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Our work analyzes the potential of ion traps for the experimental simulation of non-equilibrium
phase transitions observed in certain spin-chain models which can be mapped to free-fermion sys-
tems. In order to make the dynamics more accessible to an experimenter, we first consider relatively
small systems, with few particles. We analyze phase transitions in the non-equilibrium asymptotic
regimes of an XY spin chain with a transverse magnetic field and coupled to Markovian baths
at the end sites. We study a static open system and a case when the spin chain is periodically
kicked. Notably, in the latter case for some anisotropy parameters the dependence on the system
size converges rapidly to the many-particle limit, thus facilitating the experimental observation of
the dynamics. We also define local observables that indicate the presence of the quantum phase
transitions of interest, and we study the effects of the long-range character of the typical interactions
obtained in ion traps.

I. INTRODUCTION

The analysis of non-equilibrium quantum phase tran-
sitions is a very active area of research (see, for example,
[1–6]). The inclusion of driving elements, non-thermal
baths, and/or baths at different temperatures leads to
rich phenomena going beyond the traditional quantum
phase transitions (QPTs), that is, transitions observed
in quantum systems at zero temperature and which take
place as a consequence of quantum rather than thermal
fluctuations [7]. The field of non-equilibrium QPTs has
seen in the last decades a huge progress in the possibil-
ities of implementation of the dynamics in the setting
of controllable quantum systems provided by ultracold
atoms [8, 9], trapped ions [10, 11], NMR [12], or cavity
QED [13] to name a few.

A recent series of articles shows the presence of non-
equilibrium phase-transitions in a particular model of
driven XY spin chains, which can be mapped to quadratic
open fermionic systems [14–16]. In this work we provide
an analysis of the feasibility of the implementation of this
kind of dynamics in a system of trapped ions. This im-
plies the study of several key aspects: in the first place,
one must translate the elements of the original proposal
in terms of the dynamics of trapped ions. In this respect,
the area of quantum simulations in ion traps is very ad-
vanced and our proposal benefits from the resources al-
ready available in the literature. We do not elaborate
on this aspect since the tools to simulate spin systems
with ions are standard and described in detail elsewhere
[17, 18].

More importantly, it is necessary to identify the es-
sential signatures of the phase transitions that are still
visible in chains with reduced numbers of particles; even
though some research groups have been able to per-
form quantum simulations with large numbers of parti-
cles [19, 20], most trapped-ion labs are able to manipulate
short chains only. Another difficulty is the fact that the
original models studied in [14–16] contain only nearest-
neighbour interactions, which is essential for the mapping

of the spin system to a fermionic model admitting an ef-
ficient analytical treatment. However, such short-ranged
interactions are very challenging for an experimenter. We
thus focus on power-law interactions, which are standard
in ion traps but give rise to spin models whose dynamics
are harder to calculate. Finally, it is important to define
measurable quantities that allow one to observe the phe-
nomena of interest with a moderate number of resources
and in moderate time; again, the original models focus
on observables that greatly simplify the theoretical cal-
culation but which are not straightforward to measure
in an actual implementation because of their non-local
character.
This work is organized as follows: In Section II we

shortly review the theoretical models of interest. Section
III describes the results obtained in the original models
when the numbers of chain sites are relatively small, and
discusses the convergence to the many-particle limit. Sec-
tion IV analyzes modifications of the model in order to
make it closer to realistic experimental situations: firstly,
by changing the observable of interest in order to make it
more easily accessible to measurements, and secondly, by
considering the effect of long-range correlations. Finally,
in Section V we summarize our results. Further details
are provided in three appendices.

II. THE MODEL OF INTEREST: AN

OUT-OF-EQUILIBRIUM SPIN CHAIN

The starting point of our work is provided by two ar-
ticles by Prosen and co-authors [14, 16]. In the first pa-
per, a problem of an open and out-of-equilibrium spin
chain is presented which admits an exact solution of the
non-equilibrium steady state using quantization in the
space of operators (see the Appendix A and [14]). For
the steady state found, a quantum phase transition is
detected by studying long-range correlations. In the sec-
ond work, a similar analysis is carried out in presence
of a time-dependent periodic driving [16]. The authors
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found complex phase diagrams displaying phases of long
range and exponentially decaying spin-spin correlations
depending on the parameter values chosen. For the pe-
riodically kicked chain, the structure of this phase dia-
gram was related with the stationary points of the Flo-
quet quasiparticle dispersion relation.
The first model was the time-independent XY chain

of N spins 1/2 with transverse field, with Hamiltonian
[21, 22]:

Ht-i =

N−1
∑

m=1

(

1 + γ

2
σx
mσx

m+1 +
1− γ

2
σy
mσy

m+1

)

+h

N
∑

m=1

σz
m,

(1)
where γ is the anisotropy parameter, h is the magnetic
field, and for simplicity we set ~ = 1. The system is cou-
pled to a pair of Lindblad baths at its ends, with four

Lindblad operators L1,2 =
√

ΓL
1,2σ

±
1 , L3,4 =

√

ΓR
1,2σ

±
N ,

where σ±
j = (σx

j ± iσy
j )/2. The full evolution of the sys-

tem’s density matrix ρ is thus given by

ρ̇ = Lρ = −i[H, ρ] +

4
∑

j=1

2LjρL
†
j − {L†

jLj, ρ} (2)

with the curly brackets denoting the anticommutator. As
was shown in [21, 22], the Hamiltonian of the system can
be diagonalized by mapping the problem onto a system
of free fermions. In the extended model including the
coupling with baths at the ends, the Lindblad operators
are such that the problem in terms of fermions is still
solvable with a similar approach [23].
We also consider the periodically kicked XY spin chain

governed by the Hamiltonian:

Ht-d(t) = H0 +H1(t), (3)

H0 =

N−1
∑

m=1

(

1 + γ

2
σx
mσx

m+1 +
1− γ

2
σy
mσy

m+1

)

, (4)

H1 = a δτ (t)

N
∑

m=1

σz
m, (5)

where γ is the anisotropy parameter, δτ (t) =
∑

m∈Z
δ (t−mτ) is a periodic Dirac function with pe-

riod τ , and a = hτ where h is the intensity of the exter-
nal magnetic field. This system is also coupled to a pair
of Lindblad baths at its ends, defined in the same form
as in the previous, time-independent model.
In order to solve the problem, the system of N spins is

mapped by means of the Wigner-Jordan transformation
onto a model with N fermionic particles with creation

and annihilation operators c†j , cj respectively [21, 22]. In
this mapping, the spin projection along the z axis in site
j is directly related with the presence or absence of a

fermionic particle in this site, according to σz
j ≡ 2c†jcj−1.

However, the spin projections along directions x and y
are mapped into non-local observables in terms of the
fermionic system. Alternatively, instead of working with

the 2N fermionic creation and annihilation operators,
one can use 2N Majorana operators ωj which are given
by Hermitean combinations of the former. The mapping
between spins and Majorana operators is of the form [16]:

ω2j−1 = σx
j

∏

j′<j

σz
j′ , (6)

ω2j = σy
j

∏

j′<j

σz
j′ . (7)

The key observable signaling the transitions in the
work by Prosen and collaborators was given by the resid-
ual correlation:

Cres =

(

∑|j−k|≥N/2
j,k |Cj,k|

)

(

∑|j−k|≥N/2
j,k 1

) . (8)

Here, Cj,k is the correlation matrix in terms of the Ma-
jorana representation of the spin operators [16]:

Cj,k = tr(ωjωkρ)− δj,k . (9)

For the case of the kicked model, the correlations in
Eq. (8) are evaluated immediately after the kick. With
the goal of a possible implementation in mind, it is essen-
tial to notice that the correlatorsCj,k are local in terms of
the fermionic model, but highly nonlocal with respect to
the original spin operators. This aspect will be analyzed
in Section IV.

III. NUMERICAL RESULTS OF THE

ORIGINAL MODEL IN SMALL CHAINS

We now proceed to numerically study the behaviour
of this system in cases with few particles. We first con-
sider the case of the time-independent non-equilibrium
system and then we move on to analyze the case of the
kicked chain. As was reported in Refs. [14, 16], for a
sufficiently large number N of sites, the main features
of the long-range correlation diagrams are no longer af-
fected by the details of the baths at the ends. This is not
surprising since the strength of the coupling to the baths
is kept constant while the system is taken to the ther-
modynamic limit; thus, the critical behaviour observed
corresponds to the Hamiltonian part of the dynamics.
However, the presence of some kind of bath is essential
for the analysis since it is necessary in order to have a
well-defined asymptotic state. Furthermore, the conver-
gence to this state is fastest when the couplings with the
baths are taken to be of the same order of magnitude as
the Hamiltonian parameters.
We focus our study on the feasibility of the implemen-

tation with small chains for several reasons: first of all,
most ion-trap labs in the world can only successfully con-
trol small systems. Secondly, the transitions are observed
in the asymptotic state, and the rate of convergence to
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FIG. 1. Diagram in the γ−h plane showing residual correlator
Cres plotted in a log-scale with ΓL

1 = ΓR

1 = 0.5, ΓL

2 = 0.3,
ΓR

2 = 0.1. The black dashed line shows the function h = 1−γ2

which determines the critical field hc. Each panel shows the
residual correlation diagram for: (a)N = 5, (b) N = 7, (c)
N = 10 and (d)N = 17.

it decreases as the chains get longer. Finally, the num-
ber of observables that one needs to measure in order to
build the correlation diagram of Prosen and co-authors
increases with the number of sites in the chain (for more
details see Subsection IVA). Thus, implementations with
relatively long chains become extremely challenging. In
the following we show results concerning the behaviour
of the different models for an increasing value of N ; more
details are provided in Appendix C.

A. Time-independent model

In order to study the feasibility of the experimental im-
plementation of the first model, we analyze the behaviour
of the residual correlations (8) as a function of the pa-
rameters γ, h and observe the convergence to the limit
N ≫ 1. As an example, Figure 1 shows the residual cor-
relations for a particular example with ΓL

1 = ΓR
1 = 0.5,

ΓL
2 = 0.3, ΓR

2 = 0.1. The different subfigures show cases
for different particle numbers, N = 5, 7, 10, and 17, while
the black line indicates the phase boundary in the ther-
modynamic limit. The results show that signatures of the
QPT appear for N & 15. For those values, Cres presents
an abrupt change which coincides with the theoretical
prediction hc = 1− γ2 [14].

B. Model with periodic kicks

We now perform a similar analysis of the second model,
i.e. the open chain with periodic kicks, for different values
of the particle number N . Figures 2 and 3 show the
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FIG. 2. Residual correlator Cres in log scale, in the a − τ
plane and with number of sites N = 4 (a), N = 7 (b), N = 20
(c). In panel (d) we show half the total number of non-trivial
stationary points of the quasi-particle dispersion relation for
kicked XY chain (see Appendix B for details). For all panels
we used γ = 0.1 and the same values of the bath terms that
were used in the previous figure.

residual correlation (8) for γ = 0.1 and 0.9 respectively,
with subplots (a-c) corresponding to N = 4, 7, 20. We
consider the cases γ = 0.1 and 0.9 as in [16], but we
prefer to use a− τ diagrams instead of h− τ diagrams as
in [16] to display more clearly the periodic dependence of
the phase diagram on a. This periodicity is related with
the time-dependent driving term

∑

m σz
m, which has a

period π
2
and also produces a reflection with respect to

the axis a = π
4
. Therefore, one can restrict the analysis

to the interval a ∈ [0, π
4
).

In panel (d) of Figs. 2 and 3, we show half the to-
tal number of non-trivial stationary points of the quasi-
particle dispersion relation for the infinite kicked XY
chain (see Appendix B and [16]). The non-equilibrium
phase transitions correponding to the sudden appearance
of long-range correlations happen at points where the
number of stationary points presents jumps. Thus, this
quantity was found to determine the shape of the phase
diagram [16].
In the case with small anisotropy, γ = 0.1, shown in

Fig. 2, one can observe that small systems (N = 4 and
7, in the upper row) already display a structure which
resembles that of large chains, with a sharp onset of the
long-range correlations forming dark triangles on the left
of the diagram. On the contrary, for large anisotropy
parameters, γ = 0.9 as in Fig. 3, one has to reach much
larger particle numbers (N ≃ 20) in order to observe
a sudden appearance of long-range correlations at the
points where the number of stationary points exhibits a
jump (as displayed in subplot d). Besides, for γ = 0.1
the transition that is seen most clearly is the one for
the smallest values of τ . From these observations, in the
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FIG. 3. Residual correlator Cres in log scale, in the a − τ
plane and with number of sites N = 4 (a), N = 7 (b), N = 20
(c). In panel (d) we show half the total number of non-trivial
stationary points of the quasi-particle dispersion relation for
kicked XY chain (see Appendix for details). For all panels we
used γ = 0.9 and the same values of the bath terms that were
used in the previous figures.

following we focus on the case γ = 0.1 and we restrict to
small values of τ .

IV. TOWARDS A REALISTIC EXPERIMENTAL

IMPLEMENTATION

We have previously shown that the time-independent
model for non-equilibrium phase transitions only displays
critical behaviour for relatively large chains with N & 15.
On the contrary, the model with periodic kicks and small
anisotropy already shows signatures of the phase diagram
for very small chains, with N & 5. For this reason, in the
following we will focus only on this second situation. For
definiteness, we will take the number of particles fixed at
N = 5.
We consider the possible implementation of the kicked

model for non-equilibrium quantum phase transitions us-
ing a chain of trapped ions. This setup has been pro-
posed, and used, for spin simulations in several occasions
[10, 17, 18, 24, 25, 27]. In this context, the internal de-
grees of freedom of the ions encode the spins, while the
Coulomb interaction is used to generate effective spin-
spin interactions. In order to achieve this, ions are driven
by laser pulses which couple the internal states with the
vibrational motion of the ions. If the laser pulses are
chosen appropriately, an effective spin-spin interaction is
produced [17, 18]. We will now discuss how the orig-
inal model of Prosen and coauthors can be made more
experimental-friendly by requiring measurements of local
observables, and after this we analyze the effects of the
long range of the typical effective interactions achieved

in ion-trap simulations of spin models.

A. Local residual correlator

The residual correlation analyzed so far, Eq. (8), is a
combination of highly non-local operators in terms of the
spin operators (9). The experimentally more accessible
quantities are the two-local correlations [4, 18, 24]:

Cxx
j,k = tr

(

σx
j σ

x
kρ

)

, (10)

Cxy
j,k = tr

(

σx
j σ

y
kρ

)

, (11)

Cyy
j,k = tr

(

σy
j σ

y
kρ

)

. (12)

From them we define the local residual correlation as:

C loc
res = P





|j−k|≥N/2
∑

j,k

(

|Cxx
j,k|+ |Cxy

j,k|+ |Cyy
j,k|

)



 (13)

where P is the normalization factor given by:

P−1 =

|j−k|≥N/2
∑

j,k

3 . (14)

This quantity can be numerically computed from the
density matrix corresponding to the asymptotic state. In
Fig. 4 we compare local and non-local residual correla-
tions for γ = 0.1. We observe that local residual correla-
tions show the same structure as the correlations which
are local in terms of fermionic operators, although with a
different intensity (notice the change in the color scale).
We stress that the number of correlations that one

needs to measure to obtain C loc
res is much smaller than

the total number of observables necessary for full state
tomography. However, the amount of measurements re-
quired to calculate C loc

res still scales up as N2, which is an-
other reason to prefer simulations that are feasible with
small chains. Furthermore, the necessary measurements
demand the ability to individually address and rotate
the desired spins. This is a non-trivial technical require-
ment, which also makes the experiment more challenging
for longer chains.

B. Long-range interactions in the ion-trap

implementation

Previous experiments have implemented the dynamics
of effective Ising models with transverse fields, given by

HIsing = ~

N
∑

i<k

Ji,kσ
x
i σ

x
k − ~B

N
∑

i

σz
i , (15)

where Ji,k has a dependence on the distance between
ions approximately given by a power-law decay Jη

i,k ∝

|j − k|−α. The sign of the couplings can be chosen by
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FIG. 4. Residual correlation as a function of a and τ in log-
scale for N = 5 in the representative region a ∈ (0, π/2] and
with γ = 0.1. Panel (a) shows the residual correlation made
of observables which are local in the fermionic space, panel
(b) the one made of observables local in the spin space (see
main text for details).

appropriately tuning the lasers [20, 24], and it has been
theoretically shown that the parameter α can be tuned in
the range between α = 0 and α = 3 [17]. Experimentally,
tuning of α from 0.01 to 2.72 has been demonstrated [20].
However, interactions in the highest range of values of α
are hard to achieve experimentally because the large de-
tunings required lead to low coupling strengths, and thus
most experiments have been performed with intermedi-
ate values of α [20, 24, 26, 27].
Thus, we now analyze the simulation of our model

of non-equilibrium phase transitions in the kicked spin
chain but where the spin-spin interactions are given by
the Hamiltonian:

Hexp =
∑

j<k

(

Jx
j,kσ

x
j σ

x
k + Jy

j,kσ
y
j σ

y
k

)

, (16)

where the matrix elements Jη
j,k, with η = x, y, decay as

Jη
j,k ∝ |j−k|−α. In our system Jx

j,j+1 = 1+γ
2

and Jy
j,j+1 =

1−γ
2

. Considering this Hamiltonian and the term associ-
ated with the periodic kick we evaluated once more the
residual correlations in the asymptotic regime. We note
that this is numerically more costly, since in presence of
long-term couplings the Jordan-Wigner transformation
does not lead to a quadratic fermionic system any more.
This means that a compact description of the dynamics
is not possible. However, the full computation is still
feasible due to the small number of particles.
In Fig. 5 we show the results for the local residual

correlation C loc
res with γ = 0.1 including the power-law

decay of interactions, with powers α = 3 (a) and α = 2
(b). Both cases are theoretically possible [17]; however,
case (a), which is closest to the original model, corre-
sponds to a limiting case of infinite laser detuning. Case
(b), on the contrary, is within the range which has been
experimentally demonstrated [20]. We observe that the
structure of the diagram is similar to the previous Fig-
ures, although the new interaction terms affect the re-
flection symmetry of the correlation with respect to the
axis a = π/4. Clearly, the deformation is much more
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FIG. 5. Local residual correlation maps a− τ in log-scale for
N = 5 in the representative region a ∈ (0, π/2] and with γ =
0.1. Here we consider the additional terms associated with
the long range of the spin-spin interaction. We can observe
that the reflection symmetry with respect to the axis a = π/4
is broken; however, this effect is small and the diagram still
shows a sudden appearance of correlations in coincidence with
Fig. 4. For panel (a) a power-law decay with α = 3 was
chosen; panel (b) shows the results for the more realistic power
α = 2.

noticeable for the case α = 2 which has stronger inter-
actions for distant pairs of sites; this case also shows a
lower intensity contrast. Thus, it seems worth pushing
the interaction power law to the highest possible values
(α = 2.72 being the fastest decay achieved so far [20]);
nevertheless, the qualitative features of the diagram are
still clearly visible for the case α = 2.

V. CONCLUSIONS

We have critically assessed the potential for the ion-
trap implementation of the models proposed by Prosen
[14, 16] displaying non-equilibrium quantum phase tran-
sitions in spin chains. We analyzed the effects of several
key aspects: in the first place, the possibility to observe
signatures of the phase transitions in chains with small
numbers of particles. There, we observed that the num-
ber of sites required depends on the precise model under
consideration: for the static model numbers N & 15 are
necessary to identify the position of the critical line, while
for the kicked model the number depends strongly on the
anisotropy parameter γ. For γ = 0.9, the shape of the
long-range correlation diagram only starts ressembling
the right critical structure with relatively large numbers,
N & 20, whereas a small anisotropy γ = 0.1 leads to a
diagram displaying the expected onset of long-range cor-
relations with a number of sites N & 5. In order to make
the necessary number of sites as small as possible, we
chose to focus on the case γ = 0.1 with small τ .
In a following step, we redefined the original indicator

of the presence of long-range correlations in order to make
it more experimentally accessible. This meant replacing
a quantity which was obtained from local measurements
in terms of the fermionic model, and thus nonlocal in the
experiment, by one which was defined from observables
which are local in terms of the spin operators. We then
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concluded that the structure of the diagram was still visi-
ble when performing this kind of measurement, although
the intensity pattern varied with respect to the original
results.
Finally, we considered the effect of the presence of long-

range interactions in the experimentally feasible ion-trap
simulations. We assumed that the effective spin-spin in-
teractions had a power-law decay, and computed the re-
sulting correlation diagrams for powers α = 3 and α = 2.
While the long-range interactions partially destroyed one
of the symmetries of the original model, one could still
observe transitions between regimes with and without
long-range correlations. We thus conclude that although

the exact features of the original article [16] are not pre-
served in a realistic implementation, the markers of the
transitions are still visible in experimentally achievable
conditions.
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[12] G. A. Álvarez, E. P. Danieli, P. R. Levstein and H. M.
Pastawski. Environmentally induced quantum dynamical

phase transition in the spin swapping operation. J. Chem.
Phys. 124, 194507 (2006).

[13] S. Morrison and A. S. Parkins, Dynamical Quantum

Phase Transitions in the Dissipative Lipkin-Meshkov-

Glick Model with Proposed Realization in Optical Cavity

QED. Phys. Rev. Lett. 100, 040403 (2008).
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Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian

quantum information. Rev. Mod. Phys. 84, 621 (2012).

Appendix A: Treatment of Markovian open

quasi-free fermionic systems

We review here the formulation used by Prosen for
quadratic systems with a bath with linear terms [15, 16].
The aim of this formulation is to calculate the correla-
tions avoiding the calculation of the density matrix, and
it is a generalization of the standard description of Gaus-
sian states by means of the covariance matrix [28]. This
approach has considerable advantages, leading to a sub-
stantial decrease of computational costs in cases when a
full analytical solution is not possible. Within this for-
malism, correlations are obtained by solving a Lyapunov
equation, for which there are fast computational solving
softwares.
The formulation is performed in terms of the Majorana

operators. The authors consider a system of fermions de-
scribed by 2N anticonmmuting Hermitean operators ωj,
j = 1, ..., 2N , {ωj , ωk} = 2δj,k. One can define Majorana
operators in terms of Pauli matrices on N sites as

ω2m−1 = σx
m

∏

m′<m

σz
m′ ,

ω2m = σy
m

∏

m′<m

σz
m′ , (A1)

The authors consider systems for which both the Hamil-
tonian H and the Lindblad operators L can be simulta-
neously expressed in terms of a quadratic form and linear
forms respectively. In this representation

H =
∑

j,k

ωjHj,kωk ≡ ω ·Hω, (A2)

Lµ =
∑

j

ℓµ,jωj ≡ ℓµ · ω, (A3)

where H can be chosen to be antisymmetric and imagi-
nary, and ℓµ ∈ C2N .
The object of interest is the correlation matrix C with

elements Cj,k defined as:

Cj,k = tr (ωjωkρ)− δj,k (A4)

If the equations for the evolution of the system do not
depend on time, one can obtain the elements of C in
the stationary state through the continuous Lyapunov
equation [15]:

XC+ CXT = iY . (A5)

Here, X = 4 (iH+Mr) and Y = 4
(

Mi −MT
i

)

, with the
real matrices Mr, Mi defined from M = Mr + iMi, M =
∑

µ ℓµ ⊗ ℓµ.

On the other hand, when the evolution equations are
time-dependent, the covariance matrix C satisfies

Ċ(t) = −X(t)C(t)− C(t)XT (t) + iY(t) (A6)

with X(t) and Y(t) defined as before but from the time-
dependent H and M. The solution to eq. (A6) can be
written as [16]

C(t) = Q(t)C(0)QT (t)− iP(t)QT (t), (A7)

where P(t) and Q(t) have to fulfill

Q̇(t) = −X(t)Q(t), (A8)

Ṗ(t) = −X(t)P(t)− Y(t)[QT (t)]−1 (A9)

with the initial conditions Q(0) = I, P(0) = 0.
In the case studied in [16], the temporal dependence

of the problem is through a periodic kick in the Hamil-
tonian, so that L(t + τ) = L(t), where τ is the period.
The correlation matrix for the stationary state is then
obtained solving the discrete Lyapunov equation

Q(τ)CFQ
T (τ)− CF = iP(τ)QT (τ), (A10)

where C(0) = C(τ) = CF .

Appendix B: Quasi-energy bands of the kicked

system

In Ref. [16], analyzing the kicked system, it was shown
that, when dealing with many particles, the main proper-
ties of the residual correlations depend essentially on the
Hamiltonian of the bulk. For this reason, the dispersion
relation of a kicked XY infinite chain was studied. The
system has two quasi-energy bands of the form:

θ1,2(κ) = ±arcos
{

cos (2τh) cos [2τε(κ)]

+ sin (2τh) sin [2τε(κ)]
cos(κ)

ε(κ)

}

(B1)

where ε(κ) =
√

cos2(κ) + γ2 sin2(κ) is the quasi-particle

energy for the unkicked XY chain, κ ∈ [−π, π ). As dis-
cussed in Refs. [15, 16] the jumps in the residual corre-
lations Cres coincide with jumps in the number of non-
trivial stationary points of the quasienergies dispersion
relation of the Floquet eigenstates of the system. As
the total number of stationary points is always even, the
quantity shown in the plots in the main text is half this
number.

Appendix C: Dependence of the residual

correlations on the number of sites

In this Appendix we provide further plots showing
the behaviour of the residual correlation Cres, defined
in Eq. (8), as the number of sites is increased. In Fig. 6
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we plot the residual correlation for different values of N .
Plot (a) corresponds to the static case as a function of γ,
with h = 0.75, whereas plots (b) and (c) correspond to
the kicked model and show Cres as a function of τ , with
a = 1.25, for γ = 0.1 and 0.9 respectively. One can see
that in plots (a) and (c) a number of sites N around 20 is
necessary to observe the signatures of the transition. On
the contrary, plot (b) indicates that for small anisotropy,
γ = 0.1, the transition at smallest τ is already visible
with less than 10 sites.
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FIG. 6. Residual correlator Cres plotted in a log-scale with
ΓL

1 = ΓR

1 = 0.5, ΓL

2 = 0.3, ΓR

2 = 0.1, and for different values
of N . Plot (a) corresponds to the static case as a function of
γ, with h = 0.75; plots (b) and (c) correspond to the kicked
model and show Cres as a function of τ , for γ = 0.1 and 0.9
respectively, and with a = 1.25.


