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Summary

1. Incorporating interactions into a biogeographical framework may serve to understand how

interactions and the services they provide are distributed in space.

2. We begin by simulating the spatiotemporal dynamics of realistic mutualistic networks

inhabiting spatial networks of habitat patches. We proceed by comparing the predicted pat-

terns with the empirical results of a set of pollination networks in isolated hills of the Argen-

tinian Pampas.

3. We first find that one needs to sample up to five times as much area to record interactions

as would be needed to sample the same proportion of species.

4. Secondly, we find that peripheral patches have fewer interactions and harbour less nested

networks – therefore potentially less resilient communities – compared to central patches.

5. Our results highlight the important role played by the structure of dispersal routes on the

spatial distribution of community patterns. This may help to understand the formation of

biodiversity hot spots.

Key-words: island biogeography, metacommunities, nestedness, pollination, seed dispersal,

spatial networks, species–area relationship

Introduction

Biogeography attempts to describe the patterns of species

distribution across geographical areas and has a long tra-

dition in ecology and evolutionary biology, with early pre-

decessors as influential as Alfred Russell Wallace. The

publication of MacArthur and Wilson’s book on island

biogeography (MacArthur & Wilson 1967) constituted a

formidable theoretical framework that brought a predic-

tive ability to determine the number of species on an

island given its area and isolation. This, in turn, became a

useful tool in conservation biology, as for example in the

problem of choosing between a single large or several

small (SLOSS) reserves (Diamond 1975; Simberloff & Ab-

ele 1976; Higgs & Usher 1980; Bascompte et al. 2007).

The bridge to real-world conservation applications has

even become stronger around the concepts of metapopula-

tions (Hanski 1998) and metacommunities (Leibold et al.

2004). Despite this success, traditional island biogeogra-

phy dealt exclusively with species, ignoring their mutual

dependencies. This approach resembles the development

of the kinetic theory for ideal gases in physics, which ini-

tially also neglected interactions (Alonso, Etienne &

McKane 2006; Volkov et al. 2007).

Almost independently of the above efforts in describing

how species are distributed in space, recent progress has

made explicit that species interactions are an equally

important component of biodiversity. Interactions are at

the core of significant ecosystem services such as pollina-

tion or biological control. The way these interactions are

arranged to create networks of interacting species largely

affects the persistence of these networks and the number

of species they can support (Memmott, Waser & Price

2004; Burgos et al. 2007; Okuyama & Holland 2008;

Bastolla et al. 2009; Th�ebault & Fontaine 2010). In the

context of global change, species interactions have also

been found to be even more susceptible than species

themselves (Janzen 1980; Tylianakis et al. 2008; Sabatino,

Maceira & Aizen 2010). The disruption of interactions

may in turn foresee future species losses (Aizen, Sabatino

& Tylianakis 2012).

A subsequent step, therefore, seems to be the inclusion

of species interaction networks into a biogeographical

framework. An early contribution in this direction has

been John N. Thompson’s geographic mosaic theory of

co-evolution (Thompson 2005). This theory has brought a

geographic dimension to studies on the co-evolution
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among free-living species. For example, it has described

how the sign and strength of interactions between small

groups of species depend on the local presence of other

species. The influence of both the geographic mosaic and

early metapopulation theory leads to the development of

metacommunity theory, which addresses the spatial distri-

bution of small sets of ecologically interacting species

(Leibold et al. 2004). The first studies on metacommuni-

ties were mainly theoretical descriptions of trophic mod-

ules, with very few studies describing an entire, realistic

ecological network. Only recently, there have been signifi-

cant steps in this direction (Olesen & Jordano 2002; Brose

et al. 2004; Fortuna & Bascompte 2006; Sabatino, Mace-

ira & Aizen 2010; Sugiura 2010; Gravel et al. 2011; Pillai,

Gonzalez & Loreau 2011; Gonz�alez-Castro, Traveset &

Nogales 2012; Trø jelsgaard et al. 2013). As deviations

from the behaviour of ideal gases improved the kinetic

theory (Alonso, Etienne & McKane 2006; Volkov et al.

2007), consideration of interactions has been shown to

improve the accuracy of the predictions of the species–

area relationship (Brose et al. 2004; Gravel et al. 2011).

So far, however, the focus has been in correcting esti-

mates of number of species (Brose et al. 2004; Gravel

et al. 2011; Jabot & Bascompte 2012), and unifying two

previously unrelated scaling laws, that is, the species–area

and the interaction-species relationships (Brose et al.

2004; Aizen, Sabatino & Tylianakis 2012). The few studies

explicitly addressing mutualistic interactions among spe-

cies on a biogeographical scale have explored their depen-

dence on island area (Sugiura 2010) or age (Trø jelsgaard

et al. 2013).

This exciting progress, therefore, still leaves unanswered

the question of how interactions and the networks they

form are distributed across heterogeneous landscapes. A

question that, if answered, will provide insight into the

relative role of regional and local processes in shaping

biodiversity. This would allow us, for instance, to achieve

a better understanding of where and how regional biodi-

versity hot spots are formed and maintained.

Here we tackle this problem by using a metanetwork

approach where species interaction networks inhabit a

spatial network of habitat patches (Fig. 1). We first pres-

ent a general framework based on extensive simulations.

This allows controlling both the structure of local interac-

tions and that of spatial sites. We then compare these

broad predictions with the results for a particular case

study formed by 12 pollination networks from untilled

hills or ’sierras’ raising in the Pampa region in Argentina

(Sabatino, Maceira & Aizen 2010). This will show to what

extent patterns predicted by our theoretical framework

are found in nature. In this context, we change the

emphasis of biogeography from species to their interac-

tions and look into the biogeographical patterns of such

interactions.

We ask whether interactions are relevant enough to

modify conservation policies. For that, we begin by

answering the question of how many patches need to be

conserved to register a given fraction of species or interac-

tions. Next, we explore how these interactions are distrib-

uted across different habitat patches. This has the

potential to be used as a prioritization tool. Finally, we

scale all the way up to interaction networks to describe

how network structure changes across the landscape. This

later scale of resolution will allow us to assess the inter-

play between spatial and local dynamics in shaping regio-

nal patterns of biodiversity.

Materials and methods

dispersal, colonization and survival

Metacommunity dynamics are simulated by a random process

where species can colonize empty patches and be driven locally

extinct. Every time step is divided into a colonization and an

extinction phase. Roughly speaking, we use a spatially explicit

version of the model described in Fortuna & Bascompte (2006).

A patch is either empty or occupied. The model has two parame-

ters, a colonization and an extinction probability. Patches where

a certain species is absent can be colonized by that species with a

probability c. Similarly, a species present in a certain patch can

go extinct with a probability e.

The probability of a patch p being colonized by species s is

given by the following equation:

Cðp; sÞ ¼ 1� ð1� cÞa; eqn 1

N

Fig. 1. Schematic representation of the theoretical framework

developed in this manuscript. Each patch of the spatial network

(bottom) harbours a local mutualistic network (top). The figure

depicts a subset of the metaweb described in Sabatino, Maceira

& Aizen (2010). Pollinator species are, from left to right, Apis

mellifera, Camponotus sp, and Colias lesbia. Plant species are,

from left to right, Gerardia genistifolia, Stevia satureiifolia and

Nothoscordum bonariense. Drawings by J. L�opez Rojas.
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where the exponent a depends on whether species s is an animal or

a plant. If it is an animal, a is equal to the number of adjacent

patches where that animal is present. Adjacent patches are those

with a direct dispersal route to the focal patch p. Nevertheless, ani-

mals only live where they can find food. Therefore, if in patch p

there were none of the plant species on which animal s feeds, the

probability of animal s to colonize patch p would be zero. If species

s is a plant in a plant–pollinator network, the exponent a is equal

to the number of adjacent patches where that plant is present.

Besides each animal species having a certain probability of

becoming locally extinct, they go deterministically coextinct if

every plant species they feed on has become extinct in that habi-

tat patch.

The extinction probability for animals is the same for all spe-

cies and all patches E(p,s)=e. Regarding plants in plant–pollinator

metacommunities, their extinction probability depends on their

number of pollinators present in that given patch b. This is

encapsulated in the following equation for a plant’s extinction

probability:

Eðp; sÞ ¼ e=b: eqn 2

Note that all probabilities are taken from a uniform distribu-

tion.

Despite the extreme simplicity behind these simulations, the

model reproduces qualitatively the patterns observed in nature.

Thus, we can argue that these simple rules are just enough to

encapsulate the essence of the metacommunity dynamics.

spatial networks

We compare four different spatial structures of increasing hetero-

geneity in the number of links per habitat patch: a regular lattice,

a random network (Erd€os & R�enyi 1959), an exponential net-

work (following Barabasi & Albert 1999) with uniformly random

attachment, and a scale-free network (following Barabasi &

Albert 1999) with preferential attachment. All theoretical results

presented in main text correspond to the random network, while

we reproduce the equivalent results for the other spatial topolo-

gies in the Appendix S1 (Supporting information). This compari-

son serves to test to what degree spatial structure affects the

patterns here described. The advantage of using large theoretical

networks relies in the statistical power they provide and in our

ability to control for spatial heterogeneity.

The empirical data set consists of 12 patches out of 18 from

which we know the local plant–pollinator networks. The spatial

network in this case is constructed by using a threshold distance

under which two patches are considered to be linked through dis-

persal (Urban & Keitt 2001). Here we use the thresholds that

maximize the signal between the measured property and patch

centrality (see Appendix S4, Supporting information for details

and an assessment of the robustness of our analysis to this partic-

ular choice). In the construction of the empirical spatial network,

we include all the 18 fragments. Although we do not sample the

other 6, they can be part of one or many dispersal routes.

As a measure of the importance of a habitat patch within the

spatial network, we focus on its betweenness centrality. A patch’s

betweenness centrality measures the number of times such a

patch acts as a bridge along the shortest path between two other

patches (Freeman 1977). This measure is intimately linked to dis-

persal within the network. Note that this encapsulates the con-

cept of isolation in MacArthur and Wilson’s theory of island

biogeography. Thus, our work expands the few recent papers

addressing networks in a biogeographical dimension by adding a

patch’s isolation and spatial dynamics to the previous focus on

island area (Sugiura 2010) and age (Trø jelsgaard et al. 2013).

ecological networks

The pampean plant–pollinator networks were surveyed from 12

isolated ‘sierras’, ranging between 12 and 2147 ha and immersed in

an intensively used agricultural matrix. The number of plant spe-

cies, animal species, and interactions ranged between 17 and 39, 48

and 79, and 132 and 243, respectively. Further details can be found

in Sabatino, Maceira & Aizen (2010), and Aizen, Sabatino &

Tylianakis (2012). For the simulations, we use the metaweb of these

local networks, composed by 172 pollinators and 96 plants.

In our simulations, each patch of the spatial network harbours

an empirical plant–pollinator network. It depicts the mutualistic

interactions between plants and the animals that pollinate their

flowers. The characteristics of those networks are described in

Bascompte & Jordano (2007). In particular, at the beginning of

the simulation, we populate each habitat fragment with the meta-

web from Sabatino, Maceira & Aizen (2010).

To see whether our results affect only plant–pollinator net-

works, or they are general to mutualistic interactions, we have

also simulated the dynamics of plant–seed dispersers. Both the

details of the simulations and the results can be found in the

Appendix S2 (Supporting information). All qualitative results

shown here hold for this other set of simulations.

As a measure of overall network structure, here we focus on

nestedness. In a nested network, specialists interact with species

that form well-defined subsets of the species interacting with the

most generalists (Bascompte et al. 2003). This is a pervasive

property of the architecture of mutualistic networks, with poten-

tial implications for their persistence (Memmott, Waser & Price

2004; Burgos et al. 2007; Bastolla et al. 2009).

measure of nestedness

Nestedness is measured as in Bastolla et al. (2009), which has the

advantage of being related to network dynamics. Although there

are other nestedness measures such as NODF (Almeida-Neto

et al. 2008), they are all highly correlated and do not qualitatively

change our results (Bascompte & Jordano 2014). To measure rel-

ative nestedness, we randomized the network a thousand times

using the probabilistic model described in Bascompte et al.

(2003). Relative nestedness was then calculated as a z-score

between the observed value and the randomizations:

z ¼ N�Nr

rNr

; eqn 3

where N is the nestedness value of the observed network, and Nr

and rNr
are the average and standard deviation of nestedness val-

ues across randomized network replicates.

Results

Our results show that one needs to sample a larger num-

ber of patches to record interactions than would be neces-

sary to record an equal proportion of species (Fig. 2).
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This difference is largely modulated by both environmen-

tal stochasticity – here represented by the extinction-to-

colonization ratio – and spatial heterogeneity – here

represented by the degree distribution of the spatial

network (Appendix Fig. S1). Specifically, the larger the

environmental stochasticity, the larger the number of hab-

itat fragments that have to be sampled to achieve an

equivalent proportion of interactions (Appendix Fig. S2).

This difference also grows with the heterogeneity of the

spatial network. Thus, for the random spatial network

(Appendix Fig. S1), one would need to sample 1�7 times

more patches at the highest value of environmental sto-

chasticity. This difference grows up to 2�5 times more

patches for the scale-free network (Appendix Fig. S2). In

agreement with these theoretical results, the study of the

empirical data set shows that – for this particular setting

– one would need to sample twice the number of patches

to record 60% of the interactions than to record 60% of

the species (Fig. 2).

Once we have shown how the total number of interac-

tions scales up with number of patches – that can be

taken as surrogate of area in our model – we next move

to mapping how the number of interactions is distributed

across the spatial network. This will inform us on how

the number of interactions depends on patch isolation.

Our results show first that more central patches – that is

the more important ones in terms of dispersal across the

network (see Materials and methods for a proper defini-

tion) – have more interactions and more species than

more isolated patches (as noted by the positive slopes in

Fig. 3). Secondly, the proportion of interactions in a

patch – compared with the total number of interactions in

the metaweb – is always lower than the equivalent pro-

portion of species (as noted by the relative position of the

two fitted lines in Fig. 3). This consistent pattern explains

the previous result, that is the fact that the rarefaction

curve of species lies above the rarefaction curve of inter-

actions. This pattern is observed both in the simulations

and the analysis of the empirical data set.

The above two results were based on counting the

number of interactions and presenting this result as

either an aggregated or a patch-by-patch amount. We

next consider the patterning of these interactions in the

context of how the nested structure of the local mutualis-

tic networks changes across space (Fig. 4). As shown by

our results, central patches sustain communities whose

interactions are significantly nested, while peripheral

patches harbour less nested communities with interac-

tions organized in a way that does not differ significantly

from a random assembly. Indeed, the more central the

habitat patch is, the more significantly nested is its mutu-

alistic community (Fig. 4). The same pattern is found in

the empirical metacommunity. In the Appendix S3 (Sup-

porting information), we show that the relationship

between nestedness and patch centrality is not mediated

by the relationship between network size and patch cen-

trality. As also shown in the Appendix S5 (Supporting

information), patch centrality is a better predictor of the

number of interactions and of network structure than

patch area. However, the number of species in a patch

is more correlated with patch area than with patch

centrality.

Discussion

A predictive theory of how interactions are distributed

in space may be relevant in the context of understand-

ing how habitat fragmentation will erode the architec-

ture of biodiversity and the services it provides.

Specifically, knowing how this network structure

changes across the landscape can provide insight into

how resilient these networks will be. Similarly, it can

guide efforts aimed at reversing this destructive trend,

such as in reserve design.
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The species–area relationship has been a cornerstone of

a predictive conservation biology in the sense of exploring

how different re-arrangements of the habitat would trans-

late into different numbers of coexisting species. This can

provide a rule of thumb in terms of how much area

should be protected if we were interested in conserving a

minimum number of species. In line with this, here we

show that we may need more than twice the number of

habitat patches in order to preserve a given proportion of

total interactions, especially in most fluctuating environ-

ments. This means that a reserve arrangement designed

on the basis of species presence and absence may not be

enough to protect interactions and therefore will fail in

protecting ecosystem functioning (Tylianakis et al. 2009).

In spatial networks of habitat patches, however, not

all patches are equally relevant in order to preserve

interactions. We have shown that there is considerable

variability in the importance of a given patch in terms
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of harbouring interactions and species. That importance

depends on the patch location in relation to the rest of

the patches. Therefore, this result should be interpreted

in the light of the differential rescue effect across the

landscape, which is linked to patch position. Even when

the extinction rate of a species was the same, the rescue

effect by which a local patch can be recolonized from a

nearby patch is much lower in peripheral patches

(Gilarranz & Bascompte 2012). However, not only is the

distribution of species heterogeneous across the land-

scape. As recently pointed out, in real landscapes, there

is not a random loss of interactions; while interactions

between generalist species are ubiquitous, interactions

involving specialist species are much more vulnerable

(Aizen, Sabatino & Tylianakis 2012). Interestingly

enough, this type of result can only be understood when

integrating information on local network structure and

landscape dynamics. This relates to two major theories

bringing analytical tractability to multispecific co-evolu-

tionary studies: network theory (Bascompte & Jordano

2007) and the geographic mosaic theory of co-evolution

(Thompson 2005).

Beyond differences in the number of interactions across

the landscape, different patches are also playing different

roles in terms of how their interactions are assembled.

Thus, the nested structure of the local network varies

across the landscape. Given the importance of nestedness

for maintaining network size (Bastolla et al. 2009) and

robustness (Memmott, Waser & Price 2004; Burgos et al.

2007; Th�ebault & Fontaine 2010), local differences in

nestedness are likely to translate into differences in the

persistence of these local networks. The higher stability of

communities in central patches is twofold. First, we have

shown that central patches tend to harbour more nested

communities. Other things being equal, nested communi-

ties tend to be more persistent (Bastolla et al. 2009). Sec-

ondly, this goes along the tendency for such central

patches to be involved in a large number of dispersal

routes and therefore to have a higher incidence of rare

species due to a higher recolonization rate.

Network persistence, therefore, is a combination of

local and regional processes that cannot be understood

independently from each other. The positive or negative

feedbacks between patch isolation and network structure

may help to explain the spatial distribution of biodiversity

hot spots. These results pave the road for a deeper under-

standing of how spatial structure and dispersal simulta-

neously affect local community structure, the geographic

distribution of ecosystem services and co-evolutionary

processes.
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