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ABSTRACT  

In this work, the structural, electronic, topological and vibrational 

properties of six Cis and Trans isomers of Thymidine (THY) in gas 

and aqueous solution phases were studied combining the hybrid 

B3LYP/6-31G* method with the Polarized Continuum Model 

(PCM) model and the available experimental infrared, Raman, 1H-

NMR, 13C-NMR and UV spectra. Hence, theoretical molecular 

structures of two Cis isomers and one Trans isomers of THY were 

determined in the two media for first time. The population analyses 

suggest the presence in solution of a Trans isomer and of two Cis 

isomers in accordance with the experimental structures reported by 

X-ray diffraction by different authors. The study of the charges show 

clearly the differences between the Cis and Trans isomers where the 

charges on the O atoms belonging to the ribose rings in all the 

structures, on the N atoms belonging to the glycosidic bond and on 

the two chiral C atoms show the higher modifications. The 

Molecular Electrostatic Potential (MEP) surface mapped evidence 

clearly that the group's acceptors of H bonds in all the isomers are 

the two C=O groups of the pyrimidine rings while the OH groups of 

the ribose rings and the NH group of the pyrimidine rings are donors 

of H bonds showing their surfaces colorations red and blue in those 

sites, respectively. Natural Bond Orbital (NBO) and Quantum 

Atoms in Molecules (QAIM) calculations clearly reveal the high 

stabilities of those three isomers of THY in both media. The frontier 

orbitals show that in gas phase the decreasing of the gap values are 

different than those in solution. The vibrational analyses show the 

presence of different isomers in both media and confirm that the 

different positions of the bands are characteristic of their different 

structures. Here, the 1H-NMR, 13C-NMR and UV spectra present a 

reasonable concordance with the corresponding experimental ones. 

Finally, the spectroscopic studies support the presence of more of an 

isomer of THY in solution. 
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1. INTRODUCTION 

The structural and vibrational properties of different isomers expected for the nucleosides 

emtricitabine (FTC), idoxuridine (IDU) and trifluridine (TFT), as a consequence of their two 

asymmetric C atoms present in the ribose rings are of great interest due to their antiviral 

properties [1-6]. In this work, we have compared and analyzed the different Cis and Trans 

configurations of the antiviral thymidine (THY) agent because in the recent study reported by 

Márquez and Brandán only the structural and vibrational properties corresponding to three 

Trans conformations were presented [3]. In this case, the study of the Cis isomers of 

thymidine was also considered because a Cis isomer in the nucleoside emtricitabine has a 

high antiviral activity while the other Cis one exhibit low activity [7]. Hence, to know exactly 

the Structure Activity Relationship (SAR) of this important antiviral agent it is necessary to 

know the existent relations among the atomic charges, molecular electrostatic potentials, 

stabilization energies, frontier orbitals and their Cis (2R,5S) and (2S,5R) structures. 

Particularly, in these nucleosides is of interest to understand why especially the Cis 

configuration present, for example in emtricitabine, a high biological activity despite that it is 

not the more stable in both media. In this study, we observed that the Cis (2R,5S) isomers for 

THY is the most stable than the other configurations. Besides, the topological properties were 

also compared in order to analyze the characteristics and nature of the intra-molecular 

interactions. Here, a series of interesting descriptors were also compared among them in 

order to know the influence of the electronic density on the two different pyrimidines and 

ribose rings present in all the different structures. These properties were calculated for THY 

using the optimized structures with the hybrid B3LYP/6-31G* method. It is very important to 

clarify that the comparisons of the properties were performed in gas and aqueous solution 

phases because we observed in the above studies and, in this work in particular, that the 

populations of the isomers of those species notably changes with the media considered. The 

Self Consistent Reaction Field (SCRF) calculations and the (PCM) were employed to study 

all the species in aqueous solution [8,9] while the solvation model [10] was used to compute 

the solvation energies using the same level of theory. The volume contractions or expansions 

expressed as the difference between the values in solution and those obtained in the gas phase 

were calculated with the Moldraw program [11]. The energy gap values for all the species 

and the calculations of some descriptors were performed with the frontier orbitals and with 

equations reported in the literature [12-18]. Here, the descript properties were calculated 

using NBO and QAIM [19,20] calculations together with the charges derived from Merz-
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Kollman [21]. On the other hand, the assignments of the new Cis isomers were performed 

taking into account the available infrared and Raman spectra [22], the internal coordinates 

and the force fields determined at the same level of theory by using the Scaled Quantum 

Mechanic Force Field (SQMFF) and the Molvib program [23,24]. In this work, the predicted 

1
H-NMR and 

13
C-NMR spectra for all the isomers of THY were compared for first time with 

those available experimental in DMSO-d6 and D2O [25,26] while the predicted UV-visible 

using the B3LYP/6-31G* method were compared here with those reported in the literature 

for THYin aqueous solution [27].  

2. COMPUTATIONAL DETAILS 

Here, the structural and vibrational properties of six isomers of THY were compared. In 

particular, the properties for the C4, C5 and C6 isomers were only studied here because the 

corresponding to the C1, C2 and C3 isomers were already reported [3], as was before 

mentioned. The GaussView program was used to model those three structures of THY while 

for their optimizations was employed the Gaussian program [28,29]. The hybrid B3LYP/6-

31G* method was used in all the calculations in gas and aqueous solution phases [30,31]. The 

structures of the three Trans isomers of THY are presented in Figure 1 together with the 

atoms labelling while in Figure 2 are presented the other three isomers. Two charge’s types 

were considered in this study, on one hand, the atomic natural population (NPA) computed 

from the NBO calculations [19] and, on the other hand, the MK charges which were derived 

from Merz-Kollman calculations [21]. The bond orders were also computed together with the 

molecular electrostatic potentials while the behaviours of each isomer in the different media 

and their reactivities were predicted by using the HOMO-LUMO calculations and useful 

equations reported for some descriptors by different authors [12-18]. The predictions of the 

theoretical 
1
H-NMR and 

13
C-NMR spectra for all the isomers of THY were presented for first 

time in this work and, they were carry out using the self-consistent perturbation theory of 

diamagnetism with the gauge-invariant molecular orbital theory (GIOA) method [32]. Later, 

these spectra were compared with the available experimental in DMSO-d6 and D2O [33,34] 

showing reasonable concordance. On the other hand, the electronic UV-visible spectra for all 

the isomers of THY in aqueous solution were also predicted for first time using the 

B3LYP/6-31G* method and, then, they were compared with the available experimental for 

thymidine in aqueous solution [27] evidenced among them a very good correlation. 
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Figure 1. Theoretical molecular structures and atoms labelling for the trans C1, C2 and 

C3 isomers of thymidine. 

 

Figure 2. Theoretical molecular structures and atoms labelling for the Cis C4 and C6 

and, trans C5 isomers of thymidine. 
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The force fields for the isomers C4, C5 and C6 were calculated at the same level of theory 

that for C1, C2 and C3 with the SQMFF methodology and the Molvib program [23,24] while 

the internal coordinates were those similar to the previously reported [3]. This way, the 

complete assignments of the new Cis and Trans isomers were performed using the available 

infrared and Raman spectra [22]. Finally, the force constants of all the isomers were 

compared among them evidenced an excellent correlation. 

3. RESULTS AND DISCUSSION 

3.1. Optimization geometries 

The total and relative energies, dipole moment values and populations for all the isomers of 

THY in both media are presented in Table 1. 

Table 1. Total (E) and relative (E) energies and dipole moment () for all conformers 

of thymidine 

Name Isomers 
E (Hartree) 

E 

(kJ/mol) 
 (D) 

Population % 

Gas phase
a
 

C1 Trans -875.1242 11.01 6.73 0.92 

C2 Trans -875.1195 23.34 7.39 0.02 

C3 Trans -875.1246 9.97 7.75 1.85 

C4 Cis -875.1255 7.61 6.81 4.63 

C5 Trans -875.1215 18.10 4.95 0.06 

C6 Cis -875.1284 0.00 6.91 92.52 

Aqueous solution
a
 

C1 Trans -875.1567 4.98 9.02 5.81 

C2 Trans -875.1566 5.24 11.07 5.36 

C3 Trans -875.1576 2.62 11.06 15.62 

C4 Cis -875.1581 1.31 9.29 26.34 

C5 Trans -875.1558 7.34 7.12 2.23 

C6 Cis -875.1586 0.00 9.18 44.64 

a
This work The results clearly show that the Cis C6 isomer is the most stable in both media 

exhibiting the biggest populations but the C4 isomer also shows higher populations in the two 

media, as observed in Table 1. Figure 3 shows the variations in the population of the 

different isomers in both media. The graphic shows clearly that C4 and C6 present the higher 

values in the two media. On the other hand, Table 2 shows the molar volume variations that 

experiment each isomer, expressed as a difference between the values in solution and those in 
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gas phase, as a function of the different isomeric structures while the variations of the dipole 

moment values in both media are represented in Figure 4 at B3LYP/6-31G* level of theory. 

Note that the behaviours of the dipole moments in both media are similar for all the isomers 

showing the C2 and C3 isomers the higher values while the low values are observed for C5. 

Figure 3 shows that the C3 isomer presents the higher volume values in both media which 

could easily explain the higher dipole moment values that present the C2 and C3 isomers in 

the two media, as observed in Tables 1 and 2. 

 

Figure 3. Variation of the populations in function of the isomers of thymidine in both 

media at the B3LYP/6-31G* level of theory. 

Table 2. Molecular volume for the stable conformations of thymidine by the B3LYP/6-

31G* method 

 Molar Volume (Å
3
)  

Isomers GAS PCM/SMD #
V= VAS – VG (Å

3
) 

C1 236.7 236.0 -0.7 

C2 242.6 236.9 -5.7 

C3 257.3 257.3 0.0 

C4 238.8 239.8 1.0 

C5 240.5 238.4 -2.1 

C6 237.0 238.3 1.3 

#
See text 

On the other hand, Figure 5 shows that the C2 and C5 isomers present the higher variations 

in the molar volumes probably because these isomers present lower populations in the two 

media and, as a consequence, they can undergo higher expansions in these media.  
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Figure 4. Variations observed in the dipole moment (upper) and volume (bottom) values 

in the different isomers in both media at B3LYP/6-31G* level of theory. 

 

 

Figure 5. Variations observed in the volume values in the different isomers in both 

media at B3LYP/6-31G* level of theory. 
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The solvation energy values for the six isomers of THY calculated at B3LYP/6-31G* level of 

theory are summarized in  

Table 3 while the representation of these values can be seen in Figure 6. 

Table 3. Calculated Solvation energies (G) for the six isomers of thymidine  

PCM/B3LYP/6-31G* 

Species 
G (kJ/mol) 

Gu
#
 Gne Gc 

C1 -85.24 29.68 -114.92 

C2 -97.31 29.72 -127.03 

C3 -86.56 29.59 -116.15 

C4 -85.51 29.51 -115.02 

C5 -89.97 29.18 -119.15 

C6 -79.21 28.84 -108.05 

Gc = Guncorrected
#
 - GTotal non-electrostatic 

 

Figure 6. The uncorrected and corrected solvation energy values calculated at 

B3LYP/6-31G* level of theory in function of the six isomers of THY together with the 

corresponding total nonelectrostatic terms due to the cavitation, dispersion and 

repulsion energies. 

The graphics clearly evidence the diminishing of the corrected values, in relation to those 

uncorrected, when the nonelectrostatic terms are included. Notice that the C2 and C5 isomers 

have the lowest values than the other ones. Hence, probably the higher variations in the molar 
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volumes due to their low populations can in part justify the lower solvation energies of these 

two isomers in solution. 

For the six isomers of THY, the Root-Mean-Square Deviation (RMSD) were used to compare 

the calculated geometrical parameters with the corresponding experimental ones reported by 

Görbitz et al. [33] for -thymidine at low temperatures. The results for the six isomers in gas 

phase can be seen in Table 4. Obviously, the variations observed in those parameters can be, 

on one hand, attributed to the temperature because the calculations were computed at 298 K 

while the experimental values are reported at 105 K and, on other hand, to the packing forces 

observed in the solid phase. In general, we observed a good concordance between the 

calculated and experimental bond lengths and angles values for all the Cis and Trans isomers 

of THY and only significant differences are observed in the dihedral angles, having the C2 

isomer the lowest RMSD value. Analyzing the glycosidic N5-C16 bonds of all the Cis and 

Trans isomers, we observed that the calculated values, in general, are in conformity with the 

experimental value of 1.478Å [33] and only in the C5 isomer the B3LYP/6-31G* calculations 

overestimated this value, as observed in Table 4. When the O4-C23-C25-O29 torsion angle 

for the new isomers considered in this work were carefully analyzed we observed that in C4 

that dihedral angle has a value of -68.9 º, similar to that observed in C3 of -69.5º, for which, 

the structures of both isomers correspond to that B structure reported by Görbitz et al. [33]. 

Note that these two last isomers have respectively Trans and Cis structures. On the other 

hand, in the previous work reported for the three Trans isomers by Márquez and Brandán [3], 

was observed that the structure of the C2 isomer is similar to the A structure reported at low 

temperatures by Görbitz et al. [33] while in this work we have observed for C6 a positive O4-

C23-C25-O29 torsion angle but with a value of 161.6 º different from that experimental value 

of 59.34 (9)º reported for the A structure. Experimentally, the Cis structures for THY were 

reported by both Young et al. and Hübschle et al. [34,35], of which the C4 isomer 

corresponds to the Cis structure reported by those first authors. On the other hand, the Cis and 

Trans structures were also predicted at low temperatures by Ivanov et al. [36]. Besides, in 

that experimental structure of THY at low temperatures [36], it was possible to observe 

dimeric species linked by intermolecular bonds and intra-molecular H bonds between atoms 

belonging to the two pyrimidine and ribose rings with O4-C16-N5-C8 torsion angles of 124º.  
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Table 4. Comparison of calculated geometrical parameters for the six isomers of 

thymidine in gas phase 

B3LYP/6-31G*
a
 

Parameter C1 C2 C3 C4 C5 C6 Exp
b
 

Bond lengths (Å) 
N5-C8 1.399 1.399 1.399 1.397 1.391 1.400 1.380 

N5-C11 1.386 1.386 1.385 1.385 1.380 1.387 1.388 
N5-C16 1.463 1.462 1.463 1.463 1.483 1.462 1.478 
N6-C8 1.383 1.383 1.384 1.384 1.382 1.383 1.381 
N6-C9 1.406 1.406 1.406 1.406 1.408 1.406 1.392 
C9-C10 1.462 1.462 1.462 1.462 1.461 1.462 1.454 

C10-C11 1.352 1.352 1.352 1.352 1.354 1.352 1.361 
C8-O1 1.221 1.221 1.221 1.221 1.223 1.221 1.237 

C9-O31 1.222 1.222 1.223 1.222 1.222 1.222 1.237 
O4-C16 1.429 1.426 1.429 1.424 1.413 1.429 1.436 
O4-C23 1.428 1.427 1.425 1.435 1.444 1.427 1.452 
C16-C18 1.548 1.551 1.549 1.535 1.538 1.548 1.546 
C18-C21 1.531 1.530 1.530 1.530 1.532 1.531 1.535 
C21-C23 1.538 1.540 1.543 1.543 1.533 1.544 1.537 
C23-C25 1.529 1.528 1.526 1.521 1.520 1.532 1.523 
RMSD 0.012 0.012 0.012 0.011 0.011 0.012  

Bond angles (°) 
N5-C8-N6 113.4 113.3 113.3 113.3 113.7 113.4 115.1 
C8-N6-C9 128.7 128.7 128.7 128.6 128.3 128.7 126.7 

N6-C9-C10 113.8 113.8 113.8 113.8 113.8 113.8 115.5 
C9-C10-C11 118.5 118.5 118.4 118.5 118.5 118.5 117.9 
N5-C11-C10 123.8 123.7 123.8 123.7 123.6 123.8 123.1 
N5-C16-C18 115.2 115.1 114.9 114.6 113.4 115.1 114.2 
N5-C16-O4 108.9 108.5 108.2 108.5 109.4 109.0 107.0 
O4-C16-C18 106.4 106.4 106.6 105.4 106.4 106.3 114.2 
C16-C18-C21 105.1 104.7 105.0 102.3 101.9 105.5 104.7 
O4-C23-C21 106.1 105.1 105.4 106.6 105.3 106.3 104.2 

C23-C25-O29 106.9 107.6 109.1 109.2 106.3 111.7 109.4 
RMSD 2.8 2.7 2.6 3.0 2.9 2.8  

Dihedral angle (º) 
C11-N5-C16-

C18 

59.6 63.0 59.2 -68.8 -104.1 56.4 61.6 
C8-N5-C16-C18 -125.6 -121.4 -126.2 112.7 76.0 -129.0 -117.0 
C8-N5-C16-O4 114.8 119.3 114.6 -129.6 -165.2 111.4 124.8 

C11-N5-C16-O4 -59.8 -56.1 -59.8 48.7 14.5 -63.0 -56.3 
O4-C23-C25-

O29 

174.4 67.0 -69.5 -68.9 -170.2 161.6 89.7 
C21-C23-C25-

O29 

49.9 -174.1 -66.8 51.2 71.3 43.9  
O4-C23-C21-O2 -85.1 -81.4 -83.6 -96.0 -82.5 -86.8 -79.7 

RMSD 35.1 9.7 65.3 168.8 192.1 30.6  

a
This work 

b
From Ref [33] 

Here, the B3LYP/6-31G* calculations predicted the O4-C16-N5-C8 torsion angles values for 

the C1, C2, C3 and C6 isomers between 119.3 and 111.4º while for the C4 and C5 isomers 

those torsion angles exhibit values of -129.6 and -165.2º, respectively. For C2, C4 and C5, 

the calculations predicted the O4-C23 bond longer than the O4-C16 bond in accordance with 

the observed values in Table 4 while for C1, C3 and C6 contrary results are predicted. The 

population analysis suggests that the C6 isomer is the only expected in both media while the 
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C3, C4 and C6 isomers could be present no more than in aqueous solution. This way, these 

three isomers could be present in both media. 

3.2. Charges, molecular electrostatic potentials, bond orders studies 

The study of the atomic charges in all the isomers of THY is of great structural importance 

taking into account the presence of N and O atoms with lone pairs, of -OH groups and of the 

two chiral C atoms in their structures that obviously have influence on their antiviral 

properties, as was observed before for the antiviral emtricitabine, IDU and TFT agents. 

Hence, the MK and NPA charges [19,218] for the six isomers of THY were studied in both 

media at B3LYP/6-31G* level of theory. The results of both charges can be seen in Tables 5 

and 6; respectively while in Figures 7 and 8 are presented the variations of the MK charges 

for all the O, N and C atoms of the different isomers in gas phase. First, the complete analysis 

of the MK charges on the five O atoms of the different isomers show clearly that the charges 

on the O4 atoms belonging to the ribose rings in all the structures present the higher 

variations, especially in the C5 isomer while the charges on the O1 and O31 atoms belonging 

to the C=O bonds practically no present variations. Other very important results are that the 

MK charges on the O2 and O29 atoms belonging to the -OH groups also present slightly 

variations in the different isomers being more notable in C5. On the other hand, when the MK 

charges on the two N atoms are analyzed in Figure 7, we observed that only the charges on 

the N5 belonging to the glycosidic bond present higher variations, having the C6 isomer the 

lowest value than the other ones while the charges on the N6 atoms remain practically 

constant in all the isomers.  
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Table 5. Atomic MK charges for the six isomers of thymidine in gas and aqueous 

solution phases 

Atoms 

Gas phase Aqueous solution 

MK’ charges MK’ charges 

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

 1  O -

0.545 

-

0.550 

-

0.549 

-0.541 -0.544 -

0.548 

-0.550 -0.555 -0.554 -0.548 -

0.544 

-

0.551 

 2  O -

0.600 

-

0.566 

-

0.595 

-0.620 -0.619 -

0.647 

-0.598 -0.561 -0.587 -0.612 -

0.619 

-

0.637 

 3  H 0.378 0.370 0.386 0.416 0.422 0.426 0.376 0.371 0.382 0.413 0.422 0.427 

 4  O -

0.452 

-

0.334 

-

0.353 

-0.401 -0.548 -

0.389 

-0.433 -0.322 -0.346 -0.397 -

0.548 

-

0.362 

 5  N -

0.148 

-

0.175 

-

0.226 

-0.169 -0.157 -

0.295 

-0.126 -0.179 -0.179 -0.156 -

0.157 

-

0.261 

 6  N -

0.672 

-

0.658 

-

0.658 

-0.633 -0.621 -

0.643 

-0.655 -0.636 -0.643 -0.611 -

0.621 

-

0.629 

 7  H 0.380 0.375 0.371 0.371 0.373 0.369 0.381 0.374 0.374 0.369 0.373 0.371 

 8  C 0.685 0.695 0.709 0.659 0.621 0.717 0.675 0.685 0.691 0.653 0.621 0.696 

 9  C 0.638 0.636 0.636 0.622 0.606 0.630 0.622 0.619 0.617 0.600 0.606 0.622 

10  C -

0.029 

-

0.025 

-

0.020 

-0.015 -0.010 -

0.007 

-0.012 -0.016 -0.005 0.000 -

0.009 

-

0.009 

11  C -

0.125 

-

0.112 

-

0.103 

-0.151 -0.174 -

0.116 

-0.137 -0.104 -0.124 -0.146 -

0.174 

-

0.118 

12  H 0.194 0.191 0.202 0.216 0.199 0.233 0.193 0.184 0.200 0.206 0.199 0.225 

13  C -

0.403 

-

0.418 

-

0.423 

-0.369 -0.390 -

0.460 

-0.411 -0.425 -0.416 -0.382 -

0.390 

-

0.449 

14  H 0.123 0.125 0.124 0.100 0.114 0.133 0.124 0.125 0.122 0.104 0.115 0.129 

15  H 0.127 0.131 0.131 0.124 0.130 0.142 0.129 0.133 0.129 0.128 0.130 0.141 

16  C 0.309 0.196 0.301 0.311 0.560 0.419 0.259 0.191 0.236 0.278 0.560 0.401 

17  H 0.082 0.121 0.093 0.092 0.003 0.062 0.091 0.125 0.115 0.104 0.003 0.067 

18  C -

0.498 

-

0.322 

-

0.363 

-0.312 -0.333 -

0.422 

-0.459 -0.327 -0.346 -0.309 -

0.332 

-

0.436 

19  H 0.182 0.156 0.157 0.110 0.077 0.160 0.177 0.161 0.157 0.115 0.076 0.169 

20  H 0.151 0.100 0.128 0.107 0.113 0.120 0.144 0.106 0.129 0.110 0.112 0.127 

21  C 0.334 0.248 0.251 0.167 0.159 0.413 0.344 0.233 0.234 0.156 0.159 0.409 

22  H 0.028 0.023 0.057 0.063 0.044 -

0.022 

0.016 0.024 0.056 0.068 0.044 -

0.009 

23  C 0.261 0.068 0.036 0.223 0.381 -

0.053 

0.210 0.084 0.084 0.217 0.381 -

0.165 

24  H 0.050 0.109 0.078 0.073 0.013 0.075 0.071 0.103 0.069 0.075 0.013 0.116 

25  C 0.070 0.163 0.129 0.011 0.093 0.110 0.102 0.124 0.084 0.039 0.094 0.162 

26  H 0.055 0.031 0.000 0.044 0.039 0.069 0.052 0.039 0.011 0.036 0.039 0.060 

27  H 0.029 -

0.013 

0.055 0.070 0.055 0.096 0.024 0.001 0.063 0.064 0.055 0.090 

28  H 0.129 0.134 0.133 0.118 0.123 0.145 0.132 0.137 0.132 0.122 0.123 0.144 

29  O -

0.660 

-

0.587 

-

0.579 

-0.594 -0.648 -

0.617 

-0.652 -0.577 -0.578 -0.600 -

0.647 

-

0.616 

30  H 0.437 0.402 0.410 0.423 0.427 0.409 0.428 0.400 0.414 0.423 0.427 0.402 

31  O -

0.511 

-

0.512 

-

0.515 

-0.515 -0.509 -

0.510 

-0.517 -0.518 -0.519 -0.518 -

0.509 

-

0.518 
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Table 6. NPA charges for the six isomers of thymidine in gas and aqueous solution 

phases 

Atoms 

Gas phase Aqueous solution 

NPA NPA 

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

 1  O -

0.638 

-

0.638 

-

0.637 

-

0.636 

-

0.643 

-

0.636 

-

0.645 

-

0.644 

-

0.643 

-

0.642 

-

0.643 

-

0.643 

 2  O -

0.763 

-

0.758 

-

0.761 

-

0.756 

-

0.762 

-

0.776 

-

0.762 

-

0.757 

-

0.759 

-

0.756 

-

0.762 

-

0.770 

 3  H 0.482 0.480 0.477 0.476 0.481 0.500 0.482 0.480 0.476 0.476 0.481 0.494 

 4  O -

0.586 

-

0.577 

-

0.587 

-

0.594 

-

0.596 

-

0.590 

-

0.584 

-

0.575 

-

0.586 

-

0.594 

-

0.596 

-

0.588 

 5  N -

0.479 

-

0.477 

-

0.478 

-

0.474 

-

0.475 

-

0.479 

-

0.474 

-

0.474 

-

0.473 

-

0.470 

-

0.475 

-

0.473 

 6  N -

0.667 

-

0.667 

-

0.668 

-

0.668 

-

0.666 

-

0.667 

-

0.659 

-

0.659 

-

0.659 

-

0.659 

-

0.666 

-

0.659 

 7  H 0.447 0.447 0.446 0.447 0.447 0.447 0.450 0.450 0.450 0.450 0.447 0.451 

 8  C 0.835 0.835 0.835 0.834 0.829 0.835 0.831 0.831 0.830 0.830 0.829 0.831 

 9  C 0.664 0.664 0.664 0.664 0.661 0.664 0.656 0.656 0.656 0.655 0.661 0.656 

10  C -

0.177 

-

0.178 

-

0.179 

-

0.180 

-

0.182 

-

0.176 

-

0.174 

-

0.175 

-

0.176 

-

0.177 

-

0.182 

-

0.173 

11  C 0.036 0.038 0.038 0.037 0.036 0.032 0.037 0.040 0.039 0.039 0.036 0.035 

12  H 0.261 0.260 0.259 0.259 0.258 0.260 0.260 0.258 0.258 0.258 0.258 0.259 

13  C -

0.682 

-

0.682 

-

0.682 

-

0.681 

-

0.682 

-

0.683 

-

0.682 

-

0.681 

-

0.681 

-

0.681 

-

0.682 

-

0.682 

14  H 0.235 0.234 0.234 0.231 0.233 0.236 0.234 0.233 0.234 0.231 0.233 0.235 

15  H 0.251 0.251 0.250 0.251 0.252 0.251 0.251 0.251 0.251 0.252 0.252 0.251 

16  C 0.264 0.264 0.266 0.275 0.287 0.269 0.266 0.267 0.269 0.275 0.287 0.271 

17  H 0.265 0.263 0.269 0.263 0.252 0.265 0.264 0.265 0.270 0.264 0.252 0.263 

18  C -

0.524 

-

0.522 

-

0.520 

-

0.523 

-

0.522 

-

0.521 

-

0.525 

-

0.523 

-

0.521 

-

0.522 

-

0.522 

-

0.522 

19  H 0.272 0.271 0.263 0.259 0.248 0.271 0.273 0.273 0.265 0.258 0.248 0.271 

20  H 0.257 0.255 0.274 0.250 0.266 0.258 0.257 0.257 0.272 0.251 0.266 0.259 

21  C 0.068 0.071 0.071 0.073 0.072 0.069 0.068 0.070 0.071 0.072 0.072 0.070 

22  H 0.238 0.223 0.228 0.226 0.234 0.224 0.236 0.223 0.227 0.227 0.234 0.227 

23  C 0.045 0.038 0.039 0.047 0.054 0.035 0.043 0.037 0.036 0.044 0.054 0.032 

24  H 0.239 0.244 0.237 0.253 0.229 0.211 0.241 0.244 0.238 0.254 0.229 0.210 

25  C -

0.120 

-

0.118 

-

0.120 

-

0.117 

-

0.111 

-

0.120 

-

0.121 

-

0.120 

-

0.120 

-

0.117 

-

0.111 

-

0.117 

26  H 0.215 0.198 0.198 0.206 0.206 0.218 0.217 0.198 0.198 0.207 0.206 0.218 

27  H 0.193 0.196 0.217 0.217 0.221 0.235 0.194 0.198 0.217 0.217 0.221 0.230 

28  H 0.251 0.251 0.250 0.250 0.251 0.251 0.251 0.252 0.251 0.252 0.251 0.252 

29  O -

0.762 

-

0.743 

-

0.768 

-

0.772 

-

0.759 

-

0.764 

-

0.761 

-

0.740 

-

0.764 

-

0.770 

-

0.759 

-

0.758 

30  H 0.482 0.478 0.486 0.485 0.481 0.480 0.481 0.476 0.484 0.485 0.481 0.475 

31  O -

0.600 

-

0.600 

-

0.603 

-

0.602 

-

0.602 

-

0.599 

-

0.607 

-

0.608 

-

0.610 

-

0.609 

-

0.602 

-

0.606 



www.ijsrm.humanjournals.com 

 

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2017; Vol. 8 (2): 197-238. 

210 

 

Figure 7. The MK charge values on the O (upper) and N (bottom) atoms corresponding 

to the six isomers of THY calculated in gas phase at B3LYP/6-31G* level of theory in 

function of their structures. 

 

Figure 8. The MK charge values on the C atoms corresponding to the six isomers of 

THY calculated in gas phase at B3LYP/6-31G* level of theory in function of their 

structures. 

Analyzing the MK charges on the C atoms, according to the Figure 8, we observed that the 

charges on the C16 and C23 atoms show the higher modifications, as expected because they 
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are the chiral atoms where C5 exhibit the higher charges comparing C16 with C23, 

respectively. Figure 8 shows that the MK charges on the C21 atoms also undergo notable 

variations in the six isomers being important in C3 and C5. The analysis of the MK charges 

on the H atoms show strong variations on the H17 atoms belonging to the chiral C16 atoms 

of all the isomers showing C5 the lowest value than the other ones and the higher variations 

are observed on the H atoms belonging to the CH2 and C-H groups while the H atoms 

belonging to the pyrimidine rings show few variations. The higher MK charge values in all 

the isomers are observed on the H3, H7 and H30, as expected because they belong to the NH 

and OH groups. In aqueous solutions similar variations in the MK charges on those atoms are 

observed, for these reasons, the graphics are not presented here.  

In relation to the NPA charges, there are not significant variations of these charges on all the 

O, N, C and H atoms of the six isomers. For instance, only the most negative values are 

observed on the O2 and O29 atoms, as expected because these atoms belong to the OH 

groups. The NPA charges on the two N atoms remain practically constant in all the isomers 

having the lower values the N6 atoms of the N-H groups. All the NPA charges on the C 

atoms show the same values in all the isomers even those chiral atoms, then, this charge type 

do not produce variations in the different structures. In all the isomers, the most negative 

values are observed on the C13 atoms belonging to the CH3 groups while the most positive 

values on the C8 and C9 atoms that belong to the C=O groups. This way, the MK charges on 

the O, N, C and H atoms evidence different behaviors of the six structures when compared 

with those NPA and, they suggest their importance to understand the properties of the Cis and 

Trans isomers in both media. 

In this chapter, we have also performed the study of the separations between the most 

electronegative N and O atoms because these parameters are very important to know the 

stabilities of these isomers. Thus, in Table 7 are summarized the calculated values in both 

media while in Figure 9 are represented the variations in function of the six isomers in gas 

phase. Figure 9 shows clearly that the O4-N5 distances are independent of the Cis or Trans 

conformations because they remain nearly constant in all the isomers while the O4-O29 

distances exhibit the higher values in C1, C5 and C6 and the lower values in C2, C3 and C4. 

This way, in C1, C5 and C6 are expected lower repulsions between those atoms indicating 

that these isomers are most stable while, for the same reasons, lower stabilities can be 
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expected for C2, C3 and C4. In aqueous solution, the same variations in those distances are 

observed; hence, the corresponding graphic was not presented here. 

Another property studied for the six isomers of THY were the molecular electrostatic 

potentials because they are essential to describe the reaction sites with potential biological 

electrophiles and nucleophiles. Thus, in Table 8 are presented the Molecular Electrostatic 

Potential (MEP) for the six isomers of thymidine in both media using the B3LYP/6-31G* 

level of theory. In Figure 10, the MEP values for all the O atoms of the six isomers in gas 

phase are represented as a function of the different structures where we observed that the O1 

and O31 atoms belonging to the C=O groups of the pyrimidine rings remain practically 

constant in all the isomers and they have the most negative values.  

Table 7. Distances values between the more electronegative atoms for the stable isomers 

of thymidine 

B3LYP/6-31G* method
a
 

Gas phase 
Distances 

(Å) 

C1 C2 C3 C4 C5 C6 Exp
b
 

O4-O29 3.635 2.897 2.941 2.909 3.617 3.645  
O2-O4 3.074 3.018 3.043 3.114 2.976 3.104 2.976 
O4-N5 2.355 2.346 2.344 2.344 2.365 2.355 2.343 
Aqueous solution 
O4-O29 3.649 2.829 2.913 2.941 3.617 3.668  
O2-O4 3.069 3.069 3.083 3.128 2.975 3.082 2.976 
O4-N5 2.352 2.349 2.347 2.348 2.365 2.351 2.343 

a
This work  

Figure 9. Distances between the more electronegative atoms for the stable isomers of 

thymidine in gas phase at B3LYP/6-31G* level of theory. 



www.ijsrm.humanjournals.com 

 

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2017; Vol. 8 (2): 197-238. 

213 

Table 8. Molecular electrostatic potential (in a.u.) for the six isomers of thymidine 

Gas phase Aqueous solution 

Atoms C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

 1  O -

22.343 

-

22.344 

-

22.347 

-

22.344 

-

22.339 

-

22.342 

-

22.346 

-

22.348 

-

22.351 

-

22.347 

-

22.339 

-

22.345 

 2  O -

22.290 

-

22.285 

-

22.291 

-

22.301 

-

22.297 

-

22.297 

-

22.288 

-

22.283 

-

22.289 

-

22.300 

-

22.297 

-

22.289 

 3  H -0.972 -0.967 -0.973 -0.981 -0.977 -0.981 -0.970 -0.965 -0.971 -0.981 -0.977 -0.974 

 4  O -

22.295 

-

22.298 

-

22.301 

-

22.300 

-

22.287 

-

22.294 

-

22.293 

-

22.297 

-

22.299 

-

22.299 

-

22.287 

-

22.291 

 5  N -

18.285 

-

18.286 

-

18.290 

-

18.285 

-

18.280 

-

18.284 

-

18.283 

-

18.284 

-

18.288 

-

18.282 

-

18.280 

-

18.281 

 6  N -

18.303 

-

18.303 

-

18.306 

-

18.303 

-

18.299 

-

18.302 

-

18.301 

-

18.303 

-

18.305 

-

18.301 

-

18.299 

-

18.300 

 7  H -1.000 -1.001 -1.004 -1.000 -0.996 -0.999 -0.998 -0.999 -1.001 -0.998 -0.996 -0.996 

 8  C -

14.593 

-

14.593 

-

14.597 

-

14.594 

-

14.590 

-

14.592 

-

14.593 

-

14.595 

-

14.598 

-

14.594 

-

14.590 

-

14.592 

 9  C -

14.634 

-

14.634 

-

14.637 

-

14.634 

-

14.631 

-

14.633 

-

14.635 

-

14.636 

-

14.638 

-

14.635 

-

14.631 

-

14.634 

10  C -

14.728 

-

14.729 

-

14.731 

-

14.728 

-

14.724 

-

14.727 

-

14.727 

-

14.729 

-

14.731 

-

14.726 

-

14.724 

-

14.726 

11  C -

14.687 

-

14.687 

-

14.689 

-

14.685 

-

14.678 

-

14.686 

-

14.685 

-

14.686 

-

14.688 

-

14.683 

-

14.678 

-

14.683 

12  H -1.080 -1.081 -1.083 -1.079 -1.073 -1.079 -1.079 -1.080 -1.082 -1.078 -1.073 -1.077 

13  C -

14.740 

-

14.740 

-

14.742 

-

14.737 

-

14.736 

-

14.739 

-

14.739 

-

14.740 

-

14.741 

-

14.737 

-

14.736 

-

14.738 

14  H -1.118 -1.118 -1.120 -1.115 -1.114 -1.117 -1.117 -1.118 -1.119 -1.115 -1.114 -1.117 

15  H -1.122 -1.122 -1.124 -1.120 -1.118 -1.121 -1.121 -1.122 -1.123 -1.119 -1.119 -1.120 

16  C -

14.635 

-

14.635 

-

14.644 

-

14.640 

-

14.629 

-

14.634 

-

14.632 

-

14.634 

-

14.641 

-

14.638 

-

14.629 

-

14.631 

17  H -1.102 -1.103 -1.113 -1.110 -1.104 -1.102 -1.100 -1.102 -1.112 -1.109 -1.104 -1.099 

18  C -

14.718 

-

14.716 

-

14.729 

-

14.726 

-

14.722 

-

14.717 

-

14.715 

-

14.713 

-

14.725 

-

14.724 

-

14.722 

-

14.714 

19  H -1.092 -1.090 -1.102 -1.100 -1.094 -1.091 -1.088 -1.087 -1.099 -1.098 -1.094 -1.087 

20  H -1.093 -1.090 -1.107 -1.095 -1.095 -1.092 -1.090 -1.088 -1.104 -1.093 -1.095 -1.088 

21  C -

14.666 

-

14.658 

-

14.666 

-

14.668 

-

14.668 

-

14.664 

-

14.663 

-

14.655 

-

14.663 

-

14.666 

-

14.668 

-

14.660 

22  H -1.102 -1.092 -1.102 -1.105 -1.103 -1.100 -1.100 -1.089 -1.100 -1.103 -1.103 -1.096 

23  C -

14.673 

-

14.670 

-

14.671 

-

14.673 

-

14.673 

-

14.669 

-

14.669 

-

14.668 

-

14.668 

-

14.671 

-

14.673 

-

14.667 

24  H -1.099 -1.095 -1.092 -1.105 -1.106 -1.099 -1.094 -1.092 -1.088 -1.102 -1.106 -1.094 

25  C -

14.674 

-

14.671 

-

14.671 

-

14.670 

-

14.684 

-

14.669 

-

14.672 

-

14.670 

-

14.670 

-

14.669 

-

14.684 

-

14.669 

26  H -1.105 -1.099 -1.101 -1.098 -1.119 -1.097 -1.105 -1.098 -1.096 -1.097 -1.119 -1.100 

27  H -1.103 -1.102 -1.100 -1.101 -1.117 -1.100 -1.098 -1.097 -1.101 -1.099 -1.117 -1.098 

28  H -1.122 -1.122 -1.124 -1.120 -1.118 -1.121 -1.121 -1.122 -1.123 -1.119 -1.118 -1.120 

29  O -

22.293 

-

22.302 

-

22.292 

-

22.285 

-

22.306 

-

22.276 

-

22.293 

-

22.303 

-

22.292 

-

22.285 

-

22.306 

-

22.282 

30  H -0.974 -0.983 -0.973 -0.967 -0.987 -0.961 -0.974 -0.984 -0.973 -0.968 -0.987 -0.966 

31  O -

22.350 

-

22.351 

-

22.353 

-

22.350 

-

22.348 

-

22.349 

-

22.354 

-

22.355 

-

22.357 

-

22.354 

-

22.348 

-

22.353 



www.ijsrm.humanjournals.com 

 

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2017; Vol. 8 (2): 197-238. 

214 

 

Figure 10. Molecular electrostatic potentials (MEP) for the stable isomers of thymidine 

in gas phase at B3LYP/6-31G* level of theory. 

On the other hand, in this graphic we observed that the MEP values for the O2, O4 and O29 

atoms have the less negative values than the other ones and, also, show significant differences 

in all the isomers indicating clearly that the variations of this property is a consequence of 

two chiral atoms present in their structures. If we analyzed the surface mapped on the C6 

structure in gas phase in Figure 11 different colorations are observed. 

 

Figure 11. Calculated electrostatic potential surface on the molecular surface of C6 

structure of thymidine in gas phase. Colour ranges, in au: from red -0.077 to blue + 

0.077. B3LYP functional and 6-31G* basis set. Isodensity value of 0.005. 
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The strong red colors are observed on the O1 and O31 atoms whose MEP values are the most 

negative values and, moreover, weak red colors on the O4 atoms are also observed. These 

regions are acceptor of H bonds, are nucleophilic regions that reacting with potential 

biological electrophiles. On the other hand, the strong blue colors are observed on the H 

atoms belonging to the N-H and OH groups, as expected because these regions are donor of 

H bonds that obviously reacting with potential biological nucleophiles. This study, evidence 

clearly that the two C=O groups of the pyrimidine rings in all the isomers are principally 

acceptors of H bonds while the OH groups of the ribose rings and the NH group of the 

pyrimidine rings are donors of H bonds. 

The bond orders expressed as Wiberg indexes were also studied for all the isomers of THY. 

The values that experiment the different isomers in both media in function of their structures 

are summarized in Table 9. 
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Table 9.  Wiberg indexes for the six isomers of thymidine  

Gas phase Aqueous solution 

Atoms C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

 1  O 1.984 1.984 1.985 1.985 1.974 1.986 1.969 1.969 1.970 1.971 1.974 1.971 

 2  O 1.791 1.796 1.793 1.789 1.787 1.784 1.791 1.795 1.792 1.786 1.787 1.787 

 3  H 0.769 0.771 0.774 0.775 0.770 0.752 0.769 0.771 0.775 0.776 0.770 0.758 

 4  O 2.006 2.016 2.006 1.996 1.995 2.001 2.004 2.014 2.005 1.992 1.996 2.000 

 5  N 3.382 3.383 3.385 3.386 3.391 3.381 3.388 3.389 3.390 3.391 3.391 3.387 

 6  N 3.236 3.236 3.235 3.235 3.238 3.236 3.243 3.243 3.243 3.243 3.238 3.243 

 7  H 0.804 0.804 0.805 0.804 0.804 0.804 0.801 0.801 0.802 0.801 0.804 0.801 

 8  C 3.871 3.870 3.870 3.871 3.872 3.871 3.873 3.873 3.873 3.873 3.872 3.873 

 9  C 3.895 3.895 3.895 3.895 3.896 3.895 3.899 3.899 3.899 3.899 3.896 3.899 

10  C 3.992 3.992 3.992 3.991 3.991 3.992 3.992 3.992 3.991 3.991 3.991 3.992 

11  C 3.877 3.878 3.879 3.878 3.881 3.877 3.877 3.878 3.880 3.879 3.881 3.879 

12  H 0.936 0.937 0.937 0.938 0.936 0.937 0.936 0.937 0.938 0.938 0.936 0.937 

13  C 3.833 3.833 3.834 3.835 3.833 3.833 3.833 3.833 3.834 3.834 3.833 3.832 

14  H 0.946 0.946 0.947 0.948 0.947 0.946 0.946 0.947 0.947 0.948 0.947 0.946 

15  H 0.939 0.939 0.939 0.939 0.938 0.939 0.939 0.939 0.939 0.939 0.938 0.939 

16  C 3.799 3.801 3.794 3.795 3.801 3.794 3.799 3.800 3.791 3.795 3.801 3.795 

17  H 0.934 0.935 0.932 0.936 0.941 0.934 0.935 0.934 0.931 0.935 0.941 0.935 

18  C 3.883 3.884 3.879 3.890 3.887 3.883 3.882 3.883 3.879 3.891 3.887 3.882 

19  H 0.928 0.928 0.933 0.935 0.941 0.929 0.927 0.927 0.932 0.936 0.941 0.928 

20  H 0.935 0.936 0.927 0.940 0.931 0.935 0.935 0.935 0.927 0.939 0.931 0.934 

21  C 3.854 3.861 3.858 3.863 3.860 3.870 3.856 3.863 3.860 3.864 3.860 3.867 

22  H 0.947 0.953 0.951 0.952 0.948 0.954 0.948 0.953 0.951 0.951 0.948 0.952 

23  C 3.859 3.864 3.869 3.855 3.849 3.862 3.858 3.865 3.869 3.856 3.849 3.863 

24  H 0.947 0.944 0.947 0.939 0.952 0.961 0.946 0.944 0.946 0.939 0.952 0.961 

25  C 3.813 3.828 3.812 3.805 3.804 3.795 3.814 3.830 3.815 3.807 3.804 3.800 

26  H 0.957 0.964 0.965 0.961 0.961 0.955 0.956 0.964 0.965 0.961 0.961 0.955 

27  H 0.966 0.965 0.956 0.956 0.955 0.949 0.965 0.964 0.956 0.956 0.955 0.951 

28  H 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.938 

29  O 1.777 1.795 1.776 1.776 1.776 1.786 1.775 1.792 1.775 1.774 1.776 1.784 

30  H 0.769 0.773 0.765 0.766 0.770 0.771 0.770 0.775 0.767 0.766 0.770 0.776 

31  O 2.007 2.007 2.005 2.005 2.006 2.008 1.990 1.990 1.988 1.989 2.006 1.991 

As expected, the higher values are observed in the O1, O4 and O31 atoms belonging to the 

C=O groups and to the ribose rings while the lower values are observed in the O2 and O29 

atoms belonging to the OH groups because they are the most labile atoms. In relation to the N 

atoms, the higher bond order values are observed in the N5 atoms belonging to the NH 

groups because they are most labile while the higher values are observed in the N6 atoms 

belonging to the glycosidic bonds. In all the isomers the values are practically constant and 

only a slightly variation are observed in the values of both atoms in the C5 isomer. Analyzing 

the values for the C atoms, we observed that the C10 atoms in all the isomers present the 

higher values because these have double bond character while the lowest values are observed 

in the C16 atoms of the glycosidic bonds. All the values are practically constant in the 



www.ijsrm.humanjournals.com 

 

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2017; Vol. 8 (2): 197-238. 

217 

different isomers and only slightly modifications are observed in the C25 atoms of all the 

conformations. In reference to the H atoms, the lowest values are observed in the H3, H7 and 

H30 atoms because these atoms are labile due to that are linked to the N and O atoms and 

because they have a higher ability to form H bonds, in relation to the other ones.  

3.3. NBO and QAIM studies 

The stabilities of all the isomers of THY were studied using NBO and QAIM calculations 

[19,20] in both media and at B3LYP/6-31G* level of theory. The main delocalization energy 

values for the six isomers of thymidine in both phases are presented in Table 10 while in 

Figure 12 are represented their variations in function of the different isomers in gas phase. 

 

Figure 12. Main stabilization energies for the stable isomers of thymidine in gas phase 

at B3LYP/6-31G* level of theory. 
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Table 10.  Main delocalization energy (in kJ/mol) for the six isomers of thymidine 

B3LYP/6-31G* method 

Delocalizati

on 

Gas phase Aqueous solution 

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 

C10-C11 

 *C9-

O31 

98.23 98.23 98.44 102.16 97.73 97.56 102.49 102.62 102.58 102.16 97.73 101.82 

ET * 98.23 98.23 98.44 102.16 97.73 97.56 102.49 102.62 102.58 102.16 97.73 101.82 

LP(2)O1  

*N5-C8 
114.99 114.99 115.33 109.93 113.57 115.53 109.47 109.31 109.39 109.93 113.53 109.81 

LP(2)O1  

*N6-C8 
106.76 106.84 107.43 102.45 106.42 107.00 102.28 102.37 102.49 102.45 106.42 102.45 

LP(2)O2  

*C21-H22 
25.08 27.46 25.71 22.24 22.36 26.54 26.17 26.42 25.54 22.24 22.36 23.20 

LP(1)N5  

*O1-C8 
241.39 241.35 242.73 256.94 252.14 241.64 255.23 254.27 256.98 256.94 252.18 254.35 

LP(1)N5  

*O4-C16 
39.71 35.95 39.21 27.13 2.55 42.47 38.08 34.36 37.03 27.13 2.55 39.54 

LP(1)N5  

*C10-C11 
150.86 151.19 152.61 155.04 159.47 150.40 152.61 153.15 154.62 155.04 159.47 152.36 

LP(1)N6  

*O1-C8 
257.44 256.82 255.23 263.63 264.72 258.91 262.92 260.75 261.54 263.63 264.72 263.46 

LP(1)N6  

*C9-O31 
211.55 211.55 213.18 222.83 210.34 211.55 222.12 222.63 223.42 222.83 210.34 222.21 

LP(2)O31  

*N6-C9 
122.52 122.52 122.01 113.36 123.27 122.51 113.44 113.32 113.19 113.36 123.27 113.44 

LP(2)O31  

*C9-C10 
77.79 77.83 77.71 73.48 77.83 77.91 73.36 73.36 73.40 73.48 77.83 73.44 

ETn * 
1348.0

9 
1346.5 

1351.1

5 

1347.0

3 

1332.6

7 

1354.4

6 

1355.6

8 

1349.9

4 
1357.6 

1347.0

3 

1332.6

7 

1354.2

6 

*C9-O31 

 *C10-

C11 

397.68 398.94 401.50 409.30 533.12 406.13 384.35 387.57 391.33 409.30 533.16 394.26 

ETotal 
1844.0

0 

1843.6

7 

1851.0

9 

1858.4

9 

1963.5

2 

1858.1

5 

1842.5

2 

1840.1

3 

1851.5

1 

1858.4

9 

1963.5

6 

1850.3

4 

a
This work 

Note that there are three ET*, ETn* and ET** charge transfers that are related to 

the C10=C11 bonds, to the lone pairs corresponding to the O1, O2, O31, N5 and N6 atoms 

and, to the C9=O31 bonds, being the most significant the ETn* contributions. All these 

delocalization energies contribute to the total energy of each isomer and, where we can see 

that in both media the total energy values favors to the C5 isomer being the stability order in 

both media the following: C5 > C4 > C6 > C3 > C1 > C2. The high values observed in the 

ETn* charge transfers probably suggest that in all the isomers the pyrimidine rings are the 
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most stable than the ribose rings and, where the C6 isomer has the high value in gas phase 

while C3, in solution, as observed in Table 10.  

In the previous study of the Trans C1, C2 and C3 conformations of THY [3] were observed 

different intra-molecular interactions in the three structures which are related to the H bonds 

formation and to the stabilities of their structures. Thus, C3 present three H bonds interactions, 

as observed in Table 11 while, both C1 and C2, present only two interactions, this way, C3 is 

the most stable conformer than the other ones.  

Table 11. An Analysis of the Bond Critical points (BCP) for the C1, C2 and C3 isomers 

of thymidine 

B3LYP/6-31G*
a
 

Gas phase 

Parameter (a,u,) 
C1 C2 C3 

O2---H12 O1---H17 O2---H12 O1---H17 O2---H12 O1---H17 O29---H20 

(rc) 0.0164 0.0204 0.0149 0.0201 0.0144 0.0194 0.0101 


2
(rc) 0.0489 0.0801 0.0454 0.0793 0.0440 0.0780 0.0416 

1 -0.0189 -0.0220 -0.0168 -0.0216 -0.0162 -0.0206 -0.0078 

2 -0.0184 -0.0127 -0.0165 -0.0121 -0.0158 -0.0103 -0.0047 

3 0.0864 0.1149 0.0787 0.1130 0.076 0.1089 0.0541 

1 /3 0.2188 0.1915 0.2135 0.1912 0.2132 0.1892 0.1442 

Distances (Å) 2.243 2.199 2.293 2.208 2.303 2.229 2.551 

Aqueous solution 

Parameter (a,u,) 
C1 C2 C3 

O2---H12 O1---H17 O2---H12 O1---H17 O2---H12 O1---H17 O29---H20 

(rc) 0.0161 0.0188 0.0150 0.0187 0.0133 0.0185 0.0082 


2
(rc) 0.0483 0.0752 0.0458 0.0749 0.0411 0.0750 0.0344 

1 -0.0185 -0.0197 -0.0170 -0.0196 -0.0146 -0.0192 -0.0052 

2 -0.0181 -0.0096 -0.0166 -0.0095 -0.0143 -0.0086 -0.0023 

3 0.0849 0.1046 0.0794 0.1041 0.0700 0.1029 0.0417 

1 /3 -0.2179 -0.1883 -0.2141 -0.1883 -0.2086 -0.1866 -0.1247 

Distances (Å) 2.252 2.247 2.287 2.249 2.344 2.256 2.680 

a
From Ref [3] 

Later, it is very important to analyze the topological properties for the C4, C5 and C6 isomers 

in the bond critical points (BCPs) in order to investigate their stabilities in both media. Thus, 

for those three isomers the electron density distribution, (r), the values of the Laplacian, 


2(r), the eigenvalues (1, 2, 3) of the Hessian matrix and, the 1/3 ratio were also 

computed by using the AIM2000 program [20]. These parameters describe the characteristic 

of the interactions, hence, the interaction is covalent when 1/3 > 1, 
2(r) < 0 and 



www.ijsrm.humanjournals.com 

 

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2017; Vol. 8 (2): 197-238. 

220 

moreover has high values of (r) and 
2(r). On the contrary, the interaction is ionic, highly 

polar covalent or of hydrogen bonds when 1/3 < 1 and 
2(r) > 0 [37]. The calculated 

parameters for the C4, C5 and C6 isomers of THY are presented in Table 12 where we 

observed that both Cis C4 and C6 isomers show three H bonds interactions in the two media 

while in C5 only an interaction in each medium is observed.  

Table 12. An Analysis of the Bond Critical points (BCP) for the C4, C5 and C6 isomers 

of thymidine 

B3LYP/6-31G* 
C4 
Parameter 

(a.u.) 

Gas phase Aqueous solution 
O1---H17 O29---H12 O29---H19 O1---H17 O29---H12 O29---H19 

(rc) 0.0186 0.0109 0.0084 0.0180 0.0085 0.0072 


2
(rc) 0.0772 0.0346 0.0334 0.0760 0.0288 0.0293 

1 -0.0192 -0.0118 -0.0066 -0.0183 -0.0088 -0.0054 

2 -0.0076 -0.0115 -0.0045 -0.0061 -0.0086 -0.0030 

3 0.1039 0.0579 0.0445 0.0999 0.0461 0.0377 

1 /3 0.1848 0.2038 0.1483 0.1832 0.1909 0.1432 
Distances (Å) 2.258 2.438 2.605 2.278 2.551 2.678 
C5 
Parameter 

(a.u.) 

Gas phase Aqueous solution   
O4---H12 O4---H12   

(rc) 0.0186 0.0186   


2
(rc) 0.0744 0.0744   

1 -0.0196 -0.0196   

2 -0.0113 -0.0113   

3 0.1054 0.1054   

1 /3 0.1860 0.1860   
Distances (Å) 2.255 2.255   
C6 
Parameter 

(a.u.) 

Gas phase Aqueous solution 
O1---H17 O2---H12 O29---H3 O1---H17 O2---H12 O29---H3 

(rc) 0.0201 0.0165 0.0196 0.0186 0.0144 0.0095 


2
(rc) 0.0795 0.0494 0.067 0.0750 0.0445 0.0422 

1 -0.0216 -0.0190 -0.0240 -0.0195 -0.0162 -0.0064 

2 -0.0120 -0.0185 -0.0203 -0.0091 -0.0158 -0.0007 

3 0.1131 0.0869 0.1111 0.1037 0.0765 0.0495 

1 /3 0.1910 0.2186 0.2160 0.1880 0.2118 0.1293 
Distances (Å) 2.208 2.237 2.119 2.252 2.294 2.472 

Comparing the O--H bonds distances in all the isomers we observed that in aqueous solution 

these distances undergo increase as a consequence of the hydration of each isomer with water 

molecules. Besides, these interactions are very different in the six isomers, for example, in C3 

the interactions are O2---H12, O1---H17 and O29---H20 while the three observed in C4 are 

O1---H17, O29---H12 and O29---H20 and, finally the three observed in C6 are the O1---H17, 

O2---H12 and O29---H3 interactions. Analyzing the values of the (r) and 
2(r) properties 

for the common interaction, these are the O1---H17 interactions observed in all the isomers, 

with exception of C5, we can see of Figure 13 that the behaviours of their density values are 
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similar in both media, having C4 the lower values in both media. On the other hand, the 

behaviours of the Laplacian values of those isomers in gas phase are different from those 

observed in aqueous solution, thus while C4 shows the low value in gas phase, in solution 

present the higher value.  

 

Figure 13. Electron density distribution, (r) and the Laplacian, 
2(r) values for the 

stable isomers of thymidine in gas phase at B3LYP/6-31G* level of theory. 

Probably, the low density values that present the O1---H17 interactions in C3, C4 and C6 in 

aqueous solution probably can in part justify their higher populations, as observed in Table 1. 

Therefore, this study clearly reveals that the C3, C4 and C6 isomers are the most stable 

isomers of THY in both media. 
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3.4. HOMO-LUMO and descriptors 

The calculations of the frontier orbitals in molecules with great biological importance such as 

in the thymidine isomers these parameters are necessary to predict their reactivities and 

behaviours in different media, as reported by many authors [12-18]. Thus, in this work, we 

have computed those orbitals and some interesting descriptors for C4, C5 and C6 because for 

C1, C2 and C3 they were already determined in a previous work [3]. To comparison, in Table 

13 are summarized the results for all the isomers in both media while in Figure 14 are 

represented the calculated electronegativity (χ), global electrophilicity index (ω) and global 

nucleophilicity index (E) for these six isomers in both phase at the same of theory.  

Table 13. Calculated HOMO and LUMO orbitals, energy band gap, chemical potential 

(μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity 

(ω) and nucleophilic (E) indexes  for the six isomers of thymidine at B3LYP/6-31G* 

level of theory 

Gas phase 
Orbitals 

(eV) 

C1
b
 C2

 b
 C3

 b
 C4

a
 C5

a
 C6

a
 

HOMO -6.2014 -6.1878 -6.1061 -6.1658 -6.2027 -6.2332 
LUMO -0.7184 -0.7020 -0.6313 -0.7134 -0.7762 -0.7606 
GAP -5.4830 -5.4858 -5.4748 -5.4524 -5.4265 -5.4726 
Descriptors (eV) 

 -2.7415 -2.7429 -2.7374 -2.7262 -2.7133 -2.7363 

 -3.4599 -3.4449 -3.3687 -3.4396 -3.4895 -3.4969 

 2.7415 2.7429 2.7374 2.7262 2.7133 2.7363 
S 0.1824 0.1823 0.1826 0.1834 0.1843 0.1827 

 2.1833 2.1633 2.0728 2.1698 2.2439 2.2345 
E -9.4853 -9.4490 -9.2215 -9.3770 -9.4678 -9.5686 
Aqueous solution

a
 

Orbitals 

(eV) 

C1
b
 C2

 b
 C3

 b
 C4

a
 C5

a
 C6

a
 

HOMO -6.2201 -6.1758 -6.1128 -6.1919 -6.2027 -6.2634 
LUMO -0.7734 -0.7297 -0.6800 -0.7758 -0.7760 -0.8206 
GAP -5.4467 -5.4461 -5.4328 -5.4161 -5.4267 -5.4428 
Descriptors (eV) 

 -2.7233 -2.7230 -2.7164 -2.7081 -2.7134 -2.7214 

 -3.4967 -3.4527 -3.3964 -3.4839 -3.4894 -3.5420 

 2.7233 2.7230 2.7164 2.7081 2.7134 2.7214 
S 0.1836 0.1836 0.1841 0.1846 0.1843 0.1837 

 2.2449 2.1890 2.1233 2.2410 2.2436 2.3050 
E -9.5229 -9.4020 -9.2260 -9.4344 -9.4678 -9.6392 

a
This work, 

b
From Ref [3] 
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Figure 14. Calculated electronegativity (χ), global electrophilicity index (ω) and global 

nucleophilicity index (E) for the six isomers of thymidine in both phase at B3LYP/6-

31G* level of theory. 

The equations to calculate the descriptors were presented in other above papers [4-6] and, for 

this reason, they were not described here. The exhaustive analysis of the separation between 

both frontier orbitals for each isomer, these are the gap values in gas phase are different from 

those observed in aqueous solution. Thus, in gas phase the decreasing of this separation 

follow the order: C2 > C1 > C3 > C6 > C4 > C5 while in solution change to: C1 > C2 > C6 > 

C3 > C5 > C4. Note that the gap values of all the isomers decrease in solution which implies 

that they are more reactive in this medium independently of the Cis or Trans conformation 

that present the isomer. This way, the C2 isomer in gas phase is the most stable and the less 

reactive while C5 is the most reactive and the less stable than the other ones. On the other 

hand, in solution the most reactive and the less stable is C4 while C1 is the most stable and 

the less reactive in water. These results show that both Cis isomers are most reactive in gas 

phase while in solution C4 is most reactive than C6. The behaviors of the calculated 

electronegativity (χ), global electrophilicity index (ω) and global nucleophilicity index (E) 

descriptors for the six isomers of thymidine in gas phase are different from in aqueous 

solution, as observed in Figure 14. This way, the χ descriptors present higher negative values 
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in gas phase while all the values decrease in solution, having C5 the lower value in gas phase 

and C4 in solution. These results are in complete concordance with their higher reactivities in 

each medium. Analyzing the ω indexes we observed that C3 has the lower values in both 

media while the higher values are observed for C1 and C6 in the two media. Note that C4 and 

C5 have practically the same ω values in solution but different in gas phase. The 

nucleophilicity values show that the lower values are observed for C3 in both media while C1 

and C6 present the most negative values in those media. In solution, we also observed that C4 

and C5 have practically the same E indexes. This study shows clearly that the three χ, ω and 

E indexes are factors very important to predict the reactivity of an isomer of thymidine in a 

medium determined, thus, C4 and C5 are the most reactive in solution due to that both 

isomers have practically the same ω and E values but low χ values. 

3.5. Vibrational study 

For this analysis, only the structures of the C3, C4 and C6 isomers with higher populations 

have been considered, in accordance with the values observed in Table 1. Structurally, these 

isomers were optimized with C1 symmetries and they have 87 normal vibration modes where 

all the modes are active in both infrared and Raman spectra. The calculations of their force 

fields at B3LYP/6-31G* level of approximation were performed in both media by using the 

SQMFF methodology, the internal normal coordinates already reported for C1, C2 and C3 in 

a previous work [3] and the Molvib program [23,24]. Later, the assignments of the available 

infrared and Raman spectra [22,38] were carrying out taking into account only the Potential 

Energy Distribution (PED) contributions  10%. Comparisons among the available 

experimental spectra and the corresponding predicted by calculations for the three isomers in 

different regions can be seen from Figure 15 to 18 while the calculated and observed 

positions of the bands together with their tentative assignments are shown in Table 14. It is 

necessary to clarify that the isomers C3, C4 and C6 were observed experimentally by those 

three authors [33-35] and predicted by Ivanov et al. [36]. For these reasons, all the 

comparisons presented in those figures show the presence of various isomers of THY, thus, 

between 3100 and 2900 cm
-1

 there are very good concordance among the experimental 

spectrum and those corresponding to the C4 and C6 isomers while in the 1900-1300 cm
-1

 

region the intensities of the bands show the probable presence of the three isomers and maybe 

of some dimeric species, as was experimentally reported for the Cis structure at low 

temperatures by Görbitz et al. [33] and by Young et al. [34].  
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Figure 15. Comparison between the experimental Infrared spectra of thymidine in the 

3300-2900 cm
-1

 region from Ref [22] with the corresponding theoretical for the C3, C4 

and C6 isomers in gas phase. 

 

Figure 16. Comparison between the experimental Infrared spectra of thymidine in the 

1900-1300 cm
-1

 region from Ref [22] with the corresponding theoretical for the C3, C4 

and C6 isomers in gas phase. 
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Figure 17. Comparison between the experimental Infrared spectra of thymidine in the 

1300-600 cm
-1

 region from Ref [22] with the corresponding theoretical for the C3, C4 

and C6 isomers in gas phase. 

 

Figure 18. Comparison between the experimental Raman spectra of thymidine in the 

4000-10 cm
-1

 region from Ref [38] with the corresponding theoretical for the C3, C4 and 

C6 isomers in gas phase. 
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Table 14. Observed and calculated wavenumbers (cm
-1

) and assignments for the 

isomers of thymidine in gas phase and aqueous solution 

 

, stretching; , scissoring; wag, wagging or out- of plane deformation; , rocking; , torsion, 

twist, twisting; a, antisymmetric; s, symmetric ; ip, in-phase; op, out-of-phase; R, ring; 

pyrimidine ring, (A6); sugar ring, (A5), 
a
This work, 

b
From Ref [3], 

c
From Ref [22], 

d
From 

scaled quantum mechanics force field B3LYP/6-31G*, 
e
From scaled quantum mechanics 

force field PCM/B3LYP/6-31G*, 
#
From Ref [36].  
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In general, we observed that those vibration modes related to the chiral C16 atoms of the 

three isomers are predicted at higher wavenumbers than the corresponding to the chiral C23 

atoms, thus, the C16-H17 stretching modes are predicted between 3044 and 3012 cm
-1

 while 

the C23-H24 stretching modes between 2964 and 2861 cm
-1

. A similar behaviour is observed 

in the rocking modes related to those two C atoms. The assignments only of some important 

groups are discussed and presented below. 

3.5. 1. Assignments 

3.5.1.1. OH groups. In this work, the two OH stretching modes belonging to the ribose ring 

can be assigned to the IR bands observed between 3641 and 3428 cm
-1

 while the band at 

3428 cm
-1

 is assigned to the N6-H7 stretching modes of all the isomers of thymidine, as in the 

previous work [3]. The IR bands at 1288, 1197 and 1173 cm
-1

 were assigned to the OH in-

plane deformation modes of the C1, C2 and C3 isomers [3], hence, in C4 and C6, one of them 

can be assigned between 1319 and 1277 cm
-1

 and the remain to those two latter bands, as 

observed in Table 14. The corresponding out-of-plane deformation or torsion modes can be 

assigned between 474 and 180 cm
-1

, in according to the reported paper [3].  

3.5.1.2. CH3 groups. The antisymmetric and symmetric stretching modes of these groups for 

the all the isomers of thymidine can be assigned to the IR and Raman bands between 2994 

and 2902 cm
-1

 while the corresponding antisymmetric and symmetric deformation modes are 

assigned to the set of bands between 1478 and 1366 cm
-1

. Note that the intense Raman band 

at 1366 cm
-1

 is easily assigned to the symmetric deformation modes. The groups of IR and 

Raman bands between 1052 and 1000 cm
-1

 are assigned to the rocking modes, as was 

previously reported [3] while the Raman bands observed between 175 and 100 cm
-1

 are 

assigned to the expected twisting modes, as reported for C1, C2 and C3 [3]. 

3.5.1.3. CH2 groups. The two expected stretching modes were predicted between 3042 and 

2861 cm
-1

; accordingly, they are associated to the IR bands observed in the 3075-2902 cm
-1

 

region. As predicted by calculations, the scissoring or deformation modes can be assigned 

between 1513 and 1435 cm
-1

, the wagging modes between 1456 and 1292 cm
-1

 and the 

rocking modes between 1288 and 1173 cm
-1

 in similar form as was assigned for C1, C2 and 

C3 in the previous work [3]. The IR and Raman bands between 870 and 663 cm
-1

 are 

assigned to the twisting modes, as predicted by the SQM calculations and, as observed in 

Table 14.  
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3.5.1.4. Skeletal groups. The two C=O stretching modes expected for all the isomers of THY 

are predicted by SQM calculations in the 1744-1620 cm
-1

 region, thus, they are assigned to 

higher wavenumbers than the C=C stretching modes. Only for the C3 and C4 isomers in 

aqueous solution, the C10=C11 modes are predicted at higher wavenumbers than the 

C9=O31 stretching modes, as observed in Table 14. In relation to the C-N stretching modes, 

we observed that in all the isomers, the modes related to the pyrimidine rings appear at higher 

wavenumbers than those corresponding to the ribose rings, especially, the N5-C16 stretching 

modes related to the chiral C16 atoms. This way, these modes can be assigned to the Raman 

bands at 1102 cm
-1

, with exception of C5 in solution, which is assigned to the Raman band at 

898 cm
-1

 because in this isomer that mode is predicted at 890 cm
-1

. Analyzing the C-O 

stretching of the ribose rings, we observed that the C23-O4 stretching modes are predicted at 

higher wavenumbers than the C16-O4 stretching modes, as expected because the calculations 

predicted the O4-C23 bond longer than the O4-C16 bond, as can be seen in Table 4. The 

vibration deformation and torsion modes of both rings are predicted for C3, C4 and C6 

approximately in the same regions and, in some cases, they are observed coupled with other 

modes, as observed in Table 4. The remaining deformation, rocking and torsion modes were 

also assigned according to the Scaled Quantum Mechanical (SQM) calculations, as indicated 

in Table 4. 

3.6. Force fields 

The force constants for the C1, C2 and C3 isomers of thymidine in gas and aqueous solution 

phases were previously determined [3] using their corresponding scaled force fields at 

B3LYP/6-31G* level of theory and the Molvib program [24]. Here, we have calculated those 

force constants for the C4, C5 and C6 isomers expressed in valence internal coordinates using 

the above procedure. The results for all the isomers of THY can be seen in Table 15. First, 

we observed a decreasing in some force constant values of all the isomers in solution, in 

relation to the values in gas phase, with exception of those calculated for C5 because their 

values remain without change in solution. This fact can be explained due to that the 

optimized coordinates practically remain constant in both media and, their properties are not 

modified in solution, as was previously studied. In this work, we observed that the f(O-H), 

f(N-H), f(C=O) and f(C-O) force constants values for C4 and C6 also decrease in solution 

as a consequence of the hydration in these groups in form similar to the previously observed 

for C1, C2 and C3. However, the f(C-N), f(C-C)A6 and f(C-C)A5 force constants increase 
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in solution probably are related with the shortening of their bonds in solution, with exception 

of C6 where a slightly decreasing in the f(C-N) is observed in solution. Thus, these 

variations can be attributed to the calculated geometrical parameters in the different media. 

Table 15. Scaled force constants for the six stable isomers of thymidine in gas and 

aqueous solution phases. 

B3LYP/6-31G*
a
 

Gas phase 
Force 

constant 

C1
b
 C2

b
 C3

b
 C4 C5 C6 

f(O-H) 7.24 7.23 7.25 7.24 7.28 7.07 
f(N-H) 6.62 6.62 6.62 6.62 6.62 6.62 
f(C-H)A6 5.23 5.26 5.22 5.24 5.34 5.20 
f(C-H)A5 4.85 4.80 4.83 4.81 4.76 4.72 
f(C=C) 8.17 8.17 8.17 8.15 8.07 8.18 
f(C=O) 11.62 11.62 11.63 11.62 11.56 11.64 
f(C-O)A5 4.47 4.47 4.48 4.48 4.51 4.43 
f(C-O)OH 4.91 4.98 4.88 4.88 4.97 4.88 
f(C-N) 5.38 5.39 5.38 5.40 5.37 5.38 
f(C-C)A6 4.88 4.87 4.88 4.87 4.87 4.87 
f(C-C)A5 3.87 3.84 3.86 3.88 3.90 3.93 
f(H-C-H) 0.78 0.77 0.77 0.77 0.77 0.77 
f(C-O-H) 0.71 0.71 0.70 0.70 0.70 0.74 
Aqueous solution 
f(O-H) 7.17 7.16 7.17 7.17 7.28 7.07 
f(N-H) 6.52 6.51 6.49 6.53 6.62 6.51 
f(C-H)A6 5.22 5.23 5.25 5.29 5.34 5.25 
f(C-H)A5 5.08 5.08 5.08 4.87 4.76 5.03 
f(C=C) 8.07 8.05 8.09 8.07 8.07 8.10 
f(C=O) 10.49 10.50 10.50 10.50 11.56 10.78 
f(C-O)A5 4.29 4.24 4.26 4.21 4.51 4.29 
f(C-O)OH 4.76 4.75 4.74 4.74 4.97 4.81 
f(C-N) 5.44 5.44 5.45 5.48 5.37 5.23 
f(C-C)A6 5.13 5.12 5.12 5.11 4.87 5.14 
f(C-C)A5 3.93 3.91 3.91 3.95 3.90 3.94 
f(H-C-H) 0.76 0.76 0.76 0.76 0.77 0.77 
f(C-O-H) 0.72 0.71 0.73 0.73 0.70 0.74 

, stretching;  angle deformation. 

Units in mdyn Å
-1

 for stretching and mdyn Å rad 
-2

 for angle deformations 

a
This work, 

b
From Ref [3] 

3.7. NMR study 

In this analysis, we only have considered the C3, C4 and C6 isomers because these are the 

conformations with higher populations in aqueous solution and, also, because they were 

experimentally observed by different authors [33-36]. Thus, the predicted 
1
H-NMR and 

13
C-
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NMR spectra for those three isomers of THY in aqueous solution and their corresponding 

chemical shifts were computed by using the GIAO method [32] at the B3LYP/6-31G* level 

of theory. These results for the hydrogen and C atoms were compared with the experimental 

data taken from the literature for thymidine in DMSO-d6 and in D2O [39,40] by means of 

RMSD values which can be seen in Tables 16 and 17, respectively. 

Table 16. Calculated hydrogen chemical shifts (, in ppm) for the C3, C4 and C6 

isomers of thymidine in aqueous solution 

B3LYP/6-31G*Method
a
 Experimental 

Atoms C3 C4 C6 DMSO-d6
d
 

3-H 0.98 0.65 2.19 5.25 
7-H 6.69 6.68 6.70 11.3 
12-H 8.05 7.85 8.03 7.71 
14-H 1.69 1.57 1.73 1.78 
15-H 2.43 2.42 2.42 1.78 
17-H 6.95 6.93 6.62 6.18 
19-H 2.33 2.44 2.44 2.08 
20-H 3.28 2.09 2.75 2.08 
22-H 4.94 5.00 4.68 4.26 
24-H 4.25 4.52 3.98 3.78 
26-H 3.96 4.23 4.39 3.55 
27-H 4.27 4.44 4.35 3.60 
28-H 2.42 2.41 2.42 1.78 
30-H 0.69 0.81 0.47 5.04 
RMSD

b
 2.12 2.14 1.97  

a
This work/GIAO method Ref. to TMS.  

b
From Ref [39] 

Table 17. Calculated hydrogen chemical shifts (, in ppm) for the C3, C4 and C6 

isomers of thymidine in aqueous solution 

B3LYP/6-31G* Method
a
 Experimental 

Atoms C3 C4 C6 D2O
b
 

8-C 152.16 151.73 152.11 152.42 
9-C 163.99 163.88 163.91 167.17 
10-C 117.33 116.90 118.01 112.17 
11-C 143.16 141.27 142.56 138.28 
13-C 26.22 26.38 26.11 12.34 
16-C 96.45 95.46 94.71 85.88 
18-C 51.69 54.14 49.38 39.36 
21-C 85.36 84.86 82.16 71.26 
23-C 100.17 95.24 92.90 87.34 
25-C 75.84 75.10 71.66 62.01 
RMSD

b
 10.35 9.84 8.21  

a
This work/GIAO method Ref. to TMS 
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b
From Ref [40] 

The analysis of the calculated chemical shifts for all the H atoms of the C3, C4 and C6 

isomers shows in general a very good correlation with the experimental values, with 

exception of the H3, H7 and H30 atoms, due to that probably these atoms belonging to the 

N6-H7, O2-H3 and O29-H30 groups could be involved in the H bonds formation in solution, 

as was before observed by MEP and AIM calculations. Note that the C6 isomer presents a 

better correlation than the other ones which maybe could explain their presence in solution. 

When the calculated chemical shifts for all the C atoms are analyzed we observed that for the 

C atoms belonging to the pyrimidine rings there are a better correlation than those 

corresponding to the ribose rings. Hence, this observation could be explained by the presence 

of various isomers in solution. The representation of the calculated chemical shifts for the H 

and C atoms in function of the corresponding experimental ones taken from Refs [39,40] are 

shown in Figure 19. Both graphics show clearly the differences observed between the 

theoretical and experimental chemical shifts showing apparently the C atoms a better 

concordance.  

 

Figure 19. The calculated chemical shifts for the C3, C4 and C6 isomers of thymidine in 

aqueous solution at B3LYP/6-31G* level of theory compared with the corresponding 

experimental ones taken from Refs [39,40]. 



www.ijsrm.humanjournals.com 

 

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2017; Vol. 8 (2): 197-238. 

233 

The differences observed could be attributed to the solvent, because the calculations were 

performed in aqueous solution instead DMSO-d6 and in D2O, to the 6-31G* basis set used 

instead 6-311++G** basis set, to the presence of various isomers in solution and, to the H 

bonds formation that probably shift the experimental peaks toward higher or lower fields, in 

relation to the theoretical predicted by calculations.  

3.8. Electronic spectra 

For the C3, C4 and C6 isomers of thymidine in aqueous solution the electronic spectra were 

also predicted by using the Time Dependent Density Functional Theory (TD-DFT) 

calculations with the B3LYP/6-31G* method and the Gaussian program [29]. The positions 

of the observed bands in the experimental spectrum of thymidine in water, taken from Ref 

[27], and those calculated for the three isomers can be seen in Table 18 together with their 

corresponding assignments. Experimentally only two bands are observed due to that the 

spectrum was recorded in the 200-350 nm region. On the other hand, Figure 20 shows the 

comparisons between that experimental electronic spectra of THY in water with the predicted 

for the C3, C4 and C6 isomers in aqueous solution at B3LYP/6-31G* level of calculation. In 

general, there is a very good concordance between those spectra in solution. The assignment 

was performed with the aid of the NBO calculations because of the  *, n* or n* 

and * * charge transfers are expected for the thymidine isomers in aqueous solution. 

Thus, the most intense bands can be related to the n* or n* charge transfers which are 

predicted with higher energy values while the other two could be assigned to the  * and 

* * charge transfers, as indicated in Table 18.  
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Table 18. TD-DFT calculated visible absorption wavelengths (nm) for the C3, C4 and 

C6 isomers of thymidine in aqueous solution compared with the corresponding 

experimental one in the same medium. 

B3LYP method
a
 

Experimental Thymidine
a
 

Assignment
a
 

Water
b
 C3 C4 C6 

 127.77 s 128.44 s 122.93 sh 
n* O1, O2, O31 

 140.81 s 139.06 s 140.94 s 

 165.13 vs 165.14 vs 163.79 vs n*N5, N6 

211 202.96 m 197.25 m 203.13 m **C9=O31 

268 250.36 m 251.12 m 249.79 m *C=C 

a
This work, 

b
Ref. [27] 

 

Figure 20. Comparisons between the experimental electronic spectra of thymidine in 

water with the corresponding predicted for the C3, C4 and C6 isomers in aqueous 

solution at B3LYP/6-31G* level of calculation. 

Obviously, we observed that each isomer cannot be completely differenced with this study 

because the three isomers show theoretically five bands in the 200-350 nm region. Note that 

C6 present a shoulder at lower wavelength instead good defined bands as in C3 and C4. This 

fact could be related to the LP(1)N5  *O1-C8 and LP(1)N5  *C10-C11 charge 
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transfers observed in this isomer with lowest values than the values corresponding to C3 and 

C4, as shown Table 18. 

4. CONCLUSIONS 

In this study, the theoretical molecular structures of two Cis isomers of THY, named C4 and 

C6 and, of a Trans isomers named C5 were determined in gas phase and in aqueous solution 

combining the hybrid B3LYP/6-31G* method with the PCM model. Here, the comparisons 

of their structural and vibrational properties were presented together with the corresponding 

to other three Trans isomers previously published. The population analyses suggest the 

presence in solution of a Trans isomer C3 and of two Cis isomers C4 and C6 in accordance 

with the experimental structures reported by X-ray diffraction by different authors. On the 

contrary, in gas phase, only the presence of the C6 isomer is expected. On the other hand, the 

higher populations observed in the Cis C4 and C6 isomers in solution could explain their 

volume expansions while C3 do not undergo variation in solution. The study of the charges 

shows that the MK charges have higher variations in both media and clearly these show the 

differences between the Cis and Trans isomers while the NPA charges remaining practically 

constant in all the isomers. The MK charges on the O4 atoms belonging to the ribose rings in 

all the structures, on the N5 atoms belonging to the glycosidic bond and on the chiral C16 and 

C23 atoms show the higher modifications. Besides, the higher MK charge values in all the 

isomers are observed on the H3, H7 and H30 belonging to the NH and OH groups. The MEP 

surface mapped evidence clearly that the acceptors of H bonds are the two C=O groups of the 

pyrimidine rings in all the isomers while the OH groups of the ribose rings and the -NH 

group of the pyrimidine rings are donors of H bonds showing their surfaces colorations red 

and blue in those sites, respectively. The NBO study suggests that in all the isomers, the 

pyrimidine rings are the most stable than the ribose rings and, where the C6 isomer has the 

high value in gas phase while C3, in solution. The QAIM analysis clearly reveals the high 

stabilities of the C3, C4 and C6 isomers of THY in both media. The HOMO-LUMO study 

show that in gas phase the decreasing of the gap values follow the tendency: C2 > C1 > C3 > 

C6 > C4 > C5 while in solution change to: C1 > C2 > C6 > C3 > C5 > C4. These results 

show that both Cis isomers are most reactive in gas phase while in solution C4 is most 

reactive than C6. The evaluation of the descriptors evidence that the three χ, ω and E indexes 

are factors very important to predict the reactivity of an isomer of thymidine in a medium 

determined, thus, C4 and C5 are the most reactive in solution due to that both isomers have 
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practically the same ω and E values but low χ values. The vibrational analyses show the 

presence of different isomers in both media and confirm that the different positions of the 

bands are characteristic of the different structures that they present. Here, the complete 

assignments for C4 and C6 in both media are presented, their force fields and the 

corresponding force constants at the same level of theory. Finally, the 
1
H-NMR, 

13
C-NMR 

and U-Violet spectra were predicted for the three expected structures of THY in aqueous 

solution showing a reasonable concordance with the corresponding experimental ones. Here, 

the spectroscopic studies support the presence of more of isomer of THY in solution.  

ACKNOWLEDGEMENTS 

This work was funded with grants from CIUNT Project Nº 26/D207 (Consejo de 

Investigaciones, Universidad Nacional de Tucumán). The Authors thank Prof. Tom Sundius 

for his permission to use MOLVIB. 

REFERENCES 

[1] De Clercq E. Antiviral drugs in current clinical use, J. Clin. Vir. 2004; 30: 115–133. 

[2] De Clercq E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV, Internat. 

J. Antimicrobial Agents 2009; 33(4): 307–320. 

[3] Márquez MB, Brandán SA. A structural and vibrational investigation on the antiviral deoxyribonucleoside 

thymidine agent in gas and aqueous solution phases. International J. of Quantum Chem. 2014; 114(3): 209-221. 

[4] Brandán SA. Structural, topological, electronic and vibrational properties of the antiviral trifluridine agent. 

Their comparison with thymidine. Paripex A Indian Journal of Res. 2017; 6(10): 346-360. 

[5] Romani D, Brandán SA. Spectroscopic and Structural Study of the Antiviral Idoxuridine Agent by Using 

DFT and SCRF Calculations. IJSRM, International Journal of Science And Research Methodology. 2017; 8(1): 

66-86. 

[6] Romani D, Brandán SA. Investigating the Structural and Vibrational Properties of the Nucleoside Reverse 

Transcriptase Inhibitor Emtricitabine. IJSRM, International Journal of Science And Research Methodology. 

2017; 8(1): 236-277. 

[7] Sanmarti B., M., Berenguer Maimo, Ramón, Solsona Rocabert, Joan Gabriel, EUROPEAN PATENT 

APPLICATION, EP 2 377 862 A1 19.10.2011 Bulletin 2011/42. 

[8] Tomasi J, Persico J. Molecular Interactions in Solution: An Overview of Methods Based on Continous 

Distributions of the Solvent. Chem. Rev. 1994; 94:2027-2094. 

[9] Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. Chem. Phys. 1981; 

55:117–129. 

[10] Marenich AV, Cramer CJ, Truhlar D.G. Universal solvation model based on solute electron density and a 

continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. 

Chem. 2009; B113:6378-6396. 

[11] Ugliengo P. MOLDRAW Program, University of Torino, Dipartimento Chimica IFM, Torino, Italy, 1998. 

[12] Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J. Am. 

Chem. Soc. 1983; 105:7512-7516. 

[13] Brédas J-L. Mind the gap!. Materials Horizons 2014; 1:17–19. 



www.ijsrm.humanjournals.com 

 

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2017; Vol. 8 (2): 197-238. 

237 

[14] Cataldo PG, Castillo MV, Brandán SA. Quantum Mechanical Modeling of Fluoromethylated-pyrrol 

Derivatives a Study on their Reactivities, Structures and Vibrational Properties. J Phys Chem Biophys 2014; 

4(1):2-9. 

[15] Márquez MJ, Márquez MB, Cataldo PG, Brandán SA. A Comparative Study on the Structural and 

Vibrational Properties of Two Potential Antimicrobial and Anticancer Cyanopyridine Derivatives. OJTA, A 

Open Journal of Synthesis Theory and Applications. 2015; 4: 1-19. 

[16] Romani D, Márquez MJ, Márquez MB, Brandán SA. Structural, topological and vibrational properties of 

an isothiazole derivatives series with antiviral activities. J. Mol. Struct. 2015; 1100:279-289. 

[17] Romani D, Brandán SA. Structural and spectroscopic studies of two 1,3-benzothiazole tautomers with 

potential antimicrobial activity in different media. Prediction of their reactivities. Computational and Theoretical 

Chem. 2015; 1061:89-99. 

[18] Romani, D, Brandán SA. Effect of the side chain on the properties from cidofovir to brincidofovir, an 

experimental antiviral drug against to Ebola virus disease. Arabian Journal of Chemistry. 2015; 

http://dx.doi.org/10.1016/j.arabjc.2015.06.030. 

[19] Glendening ED, Badenhoop JK, Reed AD, Carpenter JE, Weinhold F. 1996. NBO 3.1; Theoretical 

Chemistry Institute, University of Wisconsin; Madison. 

[20] Biegler-Köning F, Schönbohm J, Bayles DJ. AIM2000; a program to analyze and visualize atoms in 

molecules. Comput. Chem. 2001; 22:545-559. 

[21] Besler BH, Merz Jr KM, Kollman PA. Atomic charges derived from semiempirical methods. J. Comp. 

Chem. 1990; 11: 431-439. 

[22] Tsuboi M, Komatsu M, Hoshi J, Kawashima E, Sekine T, Ishido Y, Russell MP, Benevides JM, Thomas 

GJ Jr. Raman and Infrared Spectra of (2‘S)-[2‘-
2
H]Thymidine:  Vibrational Coupling between Deoxyribosyl and 

Thymine Moieties and Structural Implications. J. Am. Chem. Soc. 1997; 119: 2025-2032.  

[23] a) G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093-3099. b) G. Rauhut, P. Pulay J. Phys. Chem. 99 

(1995) 14572. 

[24] Sundius T. Scaling of ab-initio force fields by MOLVIB. Vib. Spectrosc. 2002; 29:89-95. 

[25] http://www.sigmaaldrich.com/spectra/fnmr/FNMR009012.PDF 

[26] http://www.hanhonggroup.com/nmr/nmr_en/4435.html 

[27] http://webbook.nist.gov/cgi/cbook.cgi?ID=C50895&Mask=400#UV-Vis-Spec 

[28] Nielsen AB, Holder AJ. 2008. Gauss View 5.0, User’s Reference, GAUSSIAN Inc., Pittsburgh, PA. 

[29] Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; 

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; 

Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; 

Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, 

J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; 

Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; 

Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, 

R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; 

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; 

Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. 

[30] Becke AD. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993; 

98:5648-5652. 

[31] Lee C, Yang W, Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional 

of the electron density. Phys. Rev. 1988; B37: 785-789. 

[32] Ditchfield R. Self-consistent perturbation theory of diamagnetism. I. A gage-invariant LCAO (linear 

combination of atomic orbitals) method for NMR chemical shifts. Mol.Phys. 1974; 27:789-807. 

[33] Görbitz CH, Nelson WH, Sagstuen E. -Thymidine at 105 K. Acta Cryst. 2005; E61: o1207–o1209. 

[34] Young, DW, Tollin P; Wilson HR. The crystal and molecular structure of thymidine. Acta Cryst. 1969; 

B25: 1423-1432. 

[35] Hübschle, CB, Dittrich B, Grabowsky S, Messerschmidt M, Luger P. Comparative experimental electron 

density and electron localization function study of thymidine based on 20 K X-ray diffraction data, Acta Cryst. 

2008; B64: 363–374. 

http://www.sigmaaldrich.com/spectra/fnmr/FNMR009012.PDF
http://www.hanhonggroup.com/nmr/nmr_en/4435.html
http://webbook.nist.gov/cgi/cbook.cgi?ID=C50895&Mask=400#UV-Vis-Spec
http://journals.iucr.org/b/issues/1969/08/00/a06828/a06828.pdf


www.ijsrm.humanjournals.com 

 

Citation: Silvia Antonia Brandán et al. Ijsrm.Human, 2017; Vol. 8 (2): 197-238. 

238 

[36] Ivanov AY, Krasnokutski AS, Sheina GG. Molecular structures of thymidine isomers isolated in low-

temperature inert matrices. Fizika Nizkikh Temperatur. 2003; 29(9/10): 1065–1070. 

[37] Bushmarinov IS, Lyssenko KA, Antipin MY. Atomic energy in the Atoms in Molecules theory and its use 

for solving chemical problems. Russian Chem. Rev. 2009; 78(4): 283-302. 

[38] Available from http://www.chemicalbook.com/SpectrumEN_50-89-5_Raman.htm 

[39] Available from http://www.sigmaaldrich.com/spectra/fnmr/FNMR006943.PDF 

[40] Available from http://www.chemicalbook.com/SpectrumEN_50-89-5_1HNMR.htm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://www.chemicalbook.com/SpectrumEN_50-89-5_Raman.htm
http://www.sigmaaldrich.com/spectra/fnmr/FNMR006943.PDF
http://www.chemicalbook.com/SpectrumEN_50-89-5_1HNMR.htm

