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Abstract Using Relativistic Quantum Geometry we study
back-reaction effects of space-time inside the causal horizon
of a static de Sitter metric, in order to make a quantum ther-
modynamical description of space-time. We found a finite
number of discrete energy levels for a scalar field from a poly-
nomial condition of the confluent hypergeometric functions
expanded around r = 0. As in the previous work, we obtain
that the uncertainty principle is valid for each energy level on
sub-horizon scales of space-time. We found that temperature
and entropy are dependent on the number of sub-states on
each energy’s level and the Bekenstein—-Hawking tempera-
ture of each energy level is recovered when the number of
sub-states of a given level tends to infinity. We propose that
the primordial state of the universe could be described by a
de Sitter metric with Planck energy E, = m , ¢?, and a B-H

temperature: Ty = (2:1?—}3)
P

1 Introduction and motivation

A de Sitter space-time is the maximally symmetric vacuum
solution of Einstein’s field equations with a positive cosmo-
logical constant A, which corresponds to a positive vacuum
energy density and negative pressure. In the cosmological
context, it describes the exponential accelerated expansion of
the universe governed by the vacuum energy density. There
is evidence that the very early universe had a period of rapid
expansion, called inflation [1-4], well approximated by de
Sitter space-time. Our tiny present-day cosmological con-
stant currently accounts for about 68 % of the energy density
of the universe, and this fraction is growing as the universe
continues to expand. This means that we are entering a second
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de Sitter phase. The early, inflationary de Sitter phase had a
large cosmological constant and correspondingly tiny radius
of curvature. The future dark energy de Sitter will have an
energy set by today’s cosmological constant, and enormous
radius of curvature close to today’s Hubble scale [5].

In the standard relativistic description, matter (which is
described by the matter Lagrangian: L, in the Einstein-
Hilbert (EH) action), is responsible for the spatial curva-
ture of space-time, which is represented in the Einstein’s
equations through Gg. However, this description only takes
into account the expectation value in the physical system
under consideration. A better description must consider the
effects that quantum fluctuations produce in the background
space-time due to the retro-reaction, due to the fields that
we are considering in L. Such description must be non-
perturbative, because these effects could be very important
when we deal with strong fields, under extreme physical
conditions. Because of this, back-reaction effects are very
important in general relativity, and in particular, they are
essential to make a correct and accurate description of the
initial state of the universe, which is believed to be given by
a de Sitter metric. In this work we shall make a semiclas-
sical description of such back-reaction effects, without con-
sider non-commutative aspects of space-time, or the origin
of quantum spinor fields that originate these quantum effects
[6,7]. However, our semiclassical treatment should be suf-
ficient to describe correctly the quantum thermodynamics
inside the horizon of a de Sitter metric. A 4D de Sitter space
is an Einstein manifold since the Ricci tensor is proportional
to the metric: Ry, = % guv- It describes a vacuum solu-
tion of the Einstein’s equations with a cosmological constant
given by A = ;’—2 and a scalar curvature R = 4A = 12/a?,
such that « is the cosmological horizon. Therefore, a de Sitter
space-time describes an hyperbolic space for r < «.
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Many years ago, Bekenstein has argued that isolated stable
thermodynamic systems in asymptotically flat space-times
satisfies the universal entropy bound [8]: § < 2’;"‘15 where
o is the radius of an enclosed system with energy E. In
this work we shall use a recently introduced thermodynamic
description of space-time [9] in the study a Schwarzschild
black-hole, but now with the aim to explore the interior of
a de Sitter space-time (i.e., in the range r < «). We shall
use the formalism of Relativistic Quantum Geometry (RQG)
described in [10] and [11], which was revisited in Sect. 2. In
Sect. 3 we study back-reaction effects inside the causal hori-
zon of a de Sitter metric, with the aim to explore a quantum
thermodynamical description of energy, lengths, entropy and
the temperature. Finally, in Sect. 4, we develop some final
comments and conclusions.

2 Revisited back-reaction effects from boundary
conditions in the variation of the EH action

It is known that in the event that a manifold has a boundary
d.M, the action should be supplemented by a boundary term
for the variational principle to be well-defined [12,13]. How-
ever, this is not the only manner to study this problem. As
was demonstrated in [10, 11], there is another way to include
the flux around a hypersurface that encloses a physical source
without the inclusion of another term in the Einstein-Hilbert

(EH) action
} , ()

by making a constraint on the first variation of the EH action
8Sem = / d*xy/—g [58aﬁ (éaﬁ

gzﬂ RetwcTup) + g 5Rup| =0, )

SEH = — d4x A — |:

where k = 87 G /c*, ,3 = 25 = §algﬁ is the stress tensor
that describes matter and £ is the Lagrangian density. The
last term in (2) is very important because takes into account
boundary conditions. When that quantity is zero, we obtain
the well known Einstein’s equations without cosmological

constant. This element can be written as:
§PORyg = [W], — (8%°) . 6Ty + @) 6T, 3)

where g"‘ﬁ(SRaﬁ =80(x*) =A §°‘ﬁ8ga,3 is the flux of the 4-
vector sW" = SAFZE ghe— SAFZV &P that cross any 3D closed
manifold defined on an arbitrary region of the background
manifold, which is considered as Riemannian and is charac-
terized by the Levi-Civita connections. As in a previous work
[9] we must describe the variation of the connections with
respect to the background manifold, which is a Riemannian

@ Springer

one. We shall consider no-metricity on the extended mani-
fold. To extend the Riemann manifold we shall consider the
connections

o

rgyz{ﬁy}wrgy:{ﬁ“y}+ﬁa“g,gy. 4)

The last term is a geometrical displacement SF%‘V =
B o gpy, withrespect to the background (Riemannian) man-
ifold, described with the Levi-Civita connections. The par-
ticular case B = 1/3 guarantees the integrability of boundary
terms in (3). Here, o (x%) is a scalar field. In that follows we
shall denote: 0, = 0 ¢ as the ordinary partial derivative of o
with respect to x*.

The flux that cross the 3D-gaussian hypersurface, § ®, is
related to the cosmological constant and the variation of the
scalar field: do:

4
5 = —ZAdo 5)

In order for calculate § Ryg, we shall use the Palatini identity
[14]
o p— — o o
SRS . = 8Rgy = (arﬂa)ly = (51“/”)‘&. ©6)
A very important fact is that the fields §W® are invariant
under gauge-transformations sW* = §W* — V,®, where
8P satisfy [J§® = 0. Due to this fact, _it is possible to define
the Einstein’s tensor transformation Gog = Ggg — Agug,
which preserves the EH action
(_;a/g = —K faﬁ. (7)
The condition of integrability expresses that we can assign
univocally a norm to any vector in any point, so that it must
be required that g% SRup = VodW®. Of course, this is a
particular case of (3). In particular, the case g%/ 5Ra,3 =0,
gives us the standard Einstein’s equations: Gaﬁ + T, ap =0.
In this background must be fulfilled: Agyp = Zog:ydx? =
0. However, on the extended manifold, we obtain

R r . n
Sgaﬂ = gaﬂlydxy = _§(Gﬂgay + Uagﬂy)dxy’ ®)

where g, denotes the covariant derivative on the extended
manifold, once gaﬂ;y = 0. Therefore, the variation of the
Ricci tensor on the extended manifold will be

S8Ry = (8T BTEp)e

el ~
1

1
= § Vgou + 5 (oao,g + oﬂaa)

R 2
— 8ap (Veo—é + gavav)i| , )

such that the variation of the scalar curvature is: §R =
V. 8WH = V, 0" + 0,0". The cosmological constant A
is an invariant on the background manifold, but not on the
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extended one: A(o,04) = —4—11 (0q0% 4+ o), on which
behaves as a functional. By defying the action

W = /d4x\/—§ A(0, 0g). (10

If we require that §)/V = 0 we obtain that o is a free scalar
field on the extended manifold: Clo = 0. The scalar field o
describes the back reaction effects which leaves invariant the
action:

SEH =/d4x\/—§ |:£ —|—[::|
=/d4x [\/—ge*%“] {[zﬁu} e§"], (11)
K

and if we require that §Sgpy = 0, we obtain

2
R (12)
[ +4]
where o = o,dx" is an exact differential and V = /-2

is the volume of the Riemannian manifold. The relativistic
quantum algebra is given by [10, 11]

[0(x), 0] = =106 (x — y),
[0(x), 0 ()] = 104 8P (x — y), (13)

with @ = ih U® and ©2 = ©,0% = h2U, U* for the Rie-
mannian components of velocities Ue. Fmally, the metric
tensor (in cartesian coordinates), with back-reaction effects
included holds (here gqpg are the components of the back-
ground metric tensor):

— - —20/3 -
20/3 20/3 g0y 2003 2

L E11e —20/3] ’

(14)

guv = diag [5’00 e
which preserves the invariance of the E-H action.

3 Back-reaction solution in a de Sitter metric

We consider a static de Sitter line element written in spherical
coordinates

1
ds®> = f(r)dt®> — ——dr?> — r2dQ>, (15)

)
where dQ? = d#? + sin®(0) d¢? and f(r) = 1 — (r/a)?,
such that H is the Hubble parameter, c is the light velocity in
the vacuum, and @« = ¢/H is the Hubble horizon, which is
related to the cosmological constant A = 3(H/ ¢)2. In order
for describe the back-reaction effects in the interior of the
de Sitter space, we must consider solutions of the equation
Uo = 0, for r < «, where the space-time is 4D hyperbolic

with signature (4, —, —, —), due to the fact f(r) > 0. The
massless scalar field o for the line element (15) and r < «
is described by the equation

1320+13 5. 0
o T |7 O0%

1 o[ . do
t 2 in) 20 [Sm(e)ﬁ]

1 9% 0 6
* sin2(9) 092 (16)
Because there are a finite number of states that describe the
interior of a de Sitter space-time, we can expand the field
o as a superposition o, 1 m) (&, 7,0,9) ~ R () t,(1)
Y(1,m) (6, ¢), where the functions Y (0, ¢) are the usual
spherical harmonics. In this case, the radial equation for
Ru,1y(r) and temporal one for 7,(¢), are given by

2t (Ewn\’

_ +<<T”> 7 (1) =0, )

P2 f(r >2 ("” [l(l+1)f(r)+( ;’”) 2] Rnp)
( f(r)—f+2 f()> 8(;”) (18)

We shall use the variable substitution r = %ﬁ , that implies
that 0 < u < 1. With this replacement we obtain that the
solution of the radial equation can be expressed in terms of
the confluent hypergeometric functions: 7 1 ([a, b], [c], u)

25 Fi (a1, b1, [e1], )

5O F (a2, bal, [eal, u)
(19)

ocE(nJ) ;
Ci(u—1)2rc y

Eppn
4+ Co(u — 1) 2y

Ruyu) =

where O < u < 1 and the parameters ay, by, c1, az, by and
¢y are given by

aEq. l 3
= —7 — b = —, = — l’
ai he 5 b ap + > C1 > +
aEupy 141 3 1
— L by = -, =—-—=1. (20
a The > =@ty a=; (20)

The series representation of » F ([a, b], [c], u) determines
if either a or b is a non-positive integer —n, in which case
the function is reduced to a polynomial of order n. Our aim
is using this condition in order for motivate validity of the
uncertainly principle for each energetic level and the dis-
cretization of the « values, in order for relate the solutions
(19) to the recently studied Schwarzschild black hole’s mass
case [9].
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3.1 Uncertainly principle, energy levels and the where

cosmological constant ot 7.0, )

- . . Ly 1

In order for avoiding divergent solutions of 2F)
(la1, b1], [c1], u) with ;< 0, we shall propose C; = 0 B Z Z [A(”’I’m) Ot (t. 1.6 §)
in (19). Furthermore the condition a; = —n in (19), gives us Izl m==
E@1y o, _ h 21 + AZn,l,m) Oty (756, ¢)} 27

2 c 2’
with A1) = H—f+2n'

The expression (21) is very important because it tells us
that the uncertainly principle is fulfilled for each energy level.
We can see that for this expression that the admissible energy-
levels are inversely proportional to the cosmological horizon
¢/ H . Furthermore, this also provides a discretization of the
cosmological constant A = a%: A .1y, in terms of the eigen-

values n and [. Therefore, if we introduce A = ;’—2 and
3

>
LAUM)

Ay = (22)
we obtain a relation between A, ;) and the energy levels
E@u:
2

3E ) 23
2h?
With these results, now the parameters of the radial solution
R(n,1y (1) can be written as

A(n,l) =

Rn1y(u)

3 1
=C(u — 1)%_("“)14_% 2 Fy ([—n —n 4+ 5] , |:5 — l] , u) ,

(24)

where C is a constant to be determined by normalization.
We shall suppose that exists a lower bound for the energy

corresponding to the Planck energy: E,, = m, 2, where m »

is the Planck mass. Hence, taking into account all the possible

values E(, ), and using the expression (21), we obtain the

condition for the allowed /-values:

amp c?

2n +

—1=2n+N@—-1<1, (25)

where N(x) = am}{’ i > 1, once we consider the Planck
length: /,,, and we assume a1y > ).

The limit case for the previous expression corresponds to
N(a) = 1 and [/ = 2n, and it’s consistent with the definition
for ot 1y in (21).

Finally, we can write the complete solution for the field
o(t,r,0,¢),as

N—-1

o(t,r.0,9) =Y ou(t.r.0,0), (26)

n=0

@ Springer

such that the modes o, 1 m) (¢, 7, 0, ¢), are:

Ewn)’
O(n,l,m) (t7 I", 91 ¢) = h R(n,l) (r) Y(l,m) (97 ¢) Tl’l (t),
(28)

with a radial local solution expanded around u = 0.
3.2 de Sitter temperature from RQG

In order for calculating the temperature inside the horizon,
we shall consider a discrete transition from a0y to 0,7y
A,y = A1) — 0,0, and another one for the entropy
ASu.y = S, — S©,0)- In this framework, we shall define
the level dependent temperature

Aapy (KB
Toun = oD (—) (29)

2
A
where Sg,. 1) = =42 (%)

and the area related to horizon
of each level: «(, 1), will be

Ay = 470G, ). (30)
which can be related with A, ;) using (22): A, ;) = /{(2”1)

Therefore, the entropy for each (n, [)-values, is

3 Kp 2 Kp 2 \/§T(
< ) = JT(X(sz) < = KBZ,

Awn \hc hce E(Zn,l)

S, =

€1y}

which is inversely proportional to the squared value of the
(n, I)-energy. After specializing, we obtain that the value of
a generic 1{, ;) corresponds to

[4+1—-2n hc
— [ — ). (32)
arn(l —2n+2) \ Kp

If we suppose that E(, ;) > 0 and T,y > 0, the possible
values of [, corresponding to each n-value, will be

Tou,n =

[(n) > Lpin(n) = 2(n — 1). (33)

Therefore, from the condition (33) we obtain that for a
given n, [ must take the values / > 2n. Furthermore, all
combinations ! = 2n guarantee T(, ;=2,) = Tpn, Where
Tpa = 2:12—61@ is the Bekenstein—Hawking (B—H) tempera-
ture [15-17] and K p is the Boltzmann constant. In particular,

To,0 =Ta2 = =TsH.
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This means that we can study the interior levels by
choosing for each (I = 2n)-level, given by [ = 2n + m,
with m(l) > 0, the temperature:

m+1 <hC)ETm (34)

T, =— (—
(n,2n+m) (m + 2)ma \Kp

For m = 0, we have the exterior level T,,—o = Tgy, and for
large values / we have T;,—.oc = 2 Tpy. This is the same
behavior that energy levels in the Schwarzschild’s Black
Hole interior [9]. The important here is that this behavior is
repeated for all the possible values of m (), on each (I = 2n)-
level.

Finally, we can consider the difference of temperature

between two consecutive levels of each (I = 2n)-level:
AT, = Ty4+1 — T,,. We obtain
1 h
AT, = 29, (35)
ma(m+2)(m+3) \Kp

such that the summation on all the possible values of AT,
on each (I = 2n)-level results to be the BH-temperature:

L 1 (he 1 1
li ATy =—\—) lim | - ———) =T,
LLmoomZ_O na<K3>Ll>moo<2 L+3) B>
(36)

where L is the maximum value of m. This is a very important
result that replies whole obtained in [9], but here on each (I =
2n)-level. Notice that the extreme case where o = [, is the
Planck length, is a good candidate to describe the initial state
of the universe in a de Sitter metric, with a B-H temperature:

hic

-_° 37
27TK3[I, ( )

TpH
and a Planck energy: E, = m,, c*.

In a general case, if we suppose that the universe is
described by a de Sitter expansion, which is believed will
occur in the late state of the evolution of the universe, one
could calculate the minimum T'gg (wWhich cannot be under-
stood as the temperature of the Background Cosmic Radi-
ation) in the universe. Using the fact that A = 3 /az, and
o = ¢/ H, we could write the background metric in terms of
the B—H temperature:

2 2 KpT 2
ro=1-(%) :1_(ur> , (38)
o hic
with Tgy = 5 7511?3 . Notice that H is a cosmological observ-

able, so that one could immediately calculate the B—H tem-
perature in the universe.
4 Final comments

In this work we have studied back-reaction effects in the
interior of a de Sitter space-time (i.e., for » < ¢/H), using

the RQG formalism in which we take into account, when
we variate the EH action, the flux that cross the 3D-gaussian
hypersurface. The extended manifold is obtained by mak-
ing a displacement from the background Riemann manifold
to the new extended manifold (4). This flux is described by
a scalar field o (more precisely by their partial derivatives:
0%), that describes back-reaction effects of the space-time,
so that the metric tensor with back-reaction effects included
are given by (14). We have applied this formalism to study
the back-reaction effects on sub-horizon scales of a static de
Sitter metric, and, for the radial solution, we have found a
finite number of discrete energy levels for the / = 2n values,
such that, for each energy level, we have a number L of pos-
sible values L > [ > 2n, for a scalar field solution, obtained
from a polynomial condition of the confluent hypergeometric
functions, which is expanded around # = 0. The interesting
is that we recover the same structure for the temperature val-
ues, that in the interior of the Schwarzschild black-hole [9],
but here for each (I = 2n)-level. Furthermore, the uncertainty
principle (21), is valid for each energy level on sub-horizon
scales of the space-time, and the temperature and entropy
are dependent on the number of sub-states with different
m(l), on such scales. When this number tends to infinity:
L — oo, we recover the B-H temperature for this (I = 2n)-
level: lim; s oo ZZ:O AT, = Tpp. Therefore, we propose
that the primordial universe could be described by a Planck

energy and a B-H temperature: Tpg = in a de

zn'?ﬁ
Sitter space-time [18-20]. Our approach could be extended
to another in which we describe a evolving geometry such
that A is a time-decaying cosmological parameter on the Rie-
mann manifold. This issue, which is beyond the scope of this
work, will be developed in the future.
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