 = Minimum Tempera-
ture of Coldest Month; BIO13 = Precipitation of Wettest Month; BIO14 = Precipitation of Dri-
est Month; and BIO15 = Precipitation Seasonality. Layers were prepared and processed using
QGIS software v. 2.16.2 [82].

Ecological niche models

Because dispersal plays a crucial role in the distribution of organisms and should be considered
in species modeling [83], we defined an area for model calibration (or M in BAM diagram;
[61]) that reflects the accessible historical area for each species. This calibration area was cre-
ated by a background polygon that corresponded to the extension area for dry Chaco ecore-
gion. Such consideration assumed that this region represent the species’ tolerance limits,
historical barriers to dispersal, and intrinsic need for certain abiotic conditions [84].

We modeled habitat suitability––based on ENM principle––for each species using a maxi-
mum entropy method, MaxEnt v3.3.3K [85]. MaxEnt software calculates the potential geo-
graphic distribution for each species linking spatial records and bioclimatic variables [85,86].
Although recent studies have shown that there are uncertainties when forecasting species dis-
tributions depending on the algorithm used [87,88], we decided to use MaxEnt over other
available methods given its proven high performance and suitability for presence-only data
[64,89,90]. We used ’ENMeval’ package [91] to perform a calibration protocol assessing the
model complexity. For this step, models for species with small data sets (<10 records), we
applied the n-1 jackknife method proposed by Pearson et al. [89], where each occurrence was
used for testing once, while the other records were used to train the model [89,91,92]. For spe-
cies with more than 10 records, we used an equivalent of the ’cross-validate’ method in Max-
Ent software, where the ’random k-fold’ method partitions occurrence localities randomly into
a specific number of bins (in this case we used k = 5 bins). We ran models (using randomly
sub-sampled 50% of the data as testing) under varying model response types (feature classes: L,
Q, LQ), different values of regularization multiplier values (RM: 1, 2.2, 4.6) [93] and perform-
ing 500 iterations with 500 replicates for bootstrap analysis [94]. We selected only linear and
quadratic features classes because in general we had species with few records [95]. With the
ENM evaluate function we obtained the Area Under the Curve (AUC) of the Receiver Operat-
ing Characteristic (ROC) plot [96] based on the test data (AUCTEST). To quantify the degree to
which models overfit the data, we calculated three metrics: (1) the difference between training
and testing AUC (AUCDIFF), (2) the Minimum Training Presence 10 omission rate (ORMTP)
and, (3) 10% training omission rate (OR10). The final best model was selected using the Akaike
Information Criterion (AICc) [91]. Likewise, we used the platform NICHE TOOLBOX to
obtain the values of partial-ROC [94,97] for each final model obtained. Unlike AUC, Partial-
ROC allows a differential weighting of omission and commission errors and focuses on mean-
ingful predictions for model evaluation. Finally, the obtained continuous models for the suit-
ability conditions of species were converted into binary maps (presence/absence) considering
a threshold value that maximized the True Skill Statistics (TSS). For that, we elected predic-
tions corresponding to 5% of omission error.

Spatial analyses

To evaluate how land use change affected the potential distribution of snake species in the
Argentinian Dry Chaco, we performed an analysis considering two approaches: (a) total
reduction area for the species and (b) estimating the reduction area per year from 1976 to
2017. We used a map of the expansion of the agricultural frontier from 1976 to 2017 for Argen-
tinian Dry Chaco Forest (available at http://geoportal.idesa.gob.ar/). For this step, we
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considered only the natural intact forest areas, whereas disturbed areas (i.e. urban areas, defor-
ested areas, farming areas, and pastureland for cattle ranching) were not included [98,99].
Then, we assessed the importance of PAs for the obtained models calculating (in km2) the pro-
portion of potential distribution areas within the current PAs system. Shape file of PAs were
downloaded from the National Geographic Institute (IGN-ARGENTINA, available in http://
www.ign.gob.ar/). Likewise, to assess if the current PAs system contained the most suitable
bioclimatic conditions for the species, we performed a Kolmogorov-Smirnov (KS) test in R
[100] verifying if values differed significantly between within and without protected areas
[101].

Spatial conservation prioritization analyses

We identified conservation priority areas using ZONATION 4.0 Software [40]. ZONATION
algorithms generate a hierarchical priority ranking of the landscape based on the biological
values of the spatial units (cells). Overall, ZONATION uses a raster for each biodiversity fea-
ture (herein snake species and anthropic variables), where each pixel contains information of
either the occurrence or intensity of each feature [102]. The way the value of ‘loss of conserva-
tion’ is aggregated across features (occurring in a pixel) depends on the so-called ‘cell-removal’
rules. In this sense, the software produces a complementarity-based and balanced ranking of
conservation priority over the entire landscape maximizing the species’ occurrence and con-
sidering the different ‘penalization’ variables used [40,102]. For a more detailed explanation
about the use of ZONATION see Di Minin et al. [102]. In this work, we compared scenarios
with two different options of marginal aggregate loss: (1) the Additive Benefit Function (ABF),
which emphasizes species richness minimizing extinction risk; and (2) the Core Area Zonation
(CAZ), which emphasizes areas with both the highest suitability scores and the lowest uncer-
tainty values for each species [102–104].

During the priority analysis, Zonation considers species priorities (weights), land cost, habi-
tat quality, measures of connectivity, etc. [69,105,106]. We used as biodiversity features the
probability of occurrence maps for each snake species and we weighted species assigning a
high value (5) for threatened species and a low value (1) for those categorized as low conserva-
tion concern according to the IUCN (2018) and Giraudo et al. [53]. To promote the selection
of optimal areas for current PAs expansion, we used as a hierarchical mask [102] a layer of
national and provincial PAs (IUCN and UNEP-WCMC 2012). In this sense, the program
identifies the best part of the landscape for an optimal and balanced expansion of existing PAs
(which are preferably selected as the first option in the analysis), and also to compensate for
specific ecological losses and satisfy the targets with minimum cost [102]. Given that most
snake species cannot adequately be protected inside highly modified areas, we assigned nega-
tive weights or ‘penalization’ value to pixels covered by crops or urbanized areas. This last step
prevented the software from selecting highly modified areas and assigning high conservation
values to such areas. In this sense, considering that human influence tends to diminish habitat
quality, and therefore, the potentiality for conservation, we used the Argentina Human Foot-
print layer [107] as a negative variable, ‘penalizing’ those pixels with high human influence.
This Human Footprint layer (HII) was created considering data layers of human population
pressure, human land use and infrastructure, and human access [108]. We assigned negative
weights to these features (i.e. pixels in highly modified areas) so that the sum of the positive
and negative weights was zero, allowing a balanced solution for prioritization [104,109]. In
order to evaluate the influence of expansion of the agricultural frontier in the largest area of
the Dry Forest, determining the relative importance of current PAs and identify complemen-
tary priority conservation areas for long-term protection of endemic snakes, we performed
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four alternative analyses in ZONATION. For the first priority areas analysis, we used only all
snake species distributions, equally weighted, to obtain information about the most important
areas to conserve in an ideal scenario without deforestation and fragmentation habitat. Then,
in a second approach, we did an analysis considering all species distributions, also equally
weighted, but with the PAs as hierarchical mask, which allowed us to identify where comple-
mentary areas to PAs occur, assuming fragmentation and habitat loss were not yet a current
problem for the species. Thirdly, to identify the best opportunities for an optimal and balanced
expansion of existing PAs which compensates specific ecological losses and satisfies the targets
with minimum cost, we developed a priority areas analysis considering all species distribu-
tions, individual weighted according to the IUCN status, with the PAs as hierarchical mask
and using the Human Footprint layer as a negative variable. Finally, to determine the relative
importance of current PAs within the species distribution considering the expansion of the
agricultural frontiers, we performed an analysis based on species distribution, individual
weighted, using the Human Footprint as negative variable but without the PAs as hierarchical
mask. After running these prioritization analyses, we plotted performance curves for all
approaches considering the general patterns. These performance curves quantify the propor-
tion of the original occurrences retained for each biodiversity feature at each top fraction of
the landscape selected for conservation [40,102]. Finally, we determined the representativeness
of (1) the current PAs network and (2) the top priority 17% of the landscape under protection
(this percentage represents the AICHI targets; [110]).

Results

We obtained 706 historical occurrence records for the 12 focal endemic snake species from
which 360 independently records were used in ENMs (Table 1; S1 Table). The number of
occurrence records used for each species and the percentage of contribution for bioclimatic
variables in the models are summarized in Table 1. Overall, we observed that the maximum
temperature of the warmest month (BIO 05) was the most important variable for almost all
species (except E. albertguentheri and P. baroni). In these latter two species, precipitation sea-
sonality (BIO 15) and diurnal temperate range (BIO 02) emerged as the most relevant variables
respectively.

In general, models for each snake species performed well against the validation data (Fig 1
and Table 2). The Partial ROC bootstrap tests indicated significant ratio values (mean AUC
ratios�1.4), low standard deviations and significant p-values (p<0.001) in all the models.
Likewise, the Jackknife test (considering the ROC plot [96] based on the test data [AUCTEST])
showed that models also tended to be statistically significant (p< 0.01) for those species with
<10 occurrence records. These results demonstrate that all models performed better than ran-
dom (Table 2), and, thus, performed well in estimating potential distributions of species.

Argentinian Dry Chaco has experienced a 15% reduction in area between 1976 (786,790
km2) and 2017(669,410 km2) (Fig 2). We observed that models predicted, on average, a distri-
butional range extent of ~447,000 km2 for focal species (min 204,828 km2 [E. alvarezi]–max
748,630 km2 [P. vittatus]), with at least five species (B. constrictor occidentalis, E. sagittifer mod-
estus, P. vittatus and X. pulcher) with large areas of distribution (>500,000 km2). The two most
spatially restricted species were E. alvarezi and L. annulata pulchriceps (Table 3). Likewise, we
observed that Argentinian Dry Chaco represent, on average, ~74% of species distribution spe-
cies with only P. genimaculatus and T. chaquensis with less than 60% of distribution within
Argentinian Chaco. However, when we considered the effects of fragmentation and habitat
loss, we observed an average ~73% reduction (min 64.56%[E. alvarezi]–max 81.72% [E. albert-
guentheri]) in suitable areas for snakes species in the Dry Chaco forest. The three species with
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Fig 1. ENMs for snake species in the Argentinian Dry Chaco considering deforestation since 1976 to 2017. Warmer colors (red, orange and yellow) indicate higher
habitat suitability while colors from green to white indicate the lowest predicted values. Black color indicates deforested areas. (a) B. constrictor occidentalis; (b) E.
alvarezi; (c) E. albertguentheri; (d) E. sagittifer modestus; (e) L. annulata pulchriceps; (f) P. baroni; (g) P. erlandi; (h) P. vittatus; (i) P. genimaculatus; (j) S. lavillai; (k) T.
chaquensis; (l) X. pulcher.

https://doi.org/10.1371/journal.pone.0221901.g001
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most habitat loss estimated were E. albertguentheri, T. chaquensis, and E. sagittifer modestus;
while that snakes less affected were P. genimaculatus, P. baroni, E. alvarezi. The general trends,
from 1975 to 2019, for the reduction in areal extent for the Argentinian Dry Chaco forest and
species’ potential distribution are summarized in the Fig 2.

Using IUCN criteria, all of our focal snake species are not considered to be threatened or
have not been evaluated (Table 4) [53]. Yet, we found that only a small portion of snakes’

Table 2. Mean AUCTRAIN, AUCTEST, AUCDIFF and Partial ROC (AUCRATIO) for snake species models with the minimum AICc value.

Species FC RM AUCTRAIN AUCTEST VarianceAUCTEST AUCDIFF VarianceAUCDIFF ORMTP OR10 Mean value for
AUCRATIO

sd
AUCRATIO

B. constrictor
occidentalis

LQ 2.2 0.8721 0.8539 0.0027 0.0234 0.0023 0.0472 0.1806 1.5722 0.05

E. alvarezi LQ 4.6 0.9136 0.8933 0.0015 0.0226 0.0017 0.0571 0.1762 1.8145 0.05

E. albertguentheri L 2.2 0.9357 0.9334 0.0016 0.0122 0.0008 0.0667 0.1333 1.9626 0.02

E. sagittifer modestus L 2.2 0.8657 0.8494 0.0037 0.0250 0.0031 0.0444 0.1556 1.4922 0.02

L. annulata
pulchriceps

LQ 4.6 0.7969 0.7969 0.0065 0.0184 0.0041 0.0667 0.1333 1.6301 0.06

P. baroni LQ 1 0.9276 0.9182 0.0005 0.0101 0.0007 0.0154 0.1462 1.5683 0.11

P. erlandi L 1 0.8738 0.8555 0.0060 0.0324 0.0045 0.1133 0.1867 1.5954 0.07

P. vittatus L 1 0.9169 0.8982 0.0069 0.0343 0.0033 0.1000 0.1400 1.7256 0.13

P. genimaculatus L 1 0.9182 0.8976 0.0283 0.0545 0.0161 0.3333 0.5000 - -

S. lavillai LQ 2.2 0.7958 0.7534 0.0692 0.0848 0.0478 0.2500 0.3750 - -

T. chaquensis LQ 4.6 0.7946 0.8040 0.0246 0.0365 0.0044 0.2857 0.2857 - -

X. pulcher LQ 1 0.8733 0.8593 0.0155 0.0421 0.0075 0.0143 0.1229 1.4737 0.02

FC: feature class (L = linear, Q = quadratic); RM: regularization multiplier; AUCTRAIN and AUCTEST: Area Under the Curve based on train and test data; Variance

AUCTEST; Variance AUCDIFF: the difference between training and testing AUC; ORMTP: Minimum Training Presence omission rate (ORMTP); OR10: 10% training

omission rate; AUCRATIO: partial-ROC.

https://doi.org/10.1371/journal.pone.0221901.t002

Fig 2. Percentage of the remaining distributional area for snake species and for the Argentinian Dry Chaco forest
from 1976 to 2017.

https://doi.org/10.1371/journal.pone.0221901.g002
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ranges occur within existing PAs from Argentina (Table 4, Fig 3). On average, we observed
that 3.27% (min: 0.21 [E. alvarezi]–max: 5.9 [P. genimaculatus] %) of predicted distributions
by species are within some category of protection. Also, for all focal species, the areas inside
PAs had significantly lower suitability values compared with the areas outside PAs (Table 4).

Prioritization scenarios for snake species based on ZONATION analyses are shown in Fig
4. As a general pattern, the priority areas change when the cost of the HII is considered. The
current PAs cover 1.69% of the Argentinian Chaco forest. In all scenarios, this percentage rep-
resented on average ~3% (max. Control scenario: 2.99% in both ABF and CAZ; min. Scenario
2: 1.58%ABF and 1.56%CAZ) of the predicted distributional ranges of snakes. When we mod-
eled the AICHI landscape goals of 17% of area protected, all snake species benefited markedly
from increase in protected areas. The value, not surprisingly, was highest (~28%) in the

Table 3. Potential distribution area (km2) of snake species in the Dry Chaco forest.

Species Mean
(max.tss)

Chaco area
(km2)

Argentinian
Chaco area (km2)

% within
PAs

(Argentina)

B. constrictor occidentalis 0.4325 531,585 480,379 3.67

E. alvarezi 0.5647 204,828 200,603 0.21

E. albertguentheri 0.4658 388,267 316,548 2.14

E. sagittifer modestus 0.3886 695,184 480,195 3.07

L. annulata pulchriceps 0.6394 274,455 239,425 2.83

P. baroni 0.3772 342,248 325,599 2.74

P. erlandi 0.4074 440,746 311,817 3.87

P. vittatus 0.4217 748,630 452,364 3.92

P. genimaculatus 0.5300 321,559 109,622 5.90

S. lavillai 0.6491 363,658 236,147 2.21

T. chaquensis 0.6459 489,898 291,929 4.62

X. pulcher 0.3265 570,273 430,350 4.00

Also shown is the threshold value given by the True Skill Statistics (Mean max.tss) and the percentage of the distribution within Argentinian protected areas (PAs).

https://doi.org/10.1371/journal.pone.0221901.t003

Table 4. Comparison between the suitability values (Mean± SD) outside and inside PAs.

Species Outside PAs
Mean± SD

Inside PAs
Mean± SD

Kolmogorov-Smirnov test Giraudo et al. (2012) IUCN (October 2018)

B. constrictor occidentalis 0.6361±0.1343 0.5761±0.1589 D = 0.2689, p < 0.000 AM Not evaluated

E. alvarezi 0.6368±0.1289 0.5585±0.1463 D = 0.2765, p < 0.000 AM Not evaluated

E. albertguentheri 0.4579±0.2596 0.4368±0.3001 D = 0.1915, p < 0.000 NA LC

E. sagittifer modestus 0.6385±0.1405 0.5285±0.1842 D = 0.3741, p < 0.000 NA LC

L. annulata pulchriceps 0.6205±0.1018 0.5093±0.2418 D = 0.2988, p < 0.000 NA Not evaluated

P. baroni 0.4956±0.2275 0.4561±0.2418 D = 0.0988, p < 0.000 IC Not evaluated

P. erlandi 0.5101±0.2669 0.3781±0.2921 D = 0.2303, p < 0.000 NA LC

P. vittatus 0.4978±0.2582 0.3293±0.2533 D = 0.2621, p < 0.000 - Not evaluated

P. genimaculatus 0.1508±0.1199 0.0886±0.0987 D = 0.2686, p < 0.000 IC Not evaluated

S. lavillai 0.6067±0.1141 0.4879±0.1795 D = 0.3017, p < 0.000 NA Not evaluated

T. chaquensis 0.5112±0.2091 0.3792±0.2609 D = 0.2784, p < 0.000 NA Not evaluated

X. pulcher 0.5532±0.2016 0.5615±0.2164 D = 0.1197, p < 0.000 NA LC

Also shown are the values of Kolmogorov-Smirnov (KS) test and the Argentine categorization [53] and conservation status (the IUCN Red List of Threatened Species-

October 2018) of snakes in the Dry Chaco forest. AM: Threatened; IC: Insufficiently Known; NA: Not Threatened; LC: Least Concern.

https://doi.org/10.1371/journal.pone.0221901.t004
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scenario without deforestation and lower under more realistic scenarios that incorporated
land use change and species priorities [Scenario 2: 20.38% ABF and 20.19% CAZ] (Fig 5A and
5B). Further, the representativeness of distribution of snakes’ species was greatest in HII sce-
narios [Scenario 3: 23.05% ABF and 20.32% CAZ] (Fig 5A and 5B). Moreover, considering a
17% protection goal, the priority areas identified in Scenario 2 showed spatial patterns consis-
tent for both algorithms and slightly different to that from Scenario 3, which included more
priority areas in the center (ABF) and south (CAZ) of the Dry Chaco forest (Fig 6). Finally,
consensus areas among scenarios can be found adjacent to current PAs while other PAs are
not found to be adjacent with priority selected areas regardless of model scenario (Fig 6).

Discussion

Here we present for the first time how expansion of the agricultural frontier has potentially
impacted the distribution of endemic snake species in the Dry Chaco forest. Further, we evalu-
ate the degree with which those species are represented in the current protected area system in
the Argentinian Chaco and propose locations of high priority areas for snake conservation in
the region. In the paragraphs below we discuss some of the key results including the reduction
of potentially suitable habitat for snakes, but also the potentially limited value of the current
protected area system to conserve quality habitats for endemic snakes of Dry Chaco forest.

Impacts of deforestation and expansion of the agricultural frontiers

The Dry Chaco is severely threatened due to the significant transformation of forest for agri-
culture and timber production. In the last decades, the growing demand for agricultural prod-
ucts and the new “extreme weather resistant” variety of crops have led to an exponential
increase in areas under crop production [22,111]. In Argentina, which harbors a large portion
of Dry Chaco forest, deforestation alone has resulted in a 15% reduction (117,380 km2) in the
past four decades (Fig 2). Less easily measured is the percent of Dry Chaco areas, which have

Fig 3. Potential distribution areas (in km2) of snake species in Dry Chaco forest. Blue bars: distributional range
predicted for each snake species in the Dry Chaco forest; Red bars: distributional range predicted for species in
Argentinian Dry Chaco forest considering habitat loss/deforestation; Black bars: distributional range predicted within
protected areas.

https://doi.org/10.1371/journal.pone.0221901.g003
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not been transformed, but may have experienced degradation due to escaped fires, logging,
introduction of invasive species, and other factors. These habitat loss and degradation pro-
cesses, together with the limited percent of Chaco in protected status (1.69%), highlight the
present need to direct conservation planning efforts that consider and evaluate the trade-offs
between conservation and economic development.

Evaluating the impact of deforestation and expansion of agricultural frontier on snakes is
hampered by the limited information on the natural history and distributions of many snake
species in the Dry Chaco forest. Indeed, for the majority of our focal species, IUCN does not
have sufficient information to categorize the conservation status of the species (Table 4). Par-
ticularly under such conditions, the use of ENMs to predict potential distributions has become
a valuable tool in conservation planning, and has been used for other taxa in Argentinean Dry
Chaco context [16,112]. Using results from ENMs, we demonstrated that the increase in defor-
estation rates in the Argentinian Dry Chaco over the last four decades have resulted in a dis-
proportionate decrease in the distribution of nearly all snake species analyzed (Fig 1 and Fig

Fig 4. Priority areas for focal snakes distributed in the Argentinian Dry Chaco under different prioritization scenarios. In all scenarios we compared the
outputs that emphasized species richness minimizing extinction risk [Added Benefit Function, ABF (left)] and emphasized areas with both the highest suitability
scores and the lowest uncertainty values for each species [Core Area Zonation CAZ (right)]. (a-b) Control scenario (species equally weighted); (c-d) Scenario 1:
species equally weighted + PAs; (e–f) Scenario 2: species individual weighted + PAs + cost (Human Footprint—HII); (g-h) Scenario 3: species individual weighted
+ cost (HII). The color scheme shows the nested ranking on a map. Ranking the biological value of the site: 2% high priority (light red); 2–5% (dark red); 5–10%
(orange); 10–25% (yellow); 25–50% (light blue); and 50–80% (blue); 80–100% (or the least valuable 20%) (dark blue).

https://doi.org/10.1371/journal.pone.0221901.g004
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2). This decreasing distribution has also been demonstrated for Leptodactylus species (Anura)
with at least 25% of their geographic range occurring in the Dry Chaco. In this work, the
potential distribution area of these species decreased between 16% and 10% approaching with
the deforestation rate from 1976 to 2013 [37]. Also, this loss was even more relevant for the dis-
tribution of species, which had already been transformed to agriculture in the last 40 years
experienced. However, not all species respond in a similar way to forest loss and degradation
as differences in natural history among the species may result in greater or lower risk. For
example, generalist or fossorial snakes, such as E. sagittifer modestus, P. vittatus and X. pulcher,
which tolerate a wide range of bioclimatic conditions, may be more able to adapt to trans-
formed and degraded environments [46,113]. Nonetheless, these areas which likely include
periurban or urban zones [47], can represent other risks as a result of negative interactions
with humans which tend to fear and indiscriminately kill snakes [55,114]. In contrast, special-
ist snake species with restricted bioclimatic conditions, such as B. constrictor occidentalis and
E. alvarezi, are expected to have increased vulnerability with changes in habitat conditions
[46,113]. For example, studies have shown that loss of habitat affects body condition, clutch
size and testicular volume of B. constrictor occidentalis [52,53]. Consequently, the natural his-
tory of the species is important to consider in management and conservation planning, but
was beyond the scope of the current study.

Role of argentinian protected areas for snake conservation

The current protected area system in Argentinian Dry Chaco is likely inadequate for long-
term protection of most of the endemic snake species studied here for several reasons. First,
only 1.69% of the Argentinian Dry Chaco forest is currently under protection. Despite this, the
current PAs system represents, on average, 3.27% of snakes predicted distributions. Yet, this is
still a very small amount of the range of the potential distribution in the Dry Chaco. In some
cases, such as the threatened (AM) E. alvarezi, only 0.21% of their predicted range is includes

Fig 5. Performance curves of the spatial prioritization solutions for both removal rules ABF [Added Benefit Function] (a) and CAZ [Core Area Zonation] (b).
Each line represents a scenario [Control scenario: species equally weighted; Scenario 1: species equally weighted + PAs; Scenario 2: species individual weighted + PAs
+ cost (Human Footprint-HII) and; Scenario 3: species individual weighted + cost (HII)] showing the proportion of landscape protected and its corresponding average
species range protected. The vertical lines represent current proportion of land in PAs (1.69%) and the recommended AICHI target (17%) [110].

https://doi.org/10.1371/journal.pone.0221901.g005
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in the PAs (Fig 3). Secondly, our results indicated that the areas inside the PAs generally con-
tained lower suitability values compared with areas outside them (Table 4). Therefore, the cur-
rent PAs not only provide very limited spatial protection for these endemic snakes, but also
protect habitats of apparently less optimal bioclimatic conditions. These results are consistent
with studies that have analyzed the role of PAs in the protection of other groups of vertebrates
in the Chaco forest. For example, a study for 63 vertebrate species (21 amphibians, 20 mam-
mals and 22 birds) with at least 70% of their distributions within the Gran Chaco, found that
current PAs represent on average 9% of the total distribution of endemic species [47]; also, the
PAs protects around 5% of the potential distribution of Leptodactylus species (Anura) [37].
Moreover, comparing the control map with the three alternatives scenarios (Fig 4), our spatial
conservation prioritization revealed that the current PAs system of the Argentinian Dry Chaco
did not capture the most suitable areas for endemic species of snakes, and in fact, were notable
in their failure to align with more suitable locations.

Fig 6. Maps showing the 17% of priority conservation for ABF (Added Benefit Function) and CAZ (Core Area Zonation) in Scenario 2 [Species individual
weighted + PAs + cost (Human Footprint-HII)] and; Scenario 3 [Species individual weighted + cost (HII)]. Red pixels correspond to the consensus areas
selected by both CAZ and ABF prioritization schemes for conservation snakes and which also complement current PAs system of the Argentinian Dry Chaco
forest. Those selected by only one prioritization scheme are shown in green (ABF) or orange (CAZ).

https://doi.org/10.1371/journal.pone.0221901.g006

Selecting priority areas in the Dry Chaco forest before the continuous expansion of the agricultural frontier

PLOS ONE | https://doi.org/10.1371/journal.pone.0221901 September 10, 2019 14 / 23

https://doi.org/10.1371/journal.pone.0221901.g006
https://doi.org/10.1371/journal.pone.0221901


The PAs in Argentina are apparently inadequate to protect these endemic snakes and other
vertebrates, this is not surprising given that information on biodiversity and habitat were not
used in the creation of the PAs. Further reducing the conservation value of these PAs is the
increasing fragmentation of land adjacent to these lands, as well as poor legal-institutional
security and weak or inexistent management programs [8]. Lack of planning and design in
selection of PAs has resulted in inefficiency not only in the investment of human and financial
resources but also in terms of conservation value of the PAs [8,30].

The prioritization analyses conducted in this study were consistent in identifying the north-
western and central parts of the Dry Chaco as high priority areas and the southern Chaco,
where the forest is much more degraded due to anthropogenic actions [25,115], as the areas
with the lowest priority ranking (Fig 4). These scenarios differed in a number of ways includ-
ing whether or not they included information on current land use (i.e., incorporated a Human
Footprint Index), included PAs in prioritization selection, considered species equally or
ranked them according to threat status. Further, how areas were selected for each scenario was
done in two ways–minimizing species extinction risk (ABF) and incorporating information
about suitability of areas and uncertainty (CAZ). When we compared the performance curves
of the different scenarios, the representativeness of the current PAs system covered, on aver-
age, only a small portion of the distribution of endemic snake species [Control: 2.99 (ABF) and
2.99 (CAZ); Scenario 1: 1.78% (ABF) and 1.72% (CAZ); Scenario 2: 1.58% (ABF) and 1.56%
(CAZ); Scenario 3: 2.80% (ABF) and 2.50% (CAZ)] (Fig 5A and 5B).

We suggest that the most realistic scenario from which to draw conclusions and guide
future conservation planning is Scenario 2, which incorporated species individual weighted
+ PAs + Human Footprint (HII) as a cost layer. This scenario results in the most realistic solu-
tion by selecting well-conserved Dry Chaco forest areas for snake conservation in Argentina
(Fig 4E and 4F). When 17% AICHI targets for land protection were incorporated, this scenario
conserved an average 20.38% (ABF) to 20.19% (CAZ) of snakes’ potential distribution; Sce-
nario 3 presented similar result for CAZ outputs; while the other scenarios (Control and Sce-
nario 1) accounted for above 20% of protection but ignoring current patterns of fragmentation
and habitat loss (Fig 5A and 5B). For both ABF and CAZ outputs in Scenario 2, the highest
areas of prioritization were located on continuous native forest remains, many of which are
located in transitional areas between Dry Chaco and southern tropical Andean forest (i.e.,
Austral Yungas ecoregion). These transition zones with foothill forests may serve as corridors
to connect patches of remaining native forest between the western Dry Chaco and Yungas for-
ests. Currently, due to agricultural expansion, however, the connection between Yungas-
Chaco has been reduced from 1,035 km to only 162 km [116–118] and, as a consequence, this
transition zone is highly threatened [26,119]. Overall, our priority areas coincided with a spa-
tial prioritization analysis made for the Gran Chaco using ZONATION [16]. However, in this
study, reptiles were not considered, thus our results complement and highlight the relevance
of these areas.

The adequacy of the current PAs for snakes conservation is highlighted by comparing pri-
ority area selection between Scenarios 2 and 3 (Fig 6). While selection is constrained to com-
plementing PAs in Scenario 2 (i.e., adds onto existing PAs), no such constraint exists in
Scenario 3. As a consequence, there is less overlap of priority areas with current PAs in Sce-
nario 3. This likely occurs because of generally lower suitability values for snakes found inside
protected areas (Table 4). Further, releasing the constraint of parks in selecting priority areas
appears to increase the sensitivity to selection rules (ABF and CAZ) although considerable
consensus occurs between the two (Fig 6). This difference is likely also a result of the impor-
tance of considering suitability in site selection and the existing human impact in the current
PAs system. According to that, Argentinian government should invest economic resources to
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working in the strengthening of action plans and management of the PAs. Therefore, these
results highlight the need to not only conserve existing protected areas but also expand the cur-
rent PAs to complement and update the current environmental policies.

Our results, while highlighting several areas of concern and making some specific recom-
mendations, have a number of limitations. Like other studies that have applied species distri-
bution models, our study also is limited by (1) lack of data for some species, (2) potential
geographic bias of data and, (3) lack of true absences [86,90,96]. Although we have worked on
solving these issues, we recognize the limitations presented by the low number of records for
some species. In our approach, we evaluated each model with parameters (feature classes and
regularization multiplied) designed to reduce model complexity and improve model
performance.

Final considerations

The Chaco forest is one of the most threatened ecosystems in the world, with a high rate of
deforestation and fragmentation [16]. The spatial pattern of human activity is a relevant factor
in conservation planning. With increasing human activity, the possibilities to adequately con-
serve biodiversity are decreasing [120]. However, our spatial prioritization approach demon-
strates that it is still possible to complement the current protected areas network and promote
habitat connectivity. Our finding identifies spatial priorities that minimize conflicts with
human activities, a key issue in a threatened ecoregion characterized by the rapid transforma-
tion of natural areas due to the advancing agricultural frontier. Although this study was carried
out taking into account the agricultural expansion in Argentina, it should be noted that our
prioritization results identified high priority areas located near Bolivia and Paraguay. The cur-
rent situation of the Chaco forest in Bolivia and especially in Paraguay is quite similar to
Argentina [16,121]. Further study should extend this analysis into Bolivia and Paraguay and
include more taxa, climate change scenarios, regional habitat loss and remaining habitat con-
nections in the entire Gran Chaco region [16,20,29,36,37,52]. In addition, collaborative work
among countries is urgently needed to complement existing protected areas and to generate
comprehensive plans for expanding and connecting priority areas in the whole ecosystem. We
need immediate concrete actions taken by stakeholders and decision-makers, or, we will risk
losing the best opportunities to conserve the biodiversity of the Dry Chaco forest.
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(XLS)
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