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Abstract Dirac linear spinor fields were obtained from
non-linear Heisenberg spinors, in the literature. Here we
extend that idea by considering not only Dirac spinor fields
but spinor fields in any of the Lounesto’s classes. When one
starts considering all these classes of fields, the question of
providing a classification for the Heisenberg spinor naturally
arises. In this work the classification of Heisenberg spinor
fields is derived and scrutinized, in its interplay with the
Lounesto’s spinor field classification.

1 Introduction

The so-called Lounesto’s classification of spinor fields is con-
stituted of six classes of regular and singular spinor fields,
assorted with respect to the values attained by their respective
bilinear covariants. The Majorana, Dirac, and Weyl spinors,
although occupying a privileged spot in this classification, are
discrete points in six immense spinor spaces. Several non-
standard spinor fields, beyond the Majorana, Dirac, and Weyl
ones, were found and studied in this context. References [1,2]
pave a reciprocal Lounesto’s classification, asserting the most
general type of spinor field in each one of Lounesto’s class.
Important samples of new spinor fields can be seen, e. g., in
Refs. [3–15]. In addition, new classifications in string theory
[16] and new anyonic spinor fields [17] were derived and
scrutinized. Once the Lounesto’s standard spinor field clas-
sification is restricted to the U(1) gauge symmetry, splitting
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off classes of charged and neutral spinors, Ref. [18] then
implemented other gauge symmetries, where in particular
the gauge symmetry in electroweak theory was introduced
and spinor doublets were then classified and studied. The
Lounesto’s spinor field classification corresponds, in this
extended classification, to a sole Pauli singlet [18]. VSR
symmetries and DKP algebras were also investigated in the
context of Lounesto spinor fields in Refs. [19,20].

On the other hand, very little is known about the Heisen-
berg spinors in this context. The Heisenberg equation gov-
erns the dynamics of diverse spinor fields, constituting
the Inomata–McKinley spinor fields one of its particular
solution. On the other hand, some regular spinor fields
can be constructed upon appropriate linear mixtures of
Inomata–McKinley spinor fields [21]. Dirac spinor fields
were described by a non-linear mixture of Heisenberg spinors
fields [22], to show that neutrinos are quantum field states of
Heisenberg spinor fields. Besides, Heisenberg dynamics was
employed to study anisotropic cosmological models, gener-
ated by a non-linear fermionic ultra-relativistic fluid [23].

The main aim here is to propose a spinor field clas-
sification of Heisenberg spinor fields, and relate it to the
Lounesto’s classification. A byproduct of our development
in this paper is, in particular, to emulate previous construc-
tions that describe Dirac spinor fields as Heisenberg ones,
to further encompass all types of spinor fields in both the
Heisenberg and the Lounesto’s classification. This paper is
organized as follows: after reviewing the Lounesto’s classifi-
cation and presenting the bilinear covariants, the regular and
singular spinor fields in Sect. 2, Sect. 3 devotes to derive and
present the Heisenberg classification of spinor fields and to
scrutinize the interplay between Heisenberg spinor fields and
the ones in the Lounesto’s classification. Section 4 draws the
concluding remarks and further discussion.
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2 Lounesto’s classification and ramifications

Spinors in the Minkowski spacetime, M , are elements per-
taining to the spinor bundle on M , being carrier spaces
of the so-called (1/2, 0) ⊕ (0, 1/2) representations of the
Lorentz group. For their huge spectrum of applications, it is
sometimes better to work with arbitrary bases {γμ} of the
�(M) = ⊕4

i=0�
i (M) exterior bundle. Bilinear covariants

consist of homogeneous sections of the exterior bundle [24]
(Table 1),
where

σ = ψ̄ψ, (1a)

Kμ = ψ̄γ5γμψ, (1b)

Sμν = i

2
ψ̄[γμ,γν]ψ, (1c)

Jμ = ψ̄γμψ, (1d)

ω = iψ̄γ5ψ, (1e)

are coefficients of Lorentz bilinear covariants. The Clifford
algebra definition of generators, γμγν + γνγμ = 2ημν1 is
also assumed. In addition, denoting the Clifford product by
juxtaposition, the volume element, γ5 = iγ0γ1γ2γ3, imple-
ments the chiral operator. To fix the notation, the conjugation
ψ̄ = ψ†γ0 will be regularly used.

The Lounesto’s classification consists of the following six
classes of spinor fields:

(1) S �= 0, K �= 0, σ �= 0, ω �= 0, (2a)

(2) S �= 0, K �= 0, σ = 0, ω �= 0, (2b)

(3) S �= 0, K �= 0, σ �= 0, ω = 0, (2c)

(4) S �= 0, K �= 0, σ = 0 = ω, (2d)

(5) S �= 0, K = 0, σ = 0 = ω, (2e)

(6) S = 0, K �= 0, σ = 0 = ω. (2f)

Physical observables, as the current density and spin den-
sity in the electron Dirac’s theory, correspond to the bilin-
ear covariants J and K, respectively, whereas S plays the
role of the spin density. More precisely, after an appropriate
scaling by the electron charge, e, the Planck constant (over
2π ), h̄, and the speed of light, c, the temporal component
eJ0 is interpreted as the electrical charge density, whereas
ecJk (i, j, k = 1, 2, 3) represents the electric current den-
sity. The spatial components (eh̄/2mc)Si j stand for the mag-
netic moment density, and the (eh̄/2mc)S0 j is the electric
moment density. Finally (h̄/2)Kμ is the chiral current den-

Table 1 Bilinear covariants as homogeneous sections of the spin bundle

�0(M) �1(M) �2(M) �3(M) �4(M)

σ J = Jμγμ
S = Sμνγ

μ ∧ γν
K = Kμγν ω

sity. The interpretation of the scalar, σ , and pseudoscalar,
ω, is less clear, however σ 2 + ω2 can be interpreted as a
probability density. In addition, σ appears as mass and self-
interaction terms in spinor Lagrangians, whereas ω, being
CP-odd, might probe CP features. However, not all the spinor
fields in the Lounesto’s classification share similar interpreta-
tions. In addition, for some other particular subclasses of the
Lounesto’s classification, the Fierz–Pauli–Kofink relations
can be verified [24]:

σSαβεαβ
ρσ − ωSρσ = ερσαβ J

ρK σ , (3a)

ηρσ (Jρ Jσ + K ρK σ ) = 0 = ηρσ J
ρK σ , (3b)

σ2 + ω2 = ηρσ J
ρ Jσ . (3c)

The inequality J �= 0 is valid for the entire classes in
Lounesto’s classification. Reference [28] constructed three
more classes that are beyond Lounesto’s classification, cor-
responding to J = 0, playing the role of ghost spinor fields.

The Lounesto’s classification splits the spinor fields into
singular ones, with both vanishing σ and ω, and regular
ones, where at least one between the scalar and pseudoscalar
bilinear covariants are not equal to zero. Dirac spinor fields
are regular spinor fields of type-(1), whereas Majorana ones
are in a subclass of type-(5), flagpole, spinor fields. Besides,
Weyl spinor fields are dipole spinor fields of type-(6). Singu-
lar spinor fields have, besides the Majorana and Weyl spinors,
other representatives [10,25–27]. Most of the subclasses in
the Lounesto’s classification have been explored and a lot of
room is available for spinor fields that can play important
roles in high energy physics [5].

The Fierz–Pauli–Kofink relations, (3a)–(3c), are not, in
general, satisfied by all the singular spinor fields. The very
definition of a Fierz aggregate, as a multivector field whose
homogeneous components are the bilinear covariants them-
selves,

Z = σ − (ω + K)γ5 + J + iS, (4)

yields the relations

− 4i KμZ = Zγ5γμZ (5a)

− 4iωZ = Zγ5Z, (5b)

− 4i SμνZ = ZγμγνZ, (5c)

− 4i JμZ = ZγμZ. (5d)

It replaces the Fierz–Pauli–Kofink relations (3a)–(3c) for the
singular spinor fields that do not obey them. Equations (5a)–
(5d) are the most general ones and hold for any spinor field
in the entire Lounesto’s classification.
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3 Heisenberg spinor fields classification

In what follows natural units shall be used. Let one considers
the Heisenberg equation [22]

iγμ∂μ ψ̊ − 2s (σ̊ + iω̊γ5) ψ̊ = 0 (6)

for a Heisenberg spinor field, ψ̊ , in which the constant s has
the dimension of (length)2. Hereon ringed quantities are con-
structed with respect to Heisenberg spinors. The Heisenberg
scalar and pseudoscalar bilinear covariants respectively read

σ̊ = ψ̊ψ̊, (7)

ω̊ = iψ̊γ5ψ̊. (8)

Hereon the spinor field ψ, which may lie in any Lounesto
spinor field class, will be named a Lounesto spinor field,
whereas ψ̊ will be called a Heisenberg spinor field. Let J̊,
S̊, K̊ be the Heisenberg bilinear covariants corresponding
to ψ̊ , with definitions analogous to (1b)–(1d). By using Eq.
(11), it is possible to compute the bilinear covariants of the
ψ Lounesto spinor field in terms of the ones corresponding
to the ψ̊ Heisenberg spinor field. Defining the left and right
chiral projectors,

PL := 1

2
(1 + γ5), PR := 1

2
(1 − γ5), (9)

one can write ψ̊L = PL ψ̊ and ψ̊R = PRψ̊ , as well as ψL =
PLψ and ψR = PRψ. The Heisenberg spinor ψ̊ can be split
into chiral ones

ψ = ψ̊R + ψ̊L = 1

2
(1 − γ5)ψ̊ + 1

2
(1 + γ5)ψ̊. (10)

Given F,G complex numbers, writing an arbitrary spinor
field in the Lounesto’s classification as

ψ = eG ψ̊R + eF ψ̊L (11)

is equivalent of emulating the usual expression for chiral
spinor fields, ψL = eF ψ̊L and ψR = eG ψ̊R . The physical
role played by F and G and useful expressions involving the
dynamics of Heisenberg and Inomata spinors are presented
in Appendix A.

Reference [22] imposes some conditions on a Dirac spinor
field, for it to be described as a particular mixture of Heisen-
berg spinor fields. Let one remembers that a Dirac spinor
field is a very particular state into the first class of spinors
in Lounesto’s classification. Now we extend this idea and
consider not only Dirac spinor fields (2a) but the entire
Lounesto’s classification of spinor fields, (2a)–(2f). In order
to implement such an extension, it will be necessary to first
provide a classification of Heisenberg spinor fields and the

interplay between the Lounesto’s classes of spinor fields and
Heisenberg spinor fields.

To relate the standard bilinear covariants to the ones con-
structed upon Heisenberg spinor fields, the scalar σ = ψ̄ψ

is written as

σ = (eF PL ψ̊ + eG PRψ̊)†γ0(eF PL ψ̊ + eG PRψ̊)

= ψ̊†(eF
∗
P†
L + eG

∗
P†
R)γ0(eF PL + eG PR)ψ̊. (12)

Using the fact that PR and PL are self-adjoint, together with
PLγ0 = γ0PR and PRγ0 = γ0PL , yields

σ = ψ̊(eF
∗
PR + eG

∗
PL) (eF PL + eG PR)ψ̊. (13)

In addition, as PR and PL are orthogonal idempotents, Eq.
(9) imply that

σ = ψ̊(eF+G∗
PL + eG+F∗

PR)ψ̊ (14)

= ψ̊

(
eF+G∗ + eG+F∗

2
+ eF+G∗ − eG+F∗

2
γ5

)
ψ̊. (15)

Defining the complex number z = eF+G∗
yields

σ = ψ̊(Re(z) + Im(z)iγ5)ψ̊ = Re(z)σ̊ + Im(z)ω̊ (16)

Performing similar calculations for the other bilinear covari-
ants, the following set of equations, that sets the bilin-
ear covariants with respect to the Heisenberg ones, can be
obtained,

σ = Re(z)σ̊ + Im(z)ω̊ (17a)

Jμ = y + x

2
J̊μ + y − x

2
K̊μ, (17b)

Sμν = Re(z)S̊μν − Im(z) � S̊μν, (17c)

Kμ = y − x

2
J̊μ + y + x

2
K̊μ, (17d)

ω = Re(z)ω̊ − Im(z)σ̊, (17e)

where x = eF+F∗ = e2Re(F) and y = eG+G∗ = e2Re(G).
This system of equations is not fully coupled, being equiva-
lent to three independent systems of equations,(

σ

ω

)
=

(
Re(z) Im(z)
−Im(z) Re(z)

) (
σ̊

ω̊

)
, (18)

(
Jμ

K ν

)
= 1

2

(
y + x y − x
y − x y + x

) (
J̊μ

K̊μ

)
, (19)

(
Sμν

�Sμν

)
=

(
Re(z) −Im(z)
Im(z) Re(z)

) (
S̊μν

�S̊μν

)
, (20)

where � denotes the Hodge operator, that satisfies �� = −id

in M . Also, iψγμγνγ5ψ = −�Sμν and iψ̊γμγνγ5ψ̊ =
−�S̊

μν
. Since the modulus of the complex number z �= 0 is

always positive, then the matrices in (18) and (20) are invert-
ible. Furthermore, since the determinant of the matrix in (19)
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is xy/2 and x �= 0 and y �= 0, this matrix is also invertible. In
order to establish the classification of the Heisenberg spinor,
it will be helpful to invert these equations, arriving at:(

σ̊

ω̊

)
= 1

|z|2
(

Re(z) −Im(z)
Im(z) Re(z)

) (
σ

ω

)
, (21)

(
J̊μ

K̊μ

)
= 1

2xy

(
y + x x − y
x − y y + x

) (
Jμ

K ν

)
, (22)

(
S̊μν

�S̊μν

)
= 1

|z|2
(

Re(z) Im(z)
−Im(z) Re(z)

) (
Sμν

�Sμν

)
. (23)

Aiming to establish a classification for the Heisenberg spinor
ψ̊ , analogous to the Lounesto classification for the field ψ,
at a first sight one could think of a classification for ψ̊ with
the exact same classes proposed by Lounesto. However, Eq.
(22) shows that J �= 0 does not imply J̊ �= 0, and since all
the Lounesto classes assume non-vanishing current density,
the Heisenberg spinor field classification has to contain more
classes in order to allow J̊ = 0.

Due to these facts, the Heisenberg spinor field classifica-
tion is contained within the following classes:

(1̊) K̊ �= 0, S̊ �= 0, ω̊ �= 0, σ̊ �= 0, (24a)

(2̊) K̊ �= 0, S̊ �= 0, ω̊ = 0, σ̊ �= 0, (24b)

(3̊) K̊ �= 0, S̊ �= 0, ω̊ �= 0, σ̊ = 0, (24c)

(4̊) K̊ �= 0, S̊ �= 0, ω̊ = 0 = σ̊, (24d)

(4̊∗) K̊ �= 0, S̊ �= 0, ω̊ = 0 = σ̊, J̊ = 0, (24e)

(5̊) K̊ = 0, S̊ �= 0, ω̊ = 0 = σ̊, (24f)

(5̊∗) K̊ = 0, S̊ �= 0, ω̊ = 0 = σ̊, J̊ = 0, (24g)

(6̊) K̊ �= 0, S̊ = 0, ω̊ = 0 = σ̊, (24h)

(6̊∗) K̊ �= 0, S̊ = 0, ω̊ = 0 = σ̊, J̊ = 0. (24i)

In this list J̊ �= 0 unless the contrary is stated. We have
used the same numbering as in the Lounesto classification
but adding a “∗” superscript to the classes with J̊ = 0. Note
that by virtue of Eq. (3c), this is only possible for singular
spinors. From Eqs. (21)–(23), it is clear that a spinor field
is Lounesto-singular if and only if it is Heisenberg-singular.
Hence, classes (2a)–(2c) remain within classes (24a)–(24c);
and classes (2d)–(2f) remain within classes (24d), (24e),
(24g), (24h) and (24i). Moreover, the Heisenberg spinor field
cannot belong to the class (24g), for J̊ = 0 and K̊ = 0 imply
K = 0 = J, but J �= 0 must always hold.

In what follows every case in the Lounesto’s spinor field
classification for ψ will be studied, deriving the correspond-
ing Heisenberg spinor fields ψ̊ that give origin to it.

Type-1 Lounesto spinor field: in this case, as asserted
before, ψ̊ does correspond to a regular spinor field. Hence
σ̊ �= 0 or ω̊ �= 0. Hence J̊ �= 0, as stated above. This implies
that K̊ �= 0 as well, for it being zero would contradict the
Fierz identity (3c), once one uses (3b). Also, Eq. (23) yields
S̊ �= 0. Eq. (21) implies that

σ̊ = Re(z)σ − Im(z)ω

|z|2 ,

ω̊ = Im(z)σ + Re(z)ω

|z|2 .

(25)

It is evident that in the case of z being either real or imagi-
nary, then ψ̊ is of type (24a). If z is neither real nor a pure
imaginary, then different possibilities arise.

If the condition σ = −Re(z)
Im(z)ω is satisfied, then one has

σ̊ �= 0 and ω̊ = 0. Consequently ψ̊ is of type (24b). The
condition σ = Im(z)

Re(z)ω yields σ̊ = 0 and ω̊ �= 0, and hence
the Heisenberg spinor belongs to the class (24c). If neither
of these conditions hold, then σ̊ �= 0 and ω̊ �= 0, and in
consequence ψ̊ is an element of the class (24a).

Type-2 Lounesto spinor: ψ̊ will also be regular. Hence
σ̊ �= 0 or ω̊ �= 0.

As explained for the two previous types, J̊ �= 0, K̊ �= 0
and S̊ �= 0. Equation. (21) yields

σ̊ = −Im(z)

|z|2 ω,

ω̊ = Re(z)

|z|2 ω.

(26)

Hence, if both Re(z) and Im(z) are non null, then ψ̊ is of
type (24a). If z is real, then ψ̊ is in the class (24c). If z is a
pure imaginary, then the Heisenberg spinor field lies into the
class (24b).

Type-3Lounesto spinor field:Analogously, the spinor field
ψ̊ will be regular. Hence, either σ̊ �= 0 or ω̊ �= 0. Similarly
for the Heisenberg type-1 case, J̊ �= 0, K̊ �= 0 and S̊ �= 0.
Equation (21) yields

σ̊ = Re(z)

|z|2 σ,

ω̊ = Im(z)

|z|2 σ.

(27)

Hence, if both Re(z) and Im(z) are different of zero, then ψ̊

is of type (24a). If z is real, then ψ̊ is in the class (24b), and
if z is a pure imaginary, then the Heisenberg spinor field is
an element of the class (24c).

Type-4 Lounesto spinor field: this spinor field is singular,
hence σ̊ = ω̊ = 0. Since S �= 0, then S̊ �= 0. The vector and
pseudovector bilinear covariants, for the Heisenberg field,
are given by

J̊ = (y + x)J + (x − y)K

2xy
,

K̊ = (x − y)J + (x + y)K

2xy
.

(28)
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If x = y then J̊ = J/x �= 0, K̊ = K/x �= 0. In this case ψ̊

belongs to the class (24d).
If x �= y then we have three possibilities. If the condition

J = y−x
y+xK is satisfied, then it can be seen from (28), that

J̊ = 0 and K̊ �= 0. Hence, the Heisenberg spinor lies in
the class (24e). If the condition J = y+x

y−xK is satisfied, it is

clear from (28) that J̊ �= 0 and K̊ = 0. Hence, the Heisenberg
spinor is of type (24f). If neither of the former two conditions
hold, then J̊ �= 0 and K̊ �= 0 and, in consequence, ψ̊ is of
type (24d).

Type-5 Lounesto spinor field: as in the former case, this
spinor field is singular, as σ̊ = ω̊ = 0. Since S �= 0, then
S̊ �= 0 and Eq. (22) yields

J̊ = (y + x)J

2xy
,

K̊ = (x − y)J

2xy
.

(29)

If x = y then J̊ �= 0 and K̊ = 0. In this case ψ̊ belongs to the
class (24f). If x �= y, then we have that J̊ �= 0 and K̊ �= 0. In
consequence, the Heisenberg spinor field is of class (24d).

Type-6 Lounesto spinor: This case is very similar to the
type-4 one, as σ̊ = ω̊ = 0 and S̊ = 0. The vector and
pseudovector equations for the Heisenberg field are the same
that in the type-4 spinor (28). Hence, if x = y then J̊ =
J/x �= 0, K̊ = K/x �= 0. In this case ψ̊ belongs to the class
(24h).

If x �= y then three possibilities arise. If the condition
J = y−x

y+xK is satisfied, then it can be seen from (28) that

J̊ = 0 and K̊ �= 0. The Heisenberg spinor field, in this case,
lies in the class (24i). If the condition J = y+x

y−xK holds, then

(28) yields J̊ �= 0 and K̊ = 0. Hence, the Heisenberg spinor
is of type (24f). If neither of the former conditions hold, then
J̊ �= 0 and K̊ �= 0 and in consequence ψ̊ is of type (24h).

One can combine all these results in the following tables
for regular and singular Lounesto spinor fields:

Observe that Tables 2 and 3 are expressed using the aux-
iliar parameters x , y and z, which depend upon the functions
F and G. Using

x = exp(2Re(F)),

y = exp(2Re(G)),

z = exp(F + G∗),
(30)

and the following equivalences

x = y if and only if Re(F) = Re(G),

z is real iff Im(F) − Im(G) ≡ 0 (mod π),

z is imaginary iff Im(F) − Im(G) ≡ π/2 (mod π).

then the results in the tables can be expressed using F and G
instead of x , y and z.

The results shown in the tables comprise the interplay
between the Lounesto’s and the Heisenberg spinor fields,
yielding a new classification that can play a prominent role
in searching for new fermionic fields and their applications
in gravitation and field theory. Paving the Heisenberg spinor
field also makes the Lounesto’s classifications to be better
understood.

4 Conclusions

We have considered a spinor field contained in any class of the
Lounesto’s classification as a particular linear combination
of right and left projections of a Heisenberg spinor field. In
that scenario we aimed to establish a classification for the
Heisenberg spinor field and a correspondence between the
two classifications. Such a goal is attained, the results being
expressed in Tables 2 and 3.

Some interesting points about the interplay between
Heisenberg and Lounesto spinor are observed. First, a spinor
in a Lounesto’s class is regular if and only if it comes from
a regular Heisenberg spinor, which allowed us to split the
results into Tables 2 and 3. Second, from these tables, one
can realize that the correspondence between regular classes

Table 2 Correspondence between regular classes

Regular spinors

Conditions Lounesto spinors

1 2 3

z not pure

σ = Im(z)
Re(z)ω 3̊ 1̊ 1̊

σ = − Re(z)
Im(z)ω 2̊

None of the above 1̊

z real 1̊ 2̊ 3̊

z imaginary 1̊ 3̊ 2̊

Table 3 Correspondence between singular classes

Singular spinors

Conditions Lounesto spinors

4 5 6

x �= y

J = y−x
y+xK 4̊∗ 4̊ 6̊∗

J = y+x
y−xK 5̊ 5̊

None of the above 4̊ 6̊

x = y 4̊ 5̊ 6̊
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depend only on the imaginary part of the functions F and G,
in Eq. (11), whereas for singular spinors it depends on the real
part of these functions. Last, provided that ψ is a Lounesto
spinor field, the corresponding Heisenberg spinor field can
never belong to the class (24g). Hence, not all the classes
with vanishing current density in Ref. [28] are necessary for
the Heisenberg field classification.

Let one considers an arbitrary spinor field, ψ, whose
dynamics is governed by the Dirac equation. It is worth to
emphasize that the fact that ψ satisfies the Dirac equation
does not impose almost any condition on ψ, in the con-
text of the Lounesto’s classification. In fact, there are reg-
ular and singular spinor fields, in every single class in the
Lounesto’s classification that satisfies the Dirac equation.
Hence, although the Dirac equation imposes some type of
spinor in each class, the amount of spinor fields in each class
in Lounesto’s classification is still large.

One of our motivations to introduce the Heisenberg spinor
field classification was to better understand the Lounesto’s
classification, as well as to provide a complementary point of
view that has been still not encompassed by the Lounesto’s
classification. The main motivation regarding this classifi-
cation consists of the dynamics and kinematics that gov-
erns the spinor fields in all subclasses in Lounesto’s clas-
sification. For example, Majorana (mass dimension 3/2) and
Elko spinor fields (mass dimension 1) [10,29,30] are neu-
tral spinor fields in the class 5 of flagpoles spinor fields [25],
according to the Lounesto’s classification. However, there is a
charged spinor field, representative of a subclass in the class 5
of Lounesto’s classification, that satisfies the Dirac equation
in some gravitational background [31]. Hence, only know-
ing the class in Lounesto’s classification does not guarantee
to find the dynamics ruling the spinor field, although some
exclusive options are clear once the equations of motion are
known. As the Heisenberg classification, here proposed, is
somehow related to the Heisenberg equation, it can there-
fore provide a clue on the dynamics of the related spinor
field in Lounesto’s classification. As important as the Wigner
classification in this context is the classification in Ref. [2],
as it places a physical classification of the degrees of free-
dom of the spinor fields. Complementary equations to the
Fierz–Pauli–Kofink identities were shown to be similar to
the Pauli–Lubanski axial vector, and the classification in
Ref. [2] emulates the Wigner one. We can just concretely
assert about resemblances between the Heisenberg and the
Wigner classification after deriving and exploring the ana-
logue of the Fierz–Pauli–Kofink identities in the Heisenberg
classification. As they might be obtained from the Fierz–
Pauli–Kofink identities (3a)–(3c), since the Heisenberg and
Lounesto spinors are related by Eq. (11), it is worth in a
near future to implement the analogue of the Fierz–Pauli–
Kofink identities for the Heisenberg classification, to pre-
cisely answer this important question.

In Ref. [22] a Dirac spinor (class 1 in the Lounesto’s clas-
sification) was built up from a Heisenberg spinor, and solu-
tions to the Dirac equation were obtained using Inomata–
McKinley solutions of the Heisenberg equation. Tables 2
and 3 would make possible to seek for solutions of the Dirac
equation for other classes of Lounesto spinor fields. As a
prototypical Heisenberg dynamics was employed to study
anisotropic cosmological models [23], one may then explore
this kind of dynamics for other types of Heisenberg spinor
fields in the context of the minimal geometric deformation
[32].
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Appendix A: Inomata solutions of the Heisenberg equa-
tion

A particular solution of the Heisenberg equation can be
derived when one considers the Inomata condition

∂μ� = (a Jμ + b Kμγ 5)� (A1)

for a, b ∈ C. Any � spinor field that satisfies Eq. (A1) is
an Inomata spinor field. The integrability condition of Eq.
(A1) reads Re(a) = Re(b). Let R, S be scalar fields such
that Kμ = ∂μR and Jμ = ∂μS, or equivalently [22]

R = 1

b − b
log

(
σ̊ − iω̊√
Jμ Jμ

)
, S = 1

a + a
log

√
Jμ Jμ. (A2)

Reference [22] then shows the following respective expres-
sions for F and G:

F =−1

2
(b−b)R +

[
2is − 1

2
(b − b)

]
S+ iM

a+a
e−(a+a)S

(A3)

G = 1

2
(b−b)R +

[
2is− 1

2
(b−b)

]
S+ iM

a+a
e−(a+a)S .

(A4)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C           (2019) 79:260 Page 7 of 7   260 

References

1. R.T. Cavalcanti, Int. J. Mod. Phys. D 23, 1444002 (2014).
arXiv:1408.0720 [hep-th]

2. L. Fabbri, Int. J. Geom. Methods Mod. Phys. 13, 1650078 (2016).
arXiv:1603.02554 [gr-qc]

3. R. Abłamowicz, I. Gonçalves, R. da Rocha, J. Math. Phys. 55,
103501 (2014). arXiv:1409.4550 [math-ph]

4. R. da Rocha, A.E. Bernardini, J.M. Hoff da Silva, JHEP 04, 110
(2011). arXiv:1103.4759 [hep-th]

5. R. da Rocha, L. Fabbri, J.M. Hoff da Silva, R.T. Cavalcanti, J.
Math. Phys. 54, 102505 (2013). arXiv:1302.2262 [gr-qc]

6. D.M. Dantas, R. da Rocha, C.A.S. Almeida, EPL 117, 51001
(2017). arXiv:1512.07888 [hep-th]

7. J. Vaz, Int. J. Theor. Phys. 57, 582 (2018)
8. L. Fabbri, Phys. Rev. D 85, 047502 (2012). arXiv:1101.2566 [gr-

qc]
9. L. Fabbri, S. Vignolo, Int. J. Mod. Phys. D 23, 1444001 (2014).

arXiv:1407.8237 [gr-qc]
10. D.V. Ahluwalia, C.Y. Lee, D. Schritt, Phys. Rev. D 83, 065017

(2011). arXiv:0911.2947 [hep-ph]
11. R.J.B. Rogerio, J. Hoff da Silva, M. Dias, S.H. Pereira, JHEP 1802,

145 (2018). arXiv:1709.08707 [hep-th]
12. JMHoff da Silva, CHCoronado Villalobos, RJBueno Rogerio, E.

Scatena, Eur. Phys. J. C 76, 563 (2016). arXiv:1608.05365 [hep-th]
13. R.J.B. Rogerio, J.M. Hoff da Silva, EPL 118, 10003 (2017).

arXiv:1602.05871 [hep-th]
14. JMHoff da Silva, R.T. Cavalcanti, Mod. Phys. Lett. A 32(35),

1730032 (2017). arXiv:1708.06222 [physics.gen-ph]
15. J.M. Hoff da Silva, R. da Rocha, Int. J. Mod. Phys. A 24, 3227

(2009). arXiv:0903.2815 [math-ph]

16. L. Bonora, K.P.S. de Brito, R. da Rocha, JHEP 02, 069 (2015).
arXiv:1411.1590 [hep-th]

17. R. Lopes, R. da Rocha, JHEP 1808, 084 (2018). arXiv:1802.06413
[math-ph]

18. L. Fabbri, R. da Rocha, Phys. Lett. B 780, 427 (2018).
arXiv:1711.07873 [hep-th]

19. R. Cavalcanti, J.M. Hoff da Silva, R. da Rocha, Eur. Phys. J. Plus
129, 246 (2014). arXiv:1401.7527 [hep-th]

20. J. Vaz, S. Mann, J. Math. Phys. 59, 083506 (2018)
21. D. Beghetto, J.M. Hoff da Silva, EPL 119, 40006 (2017).

arXiv:1710.07086 [math-ph]
22. M. Novello, EPL 80, 41001 (2007). arXiv:0705.2692 [astro-ph]
23. S. Joffily, M. Novello, Gen. Relativ. Gravit. 48, 151 (2016).

arXiv:1607.08608 [gr-qc]
24. J.P. Crawford, J. Math. Phys. 26, 1439 (1985)
25. R. da Rocha, W.A. Rodrigues Jr., Mod. Phys. Lett. A 21, 65 (2006).

arXiv:math-ph/0506075
26. A. Alves, F. Campos, M. Dias, J.M. Hoff, Int. J. Mod. Phys. A 30,

1550006 (2015). arXiv:1401.1127 [hep-ph]
27. A. Alves, M. Dias, F. de Campos, L. Duarte, JMHoff da Silva, EPL

121(3), 31001 (2018). arXiv:1712.05180 [hep-ph]
28. CHCoronado Villalobos, J.M.Hoff da Silva, R. da Rocha, Eur.

Phys. J. C 75, 266 (2015). arXiv:1504.06763 [hep-th]
29. D.V. Ahluwalia, C.Y. Lee, D. Schritt, T.F. Watson, Phys. Lett. B

687, 248 (2010). arXiv:0804.1854 [hep-th]
30. D.V. Ahluwalia, S.P. Horvath, JHEP 11, 078 (2010)
31. R. Cavalcanti, R. da Rocha, Phys. At. Nucl. 80, 329 (2017).

arXiv:1507.03714 [gr-qc]
32. R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016).

arXiv:1610.01572 [hep-th]

123

http://arxiv.org/abs/1408.0720
http://arxiv.org/abs/1603.02554
http://arxiv.org/abs/1409.4550
http://arxiv.org/abs/1103.4759
http://arxiv.org/abs/1302.2262
http://arxiv.org/abs/1512.07888
http://arxiv.org/abs/1101.2566
http://arxiv.org/abs/1407.8237
http://arxiv.org/abs/0911.2947
http://arxiv.org/abs/1709.08707
http://arxiv.org/abs/1608.05365
http://arxiv.org/abs/1602.05871
http://arxiv.org/abs/1708.06222
http://arxiv.org/abs/0903.2815
http://arxiv.org/abs/1411.1590
http://arxiv.org/abs/1802.06413
http://arxiv.org/abs/1711.07873
http://arxiv.org/abs/1401.7527
http://arxiv.org/abs/1710.07086
http://arxiv.org/abs/0705.2692
http://arxiv.org/abs/1607.08608
http://arxiv.org/abs/math-ph/0506075
http://arxiv.org/abs/1401.1127
http://arxiv.org/abs/1712.05180
http://arxiv.org/abs/1504.06763
http://arxiv.org/abs/0804.1854
http://arxiv.org/abs/1507.03714
http://arxiv.org/abs/1610.01572

	The Heisenberg spinor field classification and its interplay  with the Lounesto's classification
	Abstract 
	1 Introduction
	2 Lounesto's classification and ramifications
	3 Heisenberg spinor fields classification
	4 Conclusions
	Acknowledgements
	Appendix A: Inomata solutions of the Heisenberg equation
	References




