
 

Optical Phase Transitions in Photonic Networks: a Spin-System Formulation

Alba Ramos , Lucas Fernández-Alcázar, and Tsampikos Kottos *

Wave Transport in Complex Systems Lab, Department of Physics,
Wesleyan University, Middletown, Connecticut 06459, USA

Boris Shapiro
Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel

(Received 13 December 2019; revised 5 April 2020; accepted 1 June 2020; published 31 July 2020)

We investigate the collective dynamics of nonlinearly interacting modes in multimode photonic settings.
To this end, we have established a connection with the theory of spin networks. The emerging “photonic
spins” are complex, soft (their size is not fixed), and their dynamics has two constants of motion. Our
analysis sheds light on the nature of the thermal equilibrium states and reveals the existence of optical phase
transitions which resemble a paramagnetic to a ferromagnetic and to a spin-glass phase transition occurring
in spin networks. We show that, for fixed optical power, these transitions are driven by the type of the
network connectivity, its coordination number, and the total energy of the optical signal. In strictly one-
dimensional photonic networks we establish a universal one-parameter scaling that dictates the crossover
from a (quasi)ferromagnetic phase to a paramagnetic phase.
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I. INTRODUCTION

In physics one often encounters problems involving a
great number of nonlinear interacting modes. Such prob-
lems naturally arise in statistical mechanics [1–3], hydro-
dynamics [4,5], matter waves [6–8], and more. An
emerging framework is in photonics, where light propa-
gation in nonlinear multimode optical structures have
recently attracted a lot of attention [9–19]. Mixing between
linear modes, due to nonlinearity, results in redistribution of
the energy among the modes. Understanding of this process
is important both theoretically and for possible applica-
tions. Brute-force computations for this purpose are either
impossible (due to the large number of degrees of freedom
involved) or unsatisfactory as far as the understanding of
the underlying physics that dictates the energy redistrib-
ution. Such understanding might contribute to a design
of more efficient high-power light sources [17], high-
resolution imaging schemes [20–22], and high-speed tele-
communication systems [23–25].
In this regard, a number of recent papers have promoted

well-established equilibrium [9,11,19,26–28] and nonequi-
librium [15,29–32] thermodynamics techniques as a viable

theoretical toolkit which can be used for better under-
standing of nonlinear multimode optical systems. In par-
ticular, the authors of Refs. [19,26], assuming thermal
equilibrium conditions and weak nonlinearity, have estab-
lished a comprehensive optical thermodynamics formalism
allowing us to design potentially novel classes of high-
power multimode optical structures or efficient cooling
schemes. For weak nonlinearity, the specific nature of the
nonlinear mode interaction (e.g., Kerr or saturable or
thermal nonlinearities) is irrelevant. Its role is important
for the thermalization process but not for the properties of
the equilibrium state.
Of course, the question of thermalization in a given

isolated optical system is a subtle issue. In general, it can
only be answered a posteriori by observing the long-time
dynamics of the system prepared in some initial non-
equilibrium state. Furthermore, by “thermalization” here
we always mean that the optical system reaches an internal
equilibrium, with temperature which generally has nothing
to do with that of the environment, i.e., with the walls of the
resonators or with the optical fiber. Although there are
indications that such quasiequilibrium states can be reached
in optical systems (e.g., see the phenomenon of the beam
self-cleaning [18,33–37]), the overall situation is far from
being clear, attracting currently a lively debate between
researchers. Below, the feasibility of thermalization will
remain the main assumption of our analysis.
The implementation of statistical thermodynamics meth-

ods in modern photonics opens up a new arena where ideas
and concepts from statistical mechanics can be transferred
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to optics and utilized for light control. A prominent
example is the notion of phase transitions characterized
by changes in the properties of a system as an external
parameter varies [2]. Maybe the most celebrated area of
physics where such phenomena have been extensively
studied is the theory of spin-network models [38–40].
These studies indicated that the phase transition can be
understood as a competition between the interactions
among spins, which facilitates order, and the thermal
fluctuations (the entropy) causing random disturbances.
In many occasions, these phase transitions are associated
with symmetry breaking phenomena. To understand them,
one has to analyze the nature of the thermal equilibrium
state of the interacting system. In this paper, we show that
there are certain analogies between the statistical thermo-
dynamics of spin models and multimode photonic net-
works. Inspired by these analogies, we ask questions such
as the following. Are the phases of the electromagnetic field
correlated or are they entirely random? Is the optical power
distributed more or less evenly between all modes of the
entire system, or can some finite fraction of the total optical
power reside in a single mode? How do the topology of the
intermode connectivity and the randomness in the coupling
affect the nature of the thermal state?
It turns out that these questions can be related. In

previous works, for example, it was shown that macro-
scopic occupation of a single photonic mode does occur
and, moreover, it can happen even in linear systems (we
stress again that weak nonlinearity can be neglected only in
the equilibrium state, while it is crucial in the thermal-
ization process) [27,29]. It is quite remarkable, thus, that a
purely classical system exhibits a phenomenon like Bose-
Einstein condensate (BEC) transition in a quantum Bose

gas. Actually, there have been a number of experiments
demonstrating that, in the course of propagation along the
fiber, optical power “flows” toward the lower modes
[18,33–37]. The origin of this beam “self-cleaning”
remains an open issue with various research groups offering
a variety of different tentative explanations. Potential
scenarios involve the importance of parametric instabilities
that lead to a spatial mode redistribution process [36], or the
importance of weak (propagation-dependent) disorder
[37,41] and chaotic cross section [19] that dramatically
accelerates the rate of thermalization and condensation.
In this paper, we demonstrate that the connectivity of an

optical structure is an important factor in its thermalization
process: it affects the type of the optical phase transitions
and the nature of the thermal equilibrium state. The
question is not only of fundamental importance, it pertains
also to recent photonic developments where networks with
complex connectivities can be realized; see Figs. 1(a)–1(e).
Specifically, we show that in the case of long-range
couplings, the nonlinearity is instrumental for achieving
optical phase transitions. In fact, by identifying an order
parameter that is equivalent to the magnetization in
spin-network models, we are able to show both theoreti-
cally and numerically the existence of a ferromagnetic-
to-paramagnetic phase transition in long-range coupling
networks, analogous to the one occurring in spin systems.
Furthermore, we show that the theoretical description of
this phase transition can be achieved by invoking a mean-
field approach which is qualitatively applicable for a
broader range of photonic lattices, including those with
nearest-neighbor couplings. For strictly one-dimensional
photonic networks we established a universal one-
parameter scaling theory that describes their crossover
from “quasiferromagnetic” state to a paramagnetic state.
Finally, when disorder is introduced into the couplings of
long-range connectivity networks, the system might
undergo another type of a transition, namely to a spin-
glass phase, much as in the case of frustrated coupled spins.
Although these analogies between photonic multimode

networks [Figs. 1(a)–1(e)] and spin networks [Fig. 1(f)] is
useful, one needs to keep in mind that the two problems
have important differences. Specifically, our “photonic
spins” are complex dynamical variables (amplitudes of
the electric field). Moreover, they fluctuate not only in their
direction but also in their size. We expect that the analogies
drawn from our study will bring together two seemingly
different areas: statistical mechanics of spin networks
and light transport in nonlinear multimode settings. This
cross-fertilization will, hopefully, allow the development of
better design strategies for the control of light transport in
multimode photonic networks.
It is instructive to point out that similar analogies

between photonic networks and spin systems have also
appeared in the framework of active optical multimode
configurations, with gain and loss, under the condition of

FIG. 1. A variety of photonic nonlinear multimode networks,
whose field dynamics is modeled by an effective coupled mode
theory of the type given by Eqs. (1) and (2). (a) A one-
dimensional and (b) two-dimensional photonic lattice consisting
of coupled microresonators. (c) A multicore fiber. (d) A multi-
mode fiber. (e) A deformed multimode (micro)resonator with
underlying chaotic dynamics. (f) A network of coupled “soft”
(size-modulated) spins. The corresponding Hamiltonian has
similarities but also crucial differences with the Hamiltonian
that describes a photonic multimode network.
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constant pumping [42–47]. Such systems, in contrast to our
study, are far from equilibrium and the whole idea of a
thermodynamic description is not applicable. While in
many cases terminology borrowed from equilibrium stat-
istical mechanics (like ferromagnetic or paramagnetic
phases) has been used in some of these references, these
terms have a completely different meaning from that in
equilibrium statistical mechanics (e.g., the “ferromagnet” is
associated with the, essentially nonequilibrium, phenome-
non of mode locking). Also, since their system has loss and
gain, the generated dynamics is different from ours and
does not conserve energy and norm.
The structure of this paper is as follows. In Sec. II, we

discuss the general statistical thermodynamics formalism
associated with the analysis of optical thermal equilibrium
states. Special attention is given to the case of weak
nonlinearities where we derive the occupation number
statistics. In Sec. III, we analyze a class of complex
multimode photonic networks with long-range connectiv-
ity. Two cases are discussed in detail: the case of constant
couplings and the opposite case of random couplings. We
show that under specific conditions these systems demon-
strate optical phase transitions from ferromagnetic to
paramagnetic and spin-glass phases. Photonic networks
with constant nearest-neighbor couplings are analyzed in
Sec. IV using a mean-field formalism and a scaling theory
(for strictly one-dimensional networks). Our conclusions
are summarized in Sec. V.

II. GENERAL FORMALISM

A. Theoretical modeling of photonic networks

The dynamics of nonlinear multimode photonic net-
works in Fig. 1 can be modeled using the framework of
time-dependent coupled mode theory. The associated
equations are

i
dψ l

dt
¼ −

X
j

Jljψ j þ χjψ lj2ψ l; l ¼ 1;…; N; ð1Þ

where ψ l is the degree of freedom (the complex amplitude)
at node l of the network and Jlj ¼ J�jl is the connectivity
matrix that dictates the couplings among the nodes. We will
typically assume zero self-coupling terms Jll ¼ 0. Finally,
the last term in Eq. (1) describes the nonlinearity due, for
instance, to Kerr effect.
On a formal and general level ψ l ¼ hljψi are compo-

nents of the electric field (with some fixed polarization) in
some basis of orthonormal modes fjlig (the “basic
modes”). The choice of the set of these modes depends
on the problem at hand. For instance, for the case of
coupled single-mode microresonators [48] [Figs. 1(a)
and 1(b)] the index l labels the resonators, and the basic
mode jli is the eigenmode of the lth resonator, decoupled
from the rest of the network (we treat the resonators as

structureless point objects). In this framework, the coef-
ficients Jlj ¼ J�jl (for l ≠ j) represent evanescent couplings
between different resonators and Jll ¼ ωl is the eigenfre-
quency of resonator l (with nonlinearity neglected), which
in case of identical resonators can be set to be zero, i.e.,
ωl ¼ 0 (l ¼ 1;…; N). The same interpretation applies to a
multicore fiber [25], Fig. 1(c), where now l labels the
single-mode fibers. In Fig. 1(c) the propagation direction z
plays the role of time.
It is important to clearly distinguish between the basic

modes, like an eigenmode of an isolated resonator in
Fig. 1(a), and the eigenmodes of the entire structure, i.e.,
the stationary solutions of the entire system of coupled
equations (1) (with the nonlinearity neglected). The latter
are often referred to as “supermodes.” For instance, when
we are talking about condensation of the optical power in a
single mode, we mean of course the supermode (with the
lowest energy) and not an eigenmode of a single resonator.
Sometimes, where no confusion can arise, we will use the
term “mode” instead of “supermode.” The supermodes
fαðlÞ form a complete basis, so the field ψ lðtÞ can be
expanded as ψ lðtÞ ¼

P
α CαðtÞfαðlÞ, reducing Eq. (1) to

i
dCα

dt
¼ εαCαðtÞ þ χ

X
βγδ

ΓαβγδC�
βðtÞCγðtÞCδðtÞ; ð2Þ

with

Γαβγδ ¼
X
l

f�αðlÞf�βðlÞfγðlÞfδðlÞ: ð3Þ

As we show below, this mode representation of the
evolution Eq. (1) is particularly useful when the non-
linearity is weak, and it often appears in the description of
various optical settings [49,50].
Equation (2) also describes multimode optical fibers

[25,51–53] or multimode resonators [53–57]; see Figs. 1(d)
and 1(e), respectively. In this case the supermodes are the
eigenmodes of the multimode fiber or cavity in the absence
of nonlinearities, and unlike the previous case, when the
basic modes were localized in space (on a single resonator),
now they extend over the entire structure. The ϵα describe
the corresponding propagation constants or resonant
frequencies. When Eq. (2) models a multimode fiber, the
variable t plays the role of propagation distance.
In our modeling Eqs. (1) and (2) the coupling matrix J

does not depend on time (or propagation distance in case of
fibers). Of course, this is appropriate for arrays of coupled
resonators [Figs. 1(a) and 1(b)] and chaotic multimode
resonators [Fig. 1(e)]. On the other hand, a more appro-
priate modeling of light propagation in deformed multi-
mode fibers [Fig. 1(d)] requires us to take into
consideration the fact that the coupling matrix J varies
over large propagation distances (“dynamical” disorder).
Our study, however, is concentrated on the equilibrium
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properties of the system (specifically the existence of phase
transitions) and we do not analyze thermalization dynamics
in detail. Equilibrium is reached either for constant or for
propagation-dependent coupling matrices J. In the former
case it requires longer thermalization lengths which might
not be realistic when compared with experiments. Recent
numerical calculations [19], however, indicated that the
thermalization length might be considerably shortened in
case of fibers with chaotic (quenched) cross section. At the
same time, it was found that weak dynamical disorder
dramatically enhances the thermalization process toward
thermal equilibrium [37,41].
The equation of motion (1) is derivable from the energy

functional (the Hamiltonian):

Hfψ lðtÞg ¼ −
X
l;j

Jl;jψ�
lψ j þ

1

2
χ
X
l

jψ lj4 ≡ E: ð4Þ

In the course of time the total energy E and the total optical
power,

N fψ lðtÞg ¼
X
l

jψ lðtÞj2 ≡ A; ð5Þ

are conserved. Our modeling ensures that both the total
power A and the energy E are extensive quantities, propor-
tional to the number of modes N, as appropriate for
thermodynamics.

B. Problem of thermalization

An important question is whether an isolated system of
interacting modes eventually thermalizes, i.e., reaches an
equilibrium state which can be described by just two
parameters—the inverse temperature β and the chemical
potential μ, which in turn are determined by the energy E
and the total power A of the initial preparation. If such an
equilibrium state is reached, the system can be analyzed
using the well-established methods of statistical mechanics
and thermodynamics.
For example, a statistical mechanics description of the

system of Eq. (1) is achieved by calculating the classical
grand-canonical partition function Z,

Z ¼
Z �YN

l¼1

dψ�
l dψ l

�
e−βHþβμN ; ð6Þ

where the Lagrange multipliers β ¼ 1=T and μ have been
introduced (in analogy with the inverse temperature and the
chemical potential) to ensure conservation (on average) of
E and A, respectively [see Eqs. (4) and (5)]. Specifically,
the relation between the microcanonical quantities,

a≡ A
N
; h≡ E

N
; ð7Þ

which describe the average optical power a and averaged
energy density h per mode and the grant canonical
quantities μ, β, is given by

a¼ 1

βN
∂lnðZÞ
∂μ ; h¼−

1

N
∂lnðZÞ
∂β þ μ

Nβ

∂lnðZÞ
∂μ : ð8Þ

Using the partition function as a starting point, we can
next calculate the thermodynamic potential,

Ω ¼ −TlnðZÞ; ð9Þ

and from there, the entire “optical thermodynamics” can be
derived. For instance, the entropy is S ¼ −ð∂Ω=∂TÞμ.
We note that the problem of thermalization in nonlinear

lattices, under time evolution defined in Eq. (1) (primary in
one spatial dimension and with Jlj restricted to nearest
neighbors only), has also been addressed in the framework
of statistical mechanics [58–61]. In these studies, it has
been pointed out that thermalization with positive temper-
ature occurs only in a certain region of the ðE;AÞ plane. For
fixed total optical power A, this occurs only if the energy is
not too large [58]. The maximum value h ¼ hmax for a
given average norm a per site corresponds to β → 0
(infinite temperature) and μ → −∞, and it is

hmax ¼ χa2: ð10Þ

For larger energies, in some cases, the system acquires a
Gibbs distribution with negative temperature, as shown in
Refs. [26,58]. In this case we have an inverted population
scenario where more power populates the higher-energy
levels. Finally, for sufficiently large E the norm cannot
spread uniformly over the entire system and high-amplitude
peaks of ψ l (breathers [62]) emerge. Below, we confine our
analysis to the domain where the temperature is positive.

C. Thermal equilibrium in the
case of weak nonlinearities

In many optics applications the nonlinearity is considered
weak. It isofcourseessential in themode-mixingprocess [see
Eq. (2)] needed for reaching equilibrium. The total energy
and power, however, are dominated by the linear term in the
Hamiltonian, i.e., to a good approximation,

E ¼
XN
α¼1

εαjCαj2; A ¼
XN
α¼1

jCαj2: ð11Þ

Here jCαj2 is the (normalized)opticalpower inmodeα.Using
these expressions Christodoulides and co-workers [19,26]
were able to develop a kind of “optical thermodynamics,”
identifying the optical analogy of entropy, equation of states,
and other quantities. Below, we briefly summarize this
theory, using the grand-canonical formulation Eq. (6) dis-
cussed above.
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Assuming that the system has thermalized, its grand
partition function, nonlinearity being neglected, is given by
the product of independent modes contributions,

Z ¼
YN
α¼1

�Z
dC�

αdCαe−βðεα−μÞjCαj2
�
¼

YN
α¼1

�
π

βðεα − μÞ
�
;

ð12Þ

where β ¼ 1=T and μ can be found from the constraints in
Eq. (11). It immediately follows from Eq. (12) that the
average of optical power in mode α obeys the Rayleigh-
Jeans distribution [19,26,27,29–31] (see also Ref. [63]):

hjCαj2i ¼
T

εα − μ
≡ n̄α: ð13Þ

From Eq. (13) we can calculate the thermodynamic
potential Eq. (9) which takes the form

Ω ¼ −T
XN
α¼1

ln

�
πT

εα − μ

�
: ð14Þ

All other thermodynamic variables follow from Eq. (14).
For example, the entropy (up to an irrelevant constant) is
S ¼ P

N
α¼1 lnðn̄αÞ which, in equilibrium, coincides with the

expression derived in Ref. [19] by counting the number of
ways in which a large number of “packets of power” can be
distributed over the N modes. The expression for S served
in Ref. [19] as the starting point for the development of
optical thermodynamics. For instance, one can derive the
following equation of state [19] E − μA ¼ NT, which
connects three extensive quantities ðE; A;NÞ to the two
intensive variables ðμ; TÞ. It is important to keep in mind
that in this analysis, the exact nonlinear form [e.g., Kerr in
Eq. (1)] is completely irrelevant and its only role is to
thermalize the system toward its equilibrium state.

D. Fluctuations in the case of weak nonlinearities

Next, we briefly discuss the fluctuations of the optical
power nα in the mode α. If the nonlinearity, i.e., the
intermode interaction, in the thermal equilibrium state is
negligibly small [19,26,27,29–31], then within the grand-
canonical treatment the probability density for nα is
PðnαÞ ¼ ð1=ZαÞ exp ½−βðεα − μÞnα�, where Zα is the nor-
malization factor. This yields Eq. (13) for the average value

n̄α and Δn2α ¼ ðn̄αÞ2 for the variance. The same results can
be obtained, in an even simpler way, if one uses the
expression Ωα ¼ −T lnðπT=εα − μÞ for the contribution of
mode α to the grand potential Ω [see Eq. (14)] and the

standard formulas [64] n̄α ¼ −∂Ωα=∂μ, Δn2α ¼ T∂n̄α=∂μ.
Thus, the standard deviation

�
Δn2α

�
1=2 ≡ σα comes out

to be equal to the average optical power n̄α. For a modewith
macroscopic occupation ðnα ≫ 1Þ, this result looks

paradoxical. The paradox, however, is well known in the
theory of Bose-Einstein condensation and it is resolved by
observing that we have here one of the rare cases when the
canonical and the grand-canonical ensembles yield differ-
ent results [64]. Indeed, in the experiment, as well as in our
numerical simulations, the total optical power

P
α nα ¼ A

is strictly conserved, while in the grand-canonical treatment
it is conserved only on the average. This is perfectly fine for
calculating various average quantities but not for the
fluctuations. When the conservation law

P
α nα ¼ A is

strictly enforced (canonical ensemble), the large unphysical
fluctuations in a macroscopically occupied mode disappear
(for instance, at T ¼ 0, when the entire power A is located
on a single mode, there are no fluctuations at all).
Note, however, that at high temperatures, when there are

many modes populated with n̄α ≲ 1, the result σα ¼ n̄α
does hold for such modes. This is because the constraintP

α nα ¼ A ∼ N on the total power does not significantly
affect fluctuations in a single mode with n̄α ≲ 1 (the other
modes serve as an “environment” for the mode α). One
should be aware of these large fluctuations when interpret-
ing the numerical or the experimental data.

III. MULTIMODE OPTICAL SYSTEMS
WITH LONG-RANGE COUPLING

A. Connectivity matrix

We consider the connectivity matrix Jlj of the following
form:

Jlj ¼
�
J0
N

þ σffiffiffiffi
N

p Blj

�
ð1 − δljÞ; ð15Þ

where the first term describes a fully connected network,
with equal couplings, while the second term introduces
some randomness into the couplings. The origin of this
long-range coupling is traced to index imperfections, or
appropriately engineered cross-section deformations from
an underlying ideal system (e.g., a cylindrical fiber
[Fig. 1(d)] [25,51–53] or a circular disk resonator
[Fig. 1(e)] [53–57]) when the equation of motion is written
in the mode basis of the unperturbed system. Of course, in
the basis of the modes of the perfect system, the nonlinear
term in Eq. (1) will no longer have a local character. It
rather acquires a form similar to the one appearing in the
last term of the right-hand side of Eq. (2). Since, however,
the exact form of the nonlinearity is irrelevant for the
analysis of the thermal equilibrium state in the case of weak
nonlinearities (see discussion at the end of Sec. II C), we
have maintained its local nature for simplicity. Such
simplification has allowed us to calculate analytically the
magnetization of the photonic equilibrium state (see
below). Moreover, it provided a confirmation for the
validity of a mean-field theory of photonic networks that
we present in Sec. IVA.
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It is an established method to analyze the connectivity
matrix of Eq. (15) by separating it into a constant matrix,
describing the mean coupling between the various modes,
and a matrix representing the random fluctuations.
Following a standard practice, we will model the random
component of the couplings Blj ¼ Bjl by a Gaussian
distribution with zero mean and a unit standard deviation
[65]. We point out that, unless stated otherwise, in all
simulations below the random matrix elements Bi;j remain
the same (fixed) for a specific set of parameters N; J0; χ
dictating the Hamiltonian of the photonic network. For H
in Eq. (4) to remain extensive, in the large N limit, one has
to scale the coupling strengths with N, as written
in Eq. (15).
We can further analyze the spectral properties of the

connectivity matrix Eq. (15). In the σ ¼ 0 limit it can be
easily diagonalized. In this case the Hamiltonian Eq. (4)
(with χ ¼ 0) has one nondegenerate eigenvector (super-
mode) with eigenfrequency ε1 ¼ −ðN − 1ÞJ0=N and
(N − 1)-fold degenerate eigenvectors with frequency
εα ¼ J0=Nðα ¼ 2;…; NÞ. In the opposite limit of
J0 ¼ 0, the coupling matrix J belongs to the “standard”
Gaussian orthogonal ensemble of the random matrix theory
(note though that it has zero diagonal elements). In this
case its eigenvalues are distributed following the so-
called Wigner semicircle probability distribution, ρðϵÞ ¼
ð1=2πσ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2 − ϵ2

p
, while the corresponding eigenvectors

have random components following the so-called Porter-
Thomas distribution [65]. The general case where both J0
and σ are different from zero interpolates between these two
limits. For any arbitrary small σ ≪ J0, the N − 1 degen-
eracy of the ϵα ¼ J0=N levels of the constant coupling
matrix will be removed and the corresponding eigenvectors
will be those of an ðN − 1Þ × ðN − 1Þ Gaussian orthogonal
ensemble random matrix. The (N − 1) time degenerate
level is broadened into a band of half-width 2σ and these
levels follow a Wigner semicircle law. This picture is
applicable as long as 2σ < J0. It turns out that even for
larger σ the random matrix theory Wigner semicircle will
still apply since, in this case, we can neglect the constant
coupling matrix in Eq. (15). In the latter case, however, all
levels are equally mixed and exchange energy without
having any “outlier” isolated from the rest. This will
become clear later on when we discuss the spin glass to
ferromagnetic phase transition occurring in such cases (see
Sec. III E).
The coupling matrix Eq. (15) gives rise to two distinct

terms in the Hamiltonian Eq. (4). The first term resembles
the Curie-Weiss model [66], where N Ising spins are
coupled to each other by constant distance-independent
interactions. The second term resembles the Sherrington-
Kirkpatrick model for a spin glass [67,68], where the
couplings are completely random. We write “resembles”
because our model differs from the well-studied
Curie-Weiss and Sherrington-Kirkpatrick models in three

important respects: First, our dynamical variables ψ l are
complex, as appropriate for the complex amplitudes of
electric field, and they can be treated as real two-component
“spins.” Second, since jψ lj2 is not restricted to some fixed
value, our spins fluctuate not only in their direction but also
in their size (note, though, that the nonlinearity does not
allow for too wild fluctuations in size). And, third, the
dynamics of our “photonic spins” conserve not only the
energy (as in standard spin systems) but also the optical
power; see Eq. (5). This second conservation law intro-
duces novel features into the characteristics of the thermal
equilibrium state: for instance, a condensation of optical
power in a single mode.
Below we distinguish between the two limiting cases

corresponding to a photonic network with equal couplings
(σ ¼ 0) and to its “random” coupling analog (J0 ¼ 0).
Then, we discuss the case where the connectivity matrix
Eq. (15) contains both terms. We show that our photonic
network exhibits various phases depending on the disorder
strength of the coupling constants, the energy and optical
power ðh; aÞ of the initial preparation, and the value of the
nonlinearity parameter χ.

B. Numerical method

The thermalization process of an initial state fψng
(n ¼ 1;…; N) has been investigated numerically using a
high-order three-part split symplectic integrator scheme
[69–71] for the integration of Eq. (1). The method con-
served, up to errors Oð10−8Þ, the total energy Eq. (4) and
the optical power Eq. (5) of the system. These quantities
have been monitored during the simulations in order to
ensure the accuracy of our results.
We have focused our interest on the electric field

amplitudes ψnðtÞ and the supermode amplitudes CαðtÞ
which can be evaluated from the projection of ψnðtÞ on the
supermode basis; see Eq. (2). Knowledge of CαðtÞ [or
ψnðtÞ] allows us to calculate various thermodynamic
quantities hQi by making a time average and invoking
ergodicity.
In practice, the approach to a thermal equilibrium state

involves a long-time propagation of an initial preparation
fψng (n ¼ 1;…; N). Typical integration times were as long
as 4 × 108 inverse coupling constants. After an initial
transient time tmin, we have calculated a time-averaged
value of the thermodynamic quantity of interest Q, i.e.,

hQit ¼
1

t − tmin

Z
t

tmin

QðtÞdt: ð16Þ

A convergence of the observable Q to a steady-state value
has been considered as an (indirect) indication that the
system has reached a thermal equilibrium state. An
example of such simulations for a special case of a
long-range coupling model Eq. (15) (see below for further
analysis) consisting of N ¼ 8 nodes and constant couplings
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J0 ¼ 1.2 (σ ¼ 0) are shown in Fig. 2. Specifically, in
Fig. 2(a) we have taken Q to be the nodal powers
anðtÞ≡ jψnðtÞj2, while in Fig. 2(b) we considered Q to
be the supermode powers jCαj2. In both cases, a clear
convergence to a corresponding steady-state value is
observed, indicating that the system has reached its
equilibrium state.
In the case of weak nonlinearity the numerical results for

hjCαj2i have been compared against the theoretical pre-
dictions Eq. (13). A good agreement between them serves
as a confirmation that the system reached a thermal
equilibrium state. A disagreement between the numerics
and the theoretical predictions of Eq. (13) indicates that the
thermal equilibrium has not been reached. Instead, the
system might have reached a metastable state as happens in
the case of a spin-glass behavior [72,73]. Given enough
time (large relaxation times), of course, the system will
reach the global free-energy minimum.
In all cases, the initial conditions were generated by

considering the field amplitudes fjψnjg, and the phases ϕn
being random numbers in the intervals ½1 − δ; 1þ δ� and
½−π; π�, respectively. Out of a large number of fψng
configurations we have chosen only the ones that satisfy
the energy and normalization constraints that define the
specific state; see Eqs. (4) and (5), respectively. Finally, in
all our simulations below we have used the normalization
condition A ¼ P

n jψnj2 ¼ N [i.e., a ¼ 1; see Eq. (7)]
associated with the total power.

C. Equal-coupling networks

We start our analysis with the equal-coupling photonic
network. In this case each node is coupled to all other nodes
by a hopping amplitude of equal strength. The Hamiltonian
that describes this system is Eq. (4) with a connectivity
matrix given by Eq. (15) with σ ¼ 0. We have

Hfψ lg ¼ −
J0
N

X
l≠j

ψ�
lψ j þ

1

2
χ
X
l

jψ lj4; ð17Þ

where l and j run over all N sites with the only constraint
that l ≠ j.
In the absence of nonlinearity the statistical mechanics of

the system in Eq. (17) is trivial. Specifically, in the large-N
limit, only the lowest nondegenerate mode contributes to
the total energy E and, since the latter quantity is required
to be extensive, it is clear that a final fraction of the total
optical power A must reside in that mode. A simple
calculation, based on relations Eq. (11) and the expression
Eq. (13), yields the following result: Since the total optical
power is A ¼ aN and the total energy is E ¼ hN, then, in
the large-N limit, the resulting chemical potential and the
temperature are

μ ¼ −J0; T ¼ J0aþ h: ð18Þ

Since, obviously, J0a ≥ jhj must hold, the linear model
does not allow for either negative temperatures or for a
transition: a finite fraction ðjhj=J0aÞ of the total power A is
condensed into the lowest mode [74].
A refined analysis, where the finite size effects are taken

into consideration, leads to the following exact expressions
for the chemical potential,

μ ¼ −J0
�
1 −

�
a
J0
h
þ 2

�
1

N
þ
�
a
J0
h

�
1

N2

�
; ð19Þ

and the temperature,

T ¼ J0

��
aþ h

J0

�
− 2

�
a
N

�
−
�
N − 1

N

�
J0
h

�
a
N

�
2
�
; ð20Þ

which, in the limit of N ≫ 1, nicely match the results in
Eq. (18). In Fig. 3 we have compared these theoretical
predictions with the values of ðμ; TÞ that we have extracted
from our numerical simulations with the Hamiltonian of
Eq. (17), using two multimode photonic networks with
N ¼ 8 and 64 modes. The nice agreement indicates that
these systems have reached a thermal equilibrium state. In
the inset of Fig. 3 we also report hjCαj2it [see Eq. (16)] by
making use of the scaled variables n̂α,

n̂1 ≡ ðhjC1j2it − aÞ=N ¼ −h=J0;

n̂α ≡ ðhjCαj2it − aÞ ðN − 1Þ=N ¼ h=J0; ð21Þ
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FIG. 2. An example (a) of a time-averaged nodal power hanit ¼
(1=ðt − tminÞ)

R
t
tmin

jψnðtÞj2dt and (b) of a supermode power

hjCαj2it ¼ (1=ðt − tminÞ)
R
t
tmin

jCαðtÞj2dt. In these simulations
the photonic network consists of N ¼ 8 nodes, J0 ¼ 1.2 and
σ ¼ 0. Notice that the α ¼ 1mode (red line) is separated from the
rest, saturating at a value of hjCαj2it ≈ 5.6. The initial preparation
has averaged energy density h ≈ −0.61 and optical power a ¼ 1.
The nonlinearity parameter is χ ¼ 0.01. The initial time is tmin ¼
1000 in both cases.
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where in the second equation above α ¼ 2;…; N. The
right-hand side of Eqs. (21) has been evaluated using
Eq. (13) together with Eqs. (11). It is important to point out
that thermalization has been achieved even for the system
with relatively small number of nodes, N ¼ 8.
The presence of nonlinearity changes the picture com-

pletely and provides us with an example of a (mean-field)
optical phase transition from an ordered to a disordered
phase. In the former phase the amplitudes ψ l on different
nodes are correlated, while in the latter phase the nodes
become essentially decoupled from each other. The ordered
(disordered) phase corresponds to low (high) temperature,
i.e., to small (large) internal energy E.
The ground state of the Hamiltonian (17) corresponds to

a uniform field configuration fψ lg ¼ ffiffiffiffiffiffiffiffiffiffi
A=N

p ð1; 1;…; 1Þ,
where the normalization is such that the total optical power
is

P
l jψ lj2 ¼ A. All the “spins” in this state point in the

same direction. Note that the ground state is highly
degenerate: one can rotate all the spins by an angle θ,
i.e., multiply the field by an overall phase factor expðiθÞ.
The ground-state energy is

Emin ¼ −J0Aþ 1

2
χA2=N ¼

�
−J0aþ 1

2
χa2

�
N; ð22Þ

corresponding to T ¼ 0. In the opposite limit, T → ∞, the
kinetic energy (hopping) can be neglected and the system
reduces to a set of uncoupled nonlinear oscillators. The

probability density to find a node with optical power jψ j2 ≡
I is pðIÞ ∼ expðβμI − 1

2
βχI2Þ, and a simple calculation

yields an average thermal energy equal to χa2, in the
T → ∞ limit. Thus, the maximal energy of the system [see
Eq. (10)] is Emax ¼ χa2N, indicating that for fixed a the
thermalization occurs for Emin < E < Emax. One can, of
course, endow the system with an energy larger than Emax,
for instance, by putting all the norm A on a single site (in
which case the energy E would become “superextensive,”
proportional to N2). We do not consider, however, initial
preparation with E > Emax since we do not address the
“non-Gibbsian” region in the ðE;AÞ plane where breathers
can be formed due to strong nonlinearities (see previous
discussion and also Refs. [58,59]).
Next, we proceed with the calculation of the partition

function Eq. (6) which is performed using the saddle-point
method. It is convenient to write the complex amplitudes
ψ l ¼ ql þ ipl, where ðql; plÞ is a pair of real variables. The
Hamiltonian

Hfql; plg ¼ −
J0
N

X
l;j

ðqlqj þ plpjÞ þ
χ

2

X
l

ðq2l þ p2
l Þ2

ð23Þ

can be interpreted in terms of interacting two-component
spins. We write

P
l;j qlqj ¼ ðPl qlÞ2 and use the identity

exp

�
βJ0
N

�X
l
ql

�
2
�

¼
ffiffiffiffiffiffiffiffiffiffiffi
NβJ0
π

r Z
∞

−∞
dx exp

�
βJ0

�
−Nx2 þ 2χ

X
l

ql

��
; ð24Þ

and similarly for
P

l;j plpj. The integrals over ql, pl in the
partition function now factorize into a product of integrals,
each involving only variables for one node. Furthermore, in
the large-N limit, the grand-canonical partition function Z
is dominated by a saddle point, which can be interpreted as
the order parameter, i.e., the average field ψ̄ (the magneti-
zation in the statistical mechanics language). Actually,
there is a whole family of saddle points, distinguished
from each other by an overall phase. Choosing one saddle
point of the family amounts to breaking the rotational
symmetry in the spin space, obtaining a nonzero value for
the order parameter. We chose ψ̄ ≡m to be real. Skipping
all calculation details, we only give the final equation form:

m ¼ 1

2βJ0FðmÞ
dFðmÞ
dm

≡QðmÞ; ð25Þ

where the function FðmÞ is given by the integral FðmÞ ¼
2π

R∞
0 rdrI0ð2βJ0mrÞ exp ðβμr2 − 1

2
χβr4Þ and I0ðxÞ is the

modified Bessel function of order zero.

FIG. 3. The numerical values of chemical potential −μ (red
squares) and inverse temperature β ¼ 1=T (black circles) versus
the theoretical predictions Eq. (19) (red dashed line) and Eq. (20)
(black lines), respectively. Filled symbols correspond to N ¼ 8,
while open symbols correspond to N ¼ 64. Inset: The numeri-
cally extracted optical powers (symbols) scaled as n̂1 and n̂α
versus the averaged energy density h. The rescaled n̂1 reaches the
value zero at h ¼ hmax. The solid lines are the theoretical
predictions of Eq. (13) while the two types of symbols correspond
to N ¼ 8 (filled symbols) and N ¼ 64 (open symbols). In all
cases we considered an initial optical power a ¼ 1, coupling
constant J0 ¼ 1.2, while the nonlinearity is weak, χ ¼ 0.01.
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For small m, QðmÞ is a linear function of m,
QðmÞ ¼ sm, and the slope s determines whether
Eq. (25) has a nontrivial solution m ≠ 0. Such a solution
exists only if s > 1. The slope can be calculated using the
small argument expansion I0ðxÞ ¼ 1þ 1

4
x2, and it can be

written as s ¼ βJ0K3=K1, where an integral Kn is defined
as Kn ¼

R
∞
0 drrn expðβμr2 − 1

2
χβr4Þ.

Let us, as an example, fix μ at the value zero and study s
as a function of the temperature T ¼ 1=β. For μ ¼ 0 a
simple expression for the slope s is obtained; namely,
s ¼ J0ð2=πTχÞ1=2. The value s ¼ 1 yields the critical
temperature Tc ¼ 2J20=πχ. For temperature T slightly
below Tc one finds, by keeping the term of order m3 in
the expansion of QðmÞ, the standard mean-field result
m ∼ ðTc − TÞ1=2. When the temperature decreases
further, toward T ¼ 0, the magnetization increases and
approaches the maximal value, corresponding to the fully
ordered ground state. Taking again μ ¼ 0 as an example,
one obtains from Eq. (25) that, in the β → ∞ limit,
m →

ffiffiffiffiffiffiffiffiffiffi
J0=χ

p
. This result becomes transparent when written

in terms of the optical power A. Indeed, at T ¼ 0 the total
power resides in the (fully correlated) ground state, so that
the magnetization per site is m ¼ ffiffiffiffiffiffiffiffiffiffi

A=N
p ≡ ffiffiffi

a
p

. To con-
nect a to μ we have to use the expression Eq. (22) for the
ground-state energy, which yields μ ¼ ð1=NÞ∂E=∂a ¼
−J0 þ χa. For μ ¼ 0, one obtains m ¼ ffiffiffi

a
p ¼ ffiffiffiffiffiffiffiffiffiffi

J0=χ
p

.
Thus, Eq. (25) is well suited for studyingm, as a function

of β, for a fixed value of μ. In experiment, however, one
usually controls the optical power A, rather than the
conjugate variable μ. Calculating analytically m as a
function of β for fixed A is more involved than the above
calculation for fixed μ, and we do not attempt it in the
present paper. Instead, in Fig. 4 we present some numerical
results, serving a double purpose: first to verify that the
system, with the appropriate initial preparation, indeed
thermalizes, and then to study its properties in the thermal
equilibrium state as a function of the averaged energy
density h. To this end, we evaluate numerically the time-
averaged magnetization m̄ [see Fig. 4(a)] defined as

m̄ ¼
	



 1N

X
n
ψnðtÞ






�

t
: ð26Þ

In our numerics, we consider moderate values of
the nonlinear parameter χ ¼ 1 and coupling constant
J0 ¼ 1.2. At the ground state h ¼ hmin all “spins” have
the same orientation. As a result, the magnetization
acquires its maximum value m̄ ¼ 1, indicating a ferromag-
netic behavior. For higher h values the magnetization
decreases, and at h → hc ≈ 0.75, which is smaller than
hmax ¼ 1, it acquires a constant value m̄ ¼ Oð1= ffiffiffiffi

N
p Þ [see

inset of Fig. 4(a)], associated with finite size effects.
Further numerical analysis indicates that in the thermody-
namic limit of N → ∞ the magnetization, as a function of

h, approaches zero following a square-root behavior m̄ ≈
0.85

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hc − h

p
[see bold black line in Fig. 4(a)]. Such

behavior is characteristic of a second-order phase transi-
tion, from a “ferromagnetic” to a “paramagnetic” (opti-
cal) phase.
In Fig. 4(b) we show the numerical results for the time-

averaged optical power in the ground-state supermode
hjC1j2it versus the averaged energy density of the initial
beam. In the simulations, we have considered the same
photonic networks as above with χ ¼ 1, J0 ¼ 1.2, and
different numbers of nodes N. The numerical findings are
reported using the scaled variable n̂1; see Eq. (21). We find
that for low averaged energy densities h, the optical power
of the ground state is hjC1j2it ≈ N, indicating a condensate.
As h increases, the condensate depletes, and eventually at
h ¼ hc, corresponding to the ferromagnetic-paramagnetic
transition, it is completely destroyed, i.e., n̂1 ¼ 0. In the
same figure we also report for comparison the theoretical
value of n̂1 ¼ −h=J0 (black solid line), applicable for the
case of weak nonlinearities; see Eq. (13). We stress once
more that the condensation transition analyzed above is due
solely to the nonlinearity, unlike the previous studied
cases where the transition occurred already in the linear
system [29,32].
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FIG. 4. (a) The time-averaged magnetization versus the aver-
aged energy density h. We have simulated various multimode
photonic networks described by Eq. (17) with N ¼ 8, 16, 32, 64,
128, 256. The bold solid line is the best asymptotic (N → ∞) fit
indicating a square-root singularity of the magnetization, i.e.,
m̄ ≈ 0.85

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.75 − h

p
. Inset: The asymptotic value m̄min of time-

averaged magnetization (circles) versus the number of nodes N.
The solid line is the best fit to the numerical data and
demonstrates a convergence to zero as m̄min ≈ 0.75=

ffiffiffiffi
N

p
.

(b) The time-averaged optical power of the ground-state super-
mode for networks of different number of nodes N. We have used
the same scaling variable n̂1 as in Fig. 3. The condensation
transition, corresponding to n̂1 ¼ 0, occurs for the same value of
h ¼ hc ≈ 0.75 as the one that signifies the transition from a
ferromagnetic to a paramagnetic behavior in (a). In all cases we
have considered an initial averaged optical power a ¼ 1, coupling
constant J0 ¼ 1.2, while the nonlinearity is χ ¼ 1. In this case,
the maximum energy density is hmax ¼ 1.
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D. Random coupling

Next, we analyze the effect of disorder in the coupling
constants of the photonic network, i.e., σ ≠ 0 in Eq. (15).
First, we consider the case of extreme disorder where
J0 ¼ 0. In this case the off-diagonal elements of J have
equal probabilities to be positive or negative; i.e., the
system is completely “frustrated.”Despite the vast literature
on spin networks, this model with complex, “soft spins”
has not been studied up to now. Of course, certain analogies
with the Sherrington-Kirkpatrick model can still be instruc-
tive. In the latter case, there is a transition from a para-
magnetic phase to a spin-glass phase when the temperature
(the energy E of the system) decreases. One characteristic
distinction between the two phases is that for the spin glass
the thermalization time is much longer than for the para-
magnet. Moreover, for large N a spin glass does not reach a
full thermal equilibrium in any reasonable time, and the
system gets stuck in one of the many metastable states.
Our simulations for the random coupling multimode

photonic network are presented in Fig. 5. For a weak
nonlinearity χ ¼ 0.01, the equilibrium optical powers n̄α of
the supermodes (of the linear problem) are given by
Eq. (13). In the simulation we evaluated the set
fjCαðtÞj2g as a function of time, extracted their time
average Eq. (16), and use their comparison to Eq. (13)
as a criterion for thermalization. We find that for energy
h ≈ −0.685, see Fig. 5(a), the system eventually gets close

to thermal equilibrium at times t ≈ 5 × 107 (in units of
standard deviation of the coupling elements). After this
time the occupation numbers change only slightly. For
higher energies (not shown), the thermalization time
becomes shorter (for example, for h ≈ −0.15 the thermal-
ization time for a network of N ¼ 16 nodes was ∝ 104). On
the other hand, for energy h ¼ −1 [see Fig. 5(b)], the
optical powers fhjCαj2itg are far away from fn̄αg even after
a fairly long time t ¼ 5 × 107 and, moreover, they do not
show any significant change with respect to the results
extracted for shorter times t ¼ 105 [filled black circles in
Fig. 5(b)]. We have confirmed that the lack of thermal-
ization (for any reasonably large time) is typical for other
initial preparations (with the same h). This is a typical
behavior of a spin glass.
Indeed, the most important signature of a spin glass,

from which the term itself was derived, is that at low
temperatures the directions of spins at various sites get
frozen in some random configuration (metastable state).
For our “optical spin glass” such behavior implies that the
average values of the complex amplitudes fψ lg, and in
particular the phases fθlg, form a random set. The
“average” here refers to the thermal statistical average,
for a fixed realization of the disorder. One could expect
that in a numerical simulation averaging over a statistical
ensemble can be replaced by the time average. However,
due to a dynamic overall phase in the time evolution
defined in Eq. (1), the time average of the phase θl,
at any site l, amounts to zero. Therefore, in order to
distinguish a spin glass from a paramagnet, we use the
following criterion. Let us denote by superscripts α, β
two initial preparations, with the same total energy E
and optical power A. Their time evolution is given by
fψα

l ðtÞg and fψβ
l ðtÞg, respectively. The quantity ζðtÞ ¼

ð1=NÞPl ðψα
l ðtÞÞ�ψβ

l ðtÞ is a measure of the overlap
between the two evolutions, at time t. In the paramagnetic
phase ζðtÞ decreases with time, approaching zero, because
(in the large-N limit) the two evolutions become comple-
tely uncorrelated.
It is appropriate to consider many initial preparations,

i.e., many ðα; βÞ pairs, and treat the real and the imaginary
parts of ζðtÞ as statistical quantities with probability
distribution P(ReðζÞ) and P(ImðζÞ). In the long-time
limit, and for large but finite N, these distributions are
expected to have a manifestly different form in the two
phases: For a paramagnet, P(ReðζÞ) and P(ImðζÞ) should
be narrow distributions (with a width approaching zero
when N → ∞), centered around ζ ¼ 0. These expectations
are confirmed by our numerical data, which are reported in
Figs. 6(a) and 6(b) for photonic multimode networks with
initial preparations having high values of averaged energy
density h ¼ −0.155. An increase of the number of modesN
leads to narrower distributions around ζ ¼ 0. When, on
the other hand, we consider the same distributions for a set
of initial preparations with low value of h ¼ −1.4,

FIG. 5. Comparison between the time-averaged supermode
optical powers for amultimode photonic networkwhose dynamics
is described by the Hamiltonian Eq. (4) with random connectivity
matrix Eq. (15) with J0 ¼ 0 and σ ¼ 1 and the theoretical results
(redsquares)ofEq. (13) forweakdisorder.Blackcirclescorrespond
to moderate time evolutions with t ¼ 105 while green diamonds
correspond to larger time evolutions with t ¼ 5 × 107. The initial
state has (a) high averaged energy density per mode h ¼ −0.685
(corresponding to high temperatures) or (b) low averaged energy
density per mode h ¼ −1 (corresponding to moderate or low
temperatures). In both cases the average optical power is a ¼ 1.
In these simulations, the number of modes is N ¼ 16 and the
nonlinear parameter is χ ¼ 0.01.
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we observed an entirely different behavior for P(ReðζÞ)
and P(ImðζÞ) [see brown highlighted histogram in
Figs. 6(a) and 6(b)]. Namely, they become broad and
almost flat, covering the whole allowed interval, i.e.,
−1 < ReðζÞ; ImðζÞ < 1. We stress that the above simula-
tions were performed for a given realization of disorder and
for the same energy, h ¼ −1.4. Only the initial preparations
have been randomly chosen. We interpret the “flatness” of
P(ReðζÞ);P(ImðζÞ) as a signature of many metastable
states, typical of a spin glass [72,73].

E. Mixed coupling schemes

It is natural to ask what happens to the network at low
averaged energy densities h when both terms in the
connectivity matrix Eq. (15) coexist, i.e., J0 ≠ 0 and
σ ≠ 0. In Fig. 7 we report the dependence of the magneti-
zation hjmjit versus the control parameter x ¼ J0=σ and for
h ≈ 0.88ϵ1 (ϵ1 is the smallest eigenvalue of the correspond-
ing linear Hamiltonian). In the simulations we keep σ ¼ 1
and change the magnitude of J0. Following the same
scheme as in Sec. III C, we break the rotational symmetry
of the spin space by preparing the system at a real-valued
configuration fψng. When x ¼ 0, the connectivity matrix
has only random coupling elements (i.e., J0 ¼ 0) “forcing”
the network into the spin-glass phase. In this regime, the

system evolves toward a metastable state with the “spins”
pointing toward random directions. As a result, the mag-
netization is approaching zero as m̄ ∝ Oð1=NÞ in the limit
of large-N values; see Fig. 7. In the other limiting case of
x → ∞ the randomness in the coupling elements is sup-
pressed and the connectivity matrix is dominated by
(essentially) constant couplings J0. In this case, the net-
work is in the ferromagnetic phase and the magnetization
acquires a nonzero magnitude m̄ ≠ 0 which is dictated by
the value of h (e.g., for h ¼ hmin ≈ −J0 the magnetization is
m̄ ¼ 1). Our analysis (see Fig. 7) indicates that the
transition from a spin-glass to a ferromagnetic phase occurs
at x ∼ 1. The transition becomes more abrupt, as expected
from statistical mechanics, in the limit of large-N values.

IV. MULTIMODE OPTICAL SYSTEMS WITH
NEAREST-NEIGHBOR COUPLING

Many photonic networks, like the ones shown in
Figs. 1(a)–1(c) are described by Eq. (4), where the index
j in the first sum on the right-hand side enumerates nearest
neighbors. In this section we address the phase transition or
crossover between different phases in such type of systems,
utilizing a mean-field theory approach and a scaling theory
which will allow us to establish a universality for the
magnetization of photonic networks. Bellow, we assume
that the coupling coefficients are constants; i.e., Ji;j ¼ J0
for nearest neighbors and zero otherwise.

A. Mean-field theory of photonic networks

To be specific, let us consider a lattice of coupled
resonators with coordination number nc; see Fig. 1(b).
For the mean-field analysis, we introduce the average field
value ψ̄ (the order parameter) and the field fluctuations
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FIG. 6. Distribution of the (a) real and the (b) imaginary part of
the correlation function ζðtÞ. The “empty” histograms correspond
to initial preparations with averaged energy density, which is h ¼
−0.155 (high-energy regime). The brown “filled” histogram
corresponds to a network with N ¼ 16 and initial preparations
with averaged energy density, which is h ¼ −1.4 (low-energy
regime; the smallest eigenvalue of the linear system was
approximately −1.7). The number of modes are indicated by
the color of the histogram in the inset. The average optical power
was kept constant a ¼ 1 while χ ¼ 0.01. In all these simulations
the integration time was as long as t ¼ 105 and we have generated
more than 32 × 104 correlations ζ for the statistical processing.
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FIG. 7. The time-averaged magnetization versus the control
parameter x ¼ J0=σ. The transition at x ≈ 1 becomes more abrupt
as N increases. In these simulations, the initial preparation was
taken to have averaged energy density h ≈ 0.88ϵ1 (low-energy
regime; ϵ1 is the smallest eigenvalue of the corresponding linear
system) while the nonlinearity is χ ¼ 0.01.
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δψ l ¼ ψ l − ψ̄ at each resonator l. Writing the complex
amplitudes as ψ l ¼ ψ̄ þ δψ l and substituting in Eq. (4)
while neglecting terms of order Oðδψ2Þ, we get the mean-
field Hamiltonian HMF:

HMFfψ lðtÞg ¼ −ncJ0
�
ψ̄
XN
l

ψ�
l þ ψ̄� XN

j

ψ j − Njψ̄ j2
�

þ 1

2
χ
XN
l

jψ lj4; ð27Þ

where N is the total number of resonators. Equation (27) is
a sum of N independent Hamiltonians whose grand
partition function takes the form

Z ¼ INðψ̄Þ exp ð−ncβJ0Njψ̄ j2Þ; ð28Þ

where

Iðψ̄Þ ¼
Z

dψdψ� exp
�
βμjψ j2 þ ncβJ0ðψ̄ψ�

þ ψ̄�ψÞ − 1

2
βχjψ j4

�
: ð29Þ

The order parameter ψ̄ ≡m is identified with the
magnetization (we break the symmetry by taking ψ̄ to
be real and positive, although in general it is a complex
function, i.e., ψ̄ ¼ jψ̄ jeiθ̄). Then, writing ψ ¼ reiθ and
moving to the ðr; θÞ variables, Eq. (29), after integration
over θ, yields

IðmÞ ¼ 2π

Z
∞

0

rI0ð2ncβJ0mrÞ exp
�
βμr2 −

1

2
βχr4

�
dr;

ð30Þ

which, after substitution back into Eq. (28), allows us to
evaluate the grand partition function and the grand potential
Ωðβ; μ; mÞ ¼ −ð1=βÞ lnZ. The latter takes the form

Ωðβ; μ; mÞ ¼ N
β
½βJ0m2 − ln IðmÞ�≡ N

β
gðmÞ: ð31Þ

Finally, the equation for the magnetizationm is obtained by
minimizing Ω, i.e., the function gðmÞ:

dg
dm

¼ 2βJ0m −
1

IðmÞ
dIðmÞ
dm

¼ 0; ð32Þ

which is essentially the same equation as Eq. (25). The only
difference is that the coordination number of the network nc
appears in some coefficients in front of the integration
variable ψ in Eq. (29). This discrepancy leads to a critical
temperature that depends on the coordination number nc

without, however, altering the physics or the critical
exponents associated with the phase transitions.
Of course, the mean-field theory is not applicable for

low-dimensional systems (e.g., in one-dimensional systems
there can be no thermodynamic transition at all). In many
cases, however, mean-field theory is a good starting point
for the study of phase transitions, and sometimes it gives
accurate quantitative results—the most famous example
being the Ginsburg-Landau theory of superconductivity
(incidentally, the order parameter there is a complex
function as in our case). For example, one can check that
in the case of long-range coupling (corresponding to
nc → N and J0 → J0=N), the expression Eq. (32) repro-
duces exactly the results of the previous section.

B. Universal scaling theory for
one-dimensional photonic networks

Next we consider a one-dimensional nearest-neighbor
coupling photonic network [e.g., Fig. 1(a)] with co-
ordination number nc ¼ 2. Our analysis focuses on the
magnetization m̄ and its behavior with respect to the
parameters ðh; a; χ; J0; NÞ that control the state of
the photonic network. To this end, we have developed a
one-parameter scaling theory for m̄ and show the existence
of a universal scaling function that controls the variation of
magnetization as the various parameters ðh; a; χ; J0; NÞ
vary. Specifically, we show that

m̄ffiffiffi
a

p ¼ fðΛ≡ N=ξÞ ≈
�
Oð1Þ for Λ ≪ Oð1Þ
Λ−1=2 for Λ ≫ 1;

ð33Þ

where ξ is the so-called correlation length and fðΛÞ is a
universal function, that depends only on Λ. The scaling
relation Eq. (33) describes nicely the crossover from a
“quasiferromagnetic” state of the network to a paramag-
netic state.
The important quantity for establishing Eq. (33) is the

correlation length, which encodes all information associ-
ated with the various parameters that defined the photonic
network, i.e., ξ ¼ ξðh; a; χ; J0Þ. It describes the character-
istic length scale over which the photonic spins are strongly
correlated, roughly, pointing in the same direction.
Formally, it is defined via the decay rate of the spin-spin
correlation function Cr:

Cr ≡ 1

2Na

	X
n
ðψ�

nψnþr þ c:c:Þ
�

t
∼ expð−r=ξÞ: ð34Þ

The correlation length is finite (unless the temperature T is
strictly zero), but it is macroscopic (many lattice spacings) if
T is sufficiently low. Thus, although there is no phase
transition in a strict sense, one can observe a crossover
between a quasiferromagnetic and paramagnetic states [75].
Let us first consider the scenario where N ≪ ξ. In this

case, the network consists of a single coherent unit of N
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spins, pointing in the same direction (the direction, of
course, is changing with time). Since the magnitude of each
spin is of order

ffiffiffi
a

p
, the magnitude of the total magnetic

moment MN of the sample is proportional to N
ffiffiffi
a

p
, and

thus, the typical value of the magnitude of the magneti-
zation is m̄ ∼

ffiffiffi
a

p
.

On the other hand, when N ≫ ξ, the photonic network
consists of N=ξ ¼ p uncorrelated domains. The magnetic
moment of the αth domain (α ¼ 1;…; p) is represented by
a two-dimensional vector M⃗α with a length of order ξ

ffiffiffi
a

p
and random direction. Estimating the magnetic moment
M⃗N of the entire network amounts to summing up p
random two-dimensional vectors (phasors). Neglecting
small fluctuations in the length of different M⃗α, and
assuming completely random directions (phases), one
obtains a typical value for the magnetization of the
total network, which is m̄ ∼MN=N ¼ ðξ ffiffiffi

a
p Þ ffiffiffiffi

p
p

=N ¼ffiffiffi
a

p ðN=ξÞ−1=2.
We are now in a position to formulate a scaling theory

that dictates the “evolution” of the rescaled magnetization
ðm̄=

ffiffiffi
a

p Þ of the one-dimensional photonic network with
coordination number nc ¼ 2. Specifically, combining the
results of the previous analysis for the two limiting cases,
we postulate Eq. (33), which indicates that the rescaled
magnetization m̄=

ffiffiffi
a

p
is described by a universal, one-

parameter scaling function where the temperature, as well
as other properties of the system ðh; a; χ; J0; NÞ, enter into

m̄=
ffiffiffi
a

p
only via the ratio Λ ¼ N=ξ. This is a manifestation

of universality: the behavior of a macroscopic scale is
insensitive to the microscopic details characterizing the
system.
Our numerical results reported in Fig. 8 support nicely

the scaling ansatz Eq. (33). A possible interpolating law
valid in all regimes (including the crossover region) is

fðΛÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

Λþ a0

r
; ð35Þ

where comparison with the numerical data in the two limits
yields the fitting parameter a0 ≈ 2. The resulting analytical
formula (see solid line in Fig. 8) nicely fits the numerical
data in all regions, and therefore provides a compact
summary of the crossover of the magnetization from the
ferromagnetic to the paramagnetic phase.

V. CONCLUSIONS

We unveiled a connection between nonlinear photonic
networks, consisting of many coupled single modes, and
spin networks. As opposed to standard spin models, our
“photonic spins” are complex, soft (i.e., their size fluc-
tuates), and their dynamics has two constants of motion: the
total energy and the total optical power. This second
conservation law is responsible for the appearance of novel
optical phase transitions and the emergence of new forms of
thermal photonic states. We found that these transitions are
controlled by the nature of the connectivity of the network
(long range, nearest neighbors, disorder, or constant cou-
plings) and the amount of the averaged energy density of
the initial optical preparation. Another important parameter
is the nonlinearity that controls the thermalization process.
For one-dimensional networks with constant nearest-

neighbor couplings we established a universal one-
parameter scaling theory that describes their crossover
from “quasiferromagnetic” to a paramagnetic phase. In
contrast, using a mean-field approach, we show that
photonic lattices with constant nearest-neighbor couplings
demonstrate in the nonlinear regime a phase transition from
a ferromagnetic to a paramagnetic phase as the averaged
energy density h of an initial preparation increases. This
transition is also present in the case of long-range photonic
networks with constant couplings and it is associated with
the destruction of a photonic condensate and its depletion
to thermal states. In the other limiting case of random
coupling constants a long-range coupling photonic network
is driven from a paramagnetic to a spin-glass phase as h
decreases. Finally, we show that the same long-range
coupling network, when prepared at low energies, under-
goes another transition from a spin-glass to a ferromagnetic
phase. The control parameter that drives this transition is
the degree of randomness (frustration) of the coupling
constants between the photonic spins. Our results shed light
on the ongoing effort of taming the flow of electromagnetic

FIG. 8. Scaled time-average magnetization m̄=
ffiffiffi
a

p
versus the

scaling parameter Λ ¼ N=ξ for a one-dimensional photonic
network with constant (J0 ¼ 1) nearest-neighbor couplings
(coordination number nc ¼ 2). The various symbols and colors
indicate different set of nonlinearities χ (full symbols, χ ¼ 1,
a ¼ 1; open symbols, χ ¼ 0.1, a ¼ 1; partially filled symbols,
χ ¼ 0.01, a ¼ 1; diagonally striped filled enlarged symbols,
χ ¼ 1, a ¼ 2; vertically striped filled symbols, χ ¼ 1, a ¼ 0.1)
and various h values. The black solid line indicates Eq. (35). The
dashed black line has slope Λ−1=2 and it is drawn to guide the eye.
In the inset we report the unscaled data for m̄.
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radiation in nonlinear multimode photonic networks. We
expect that our approach can be applicable to a range of
other nonlinear bosonic settings. We also expect to spark
the interest of the statistical physics community since the
mathematical models that are typically used to describe
light transport in multimode systems fall outside the
traditional spin-network framework.
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Note added in proof.—Recently, the Rayleigh-Jeans sta-
tistics was derived in [76], using the grand canonical
approach of Sec. II C.

[1] The Fermi-Pasta-Ulam Problem, Lecture Notes in Physics
Vol. 728, edited by G. Gallavotti (Springer, Berlin, 2008).

[2] R. K. Pathria and P. D. Beale, Statistical Mechanics, 3rd ed.
(Elsevier Science, Oxford, 2011).

[3] E. T. Jaynes, Information Theory and Statistical Mechanics,
Phys. Rev. 106, 620 (1957).

[4] V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov
Spectra of Turbolence I: Wave Turbulence (Springer
Science & Business Media, Berlin, 2012).

[5] A. C. Newell and B. Rumpf, Wave Turbulence, Annu. Rev.
Fluid Mech. 43, 59 (2011).

[6] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch,
U.Schollwöck, J. Eisert, and I. Bloch, Probing the Relax-
ation towards Equilibrium in an Isolated Strongly Corre-
lated One-Dimensional Bose Gas, Nat. Phys. 8, 325 (2012).

[7] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Oxford University Press, Oxford, 2003).

[8] N. Cherroret, T. Karpiuk, B. Grémaud, and C. Miniatura,
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