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Abstract. High field magnetoresistance has been studied in epitaxial n-type ZnO:Na

and ZnO:Li thin films in a temperature range between 4K and 150K. The resulting

negative magnetoresistance can be well fitted using a semiempirical model of Khosla

and Fischer based on third order contributions to the s-d exchange Hamiltonian. The

parameters obtained from this model were carefully analyzed. One of these parameters

is related to a ratio between electron mobilities at zero field (a non-exchange scattering

mobility µ0 and an exchange or spin dependent one µJ). From Hall effect measurements

µ0 was obtained, displaying a weak temperature dependence in accordance with highly

n-doped ZnO while the extracted µJ exhibits an anomalous T -dependence. On the

other hand, our magnetoresistance data cannot be properly fitted using Kawabata’s

expression based on a weak-localization model.

1. Introduction

When a few atomic percent of Manganese is replaced by Galium in GaAs, this

semiconductor becomes ferromagnetic below a Curie temperature TC ∼ 110K [1]. This

was a remarkable discovery that allowed the development of spintronic in semiconductors

in the following years [2]. Despite there is still a debate about the origin of

ferromagnetism in this III-V semiconductor, there is one model that stands among the

rest: The p-d or s-d exchange model. In this picture, the itinerant carriers (which are

presumably holes donated by Mn in the case of Ga1−xMnxAs) experiment an exchange

interaction with the localized magnetic moments (the Mn ones in Ga1−xMnxAs) giving

rise to a magnetic order. The effect observed in Ga1−xMnxAs triggered the research in

others potential dilute magnetic semiconductors (DMS) like ZnO or GaN where room

temperature ferromagnetism was predicted when they are p-doped [3, 4, 5]. This latter
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issue becomes a materials science challenge in the II-VI semiconducting ZnO since

it naturally becomes n-type and the stability of acceptors in this material is rather

low [6, 7]. Moreover, the doping with magnetic elements like Mn should be carefully

performed [8, 9] since impurity clusters, spurious magnetic phases or an inhomogeneous

distribution of magnetic impurities in the sample can generate magnetic signals which

are the responsible of the wide variety of TC values found in ZnO ranging from 0 to

1000K [10, 11].

Alternatively, it has been predicted that acceptor doping with non-magnetic

elements like Li or Na stabilizes the formation of Zinc vacancies VZn [6, 12, 13, 14].

Moreover, recent works have proposed and also shown evidence of VZn as localized

magnetic defects in ZnO [15, 16]. Doping of ZnO with Na or Li has been previously

performed in a wide variety of micro and nano-structures in search of the development

of optical and optoelectronic devices [6, 12, 13, 14, 17, 18, 19, 20, 21, 22]. It has been

found that the optimal Li or Na doping that generates substitutional defects like ZnLi

or ZnNa (which are the ones that stabilize the VZn) without producing a significant

amount of interstitial ones (which are donors) is around 5 at.% [13, 14]. Above this

concentration, interstitial doping starts to increase compensating the acceptor ones.

One of the key effects when itinerant electrons interact with localized magnetic

moments is the presence of negative magnetoresistance (MR) [23, 24, 25], a relevant

property for spintronic applications [2] and a more subtle technique to analyze the DMS.

In the case of ZnO, this effect has been observed in n-doped samples [26, 27, 28, 29] with

MR values between 3 and 7% at T ∼ 5−10K. For electron carrier concentrations lower

than n ∼ 3 × 1018 cm−3, the negative magnetoresistance is overpassed by an enhanced

positive magnetoresistance [26, 28] in accordance to a two-band model (an impurity plus

a conduction band) [30, 31]. The negative MR in ZnO can be well described using a

phenomenological model originally proposed by Khosla and Fischer to account for their

experiments in n-type CdS [31]. In their model, Khosla and Fischer adapt expressions

for negative MR previously developed by Appelbaum based on third order terms of

the s-d Hamiltonian [32] in the context of a tunneling problem between two metals

with magnetic impurities at the interface. This adaptation requires an appropriate

transformation of tunneling rates to scattering rates [31] in order to provide an adequate

interpretation of the parameters involved in the model. In this work, we provide a

detailed study of the physics behind these parameters in MR measurements on n-type

ZnO films doped with non-magnetic elements (Na and Li).

2. Experimental Details

Starting from ZnO powders doped with 5 at.% of Na or Li synthesized as described in

Ref. [14], corresponding ceramic targets were fabricated. Then, high quality oxygen

deficient ZnO:Na and ZnO:Li thin films were grown on sapphire (0001) substrates

(dimensions: (5 × 5 × 0.5) mm3) by pulsed laser deposition (PLD) at a temperature

of 550◦C and an oxygen pressure between 0.05 and 0.5mTorr using a Nd:YAG laser
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Figure 1. (a) θ− 2θ scans of ZnO:Na (black line) and ZnO:Li (blue line) films grown

on (0001) sapphire. The (002) and (004) ZnO peaks are present for both type of films.

The peak corresponding to a reflection of the sapphire substrate is labeled with an

asterisk. (b) SEM image of the ZnO:Na film surface.

operated with a wavelength of 266 nm, a repetition rate of 10Hz and an energy density

of 2.1 J/cm2 [33]. The deposition rate was ∼ 0.018 nm s−1 and the film thicknesses

are of ≃ 54 nm. EDX mapping studies show an homogenous incorporation of Na in

the ZnO:Na films while in the case of ZnO:Li films the Lithium was not able to be

observed probably due to its low atomic weight. X-ray diffraction measurements were

performed in the films using CuKα radiation (λ = 0.15406 nm), see θ − 2θ scans in

Fig. 1a. The resulting films have epitaxially grown along the c-axis direction with a

wurtzite structure and without any spurious phase, see Fig. 1a. For both films, the

position of the (002) peak is shifted to lower angles (2θ ≃ 34.28◦ and 34.31◦ for the

ZnO:Na and ZnO:Li films respectively) compared to bulk ZnO (2θ ≃ 34.42◦) [34]. From

the position of these peaks, the corresponding c lattice parameter can be determined

using the expression 1/d2hkl = l2/c2 + 4(h2 + k2 + h.k)/3a2, where (h, k, l) are the Miller

indices. Resulting values of c = 5.227 Å and c = 5.223 Å are obtained for the ZnO:Na

and ZnO:Li films respectively. These values are higher than the bulk ZnO c-lattice

parameter (c = 5.207 Å) indicating that both films are slightly tensile strained (around

0.3%) in the c-axis direction. In order to quantify the grain size of our films we have

extracted the full width at half maximum (FWHM) of the corresponding (002) peaks for

both films (giving w = 0.72◦ and 0.52◦ for the ZnO:Na and ZnO:Li films respectively)

and we have made use of the Scherrer equation ⟨D⟩ = Kλ/(w cosθ) with K ∼ 0.94

[35]. The resulting grain size values are similar for both films being ⟨DNa⟩ ≃ 12 nm and

⟨DLi⟩ ≃ 17 nm for the ZnO:Na and ZnO:Li respectively. In Fig. 1b, a SEM image of the

ZnO:Na film surface shows small grains with similar sizes to the ones estimated above.

Magnetoresistance measurements were carried out in a cryostat equipped with a

rotating sample holder at temperatures between 4 and 150K and magnetic fields up

to 16T. We have employed the four-point-probe method using Indium ohmic contacts

and a configuration with the applied magnetic field H parallel to the electrical current
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Figure 2. (a) Magnetic field dependence of MR at different temperatures for the

ZnO:Na film. As it can be noticed, the MR signal increases as the temperature is

reduced. A Comparison between the MR data and the corresponding fittings (red

lines) using Eq. (1) is presented for ZnO:Na (b) and ZnO:Li films (c).

density I, I ∥ H. High electron carrier densities (n ≃ 1020 cm−3) have been obtained

in our films by Hall effect measurements using the Van der Pauw method. No evidence

of anomalous Hall effect has been observed [36]. Magnetization measurements have

been performed using a SQUID at temperatures ranging from 4 to 300K and applied

magnetic fields up to 5T. Remarkably, our films do not present a magnetic signal within

the experimental error (∼ 10−6 emu). For ∼ 10−6 emu, a simple estimation gives a total

amount of ∼ 5 × 1013 localized magnetic moments. This value corresponds to a few

at.% of these moments in our sample.

3. Results and Discussion

The field dependence of MR (defined as (ρ − ρ(H = 0))/ρ(H = 0)) at different

temperatures is presented in Fig. 2 for ZnO:Na and ZnO:Li films. As it can be observed,

the negative MR signal increases as the temperature is decreased. The negative MR

value at T = 4K and H = 16T reaches ∼ 3.4% and ∼ 4.7% for ZnO:Na and ZnO:Li
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respectively in agreement with the values reported for ZnO doped with non magnetic

elements and carrier densities above ∼ 3× 1018 cm−3 [26, 28, 29].

MR expressions based on second order terms of the s− d Hamiltonian [23, 24, 25]

lead to a MR ∝ −H2 dependence which can not properly fit our MR data. In order to

evaluate the negative MR taking into account third order terms of the s-d Hamiltonian,

Appelbaum [32] developed a model based on the transmittance of electrons across a

tunneling barrier with local magnetic impurities at the interface. In the context of this

problem, the exchange and non-exchange interaction with these impurities improves the

tunneling of electrons between the two metals. The adaptation of this model to bulk

semiconductors where dilute local magnetic moments are present is not straightforward

and it requires an adequate transformation of the tunneling probabilities due to an

interaction with magnetic (T 2
J ) and non-magnetic impurities (T 2

0 ) to corresponding cross-

sections or scattering rates. As it was already noticed, the first adaptation was proposed

by Khosla and Fischer [31] to account for their negative MR data on CdS semiconducting

single crystals doped with In. After several approximations they found that MR can be

expressed as:

MR = −a2 ln(1 + b2H2) +
c2H2

1 + d2H2
(1)

where the last term corresponds to a well known positive MR contribution deduced

from a two band model [30, 31]. The parameters c and d are related to the conductivities

and mobilities of these two bands [37]. On the other hand, the parameters a and b that

appear in the negative MR contribution are defined as [31]:

a2 = a21[S(S + 1) + ⟨M2⟩] (2)

b2 =

1 + 4S2π2

(
2JρF
g

)4
 g2µ2

B

(αkBT )2
(3)

where g is the Landé factor, µB is the Bohr magneton, S is the spin of the localized

moment, J is the exchange integral resulting from the interaction between the itinerant

electron and the localized magnetic moment and ρF is the density of states at the

Fermi energy level. α is a numerical factor close to α ≃ 1 introduced by Appelbaum

[32, 38, 39]. As it can be noticed, the term (bH)2 is proportional to (gµBH/kBT )
2,

hence the electronic conduction will be improved as the magnetic energy of the local

moments grows in relation to the thermal energy, see Eq. (1). The term a21 can be

expressed as a21 = 2JρFA1, where A1 is related to a ratio between the cross-section

due to exchange scattering with magnetic impurities, σJ , and the cross-section due

to other non-exchange scattering mechanisms, σ0, (non-magnetic impurities, phonons).

Appelbaum [32] proposed that ⟨M2⟩ is expressed by:

⟨M2⟩ = ⟨M⟩2 − (S +
1

2
)2 sinh−2(S +

1

2
)
gµBH

kBT
+

1

4
sinh−2 gµBH

2kBT
(4)
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Figure 3. Parameters obtained by fitting the ZnO:Na MR data with Eq. (1). (a)

1/T -dependence of parameter b. A linear fit (red line) using Eq. (3) is also shown. (b)

Temperature dependence of the parameter a2 (black squares). If Eq. (2) and Eq. (5) are

explicitly included in the fittings of the MR data with Eq. (1), a resulting T -dependent

a21 is obtained (blue circles).

where ⟨M⟩ is the normalized magnetization and the last two terms constitute a

magnetization variance. Using the Brillouin function for ⟨M⟩ and reordering terms

through hyperbolic functions identities Eq. (4) can be expressed in the case S=1/2 as:

⟨M2⟩ = 1

4
+

3

4
tanh2 gµBH

2kBT
(5)

Hence the ratio (gµBH/kBT ) intervenes in ⟨M2⟩ as well as in the term (bH)2.

At first sight, it can be noticed that ⟨M2⟩ has a weak T -dependence in the range of

temperatures explored. The resulting fittings using Eq. (1) are in excellent agreement

with our data, see Fig. 2b and Fig. 2c. In what follows our analysis will be focused on

the ZnO:Na data even though similar results have been obtained for ZnO:Li.

The temperature dependence obtained for the parameter b is in good agreement

with the predicted by Eq. (3), as it can be observed in Fig. 3a. Taking g=2 and S=1/2,

which are values corresponding to a local moment formed by a Zinc vacancy, VZn, [15]

it is possible to extract JρF from Eq. (3) using the fitting values obtained in Fig. 3a.

It gives a value of JρF = 1.9 in accordance with the ones reported in ZnO which range

between ∼ 1.7 and ∼ 2.1 [26, 29]. As it can be observed in Fig. 3b, the resulting

parameter a2 (see Eq. (1)) has a temperature dependence outside the margins of error.

This is an unexpected result considering that previous reports on ZnO suggest that

a2 does not vary with temperature [26, 29]. Since the term ⟨M2⟩ is T -dependent (see

Eq. (5)) and it takes part in a2 (see Eq. (2)) we have explicitly included this temperature

dependence of ⟨M2⟩ in Eq. (1) and we have performed new fittings with this modified

expression to our data. Again, these new fittings are in good agreement with our

MR measurements and the resulting parameters remain unchanged compared with the

previous ones within the margins of error. In particular, we have compared the a2 values

obtained from the previous fittings with the a21 values resulting from these new fittings,

see Fig. 3b. As it can be noticed, the values of a2 and a21 and their T -dependence are



Author guidelines for IOP Publishing journals in LATEX2ε 7

basically the same within the error. It means that the temperature dependence of ⟨M2⟩
is not a significant contribution to a2 (see Eq. (2)) and that it mainly comes from the

term a21.

Within the frame of the tunneling problem studied by Appelbaum [32] a21 can be

written as a21 ≃ 2JρFT
2
J/T

2
0 if T 2

0 ≫ T 2
J . In the case of bulk semiconductors, Khosla and

Fischer [31] express a21 in terms of corresponding cross-sections as a21 ≃ 2JρFNJσ
2
J/σ

2
0,

where NJ is the density of localized magnetic moments. In the following, we are going

to show that if MR is simply expressed in terms of corresponding cross-sections using

the Drude model and the Matthiessen rule, the resulting a21 differs from the one deduced

by Khosla and Fischer [31].

Lets assume that σ(H) = σ0 + σJ(H) with σ(H = 0) = σ0 + σJ(H = 0) and

ρ = (m∗vF/ne
2)
∑

iNiσi where i = 0 or J, n is the electron carrier density, m∗ is the

effective mass of the electron, vF is the Fermi speed and Ni is the corresponding density

of scattering centers. If we define σJ(H) = σJ(H = 0)F (H) where F (H) takes into

account the magnetic field dependence, MR can be expressed as:

ρ− ρ(H = 0)

ρ(H = 0)
≃ −NJσJ(H = 0)

N0σ0

(F (H)− 1)

= − µ0

µJ(H = 0)
(F (H)− 1) (6)

where µi = e/(m∗vFNiσi) are the electron mobilities and it was assumed that

σ0 ≫ σJ(H = 0). If a general comparison between the prefactor of Eq. (6) and

the parameter a2 in the first term of Eq. (1) is made, it is possible to express a2

approximately as:

a2 ≃ a21 ≃
2JρFNJσJ(H = 0)

N0σ0

=
2JρFµ0

µJ(H = 0)
(7)

Unlike Khosla and Fischer [31], we find a simple linear relation between a21 and the

ratio of corresponding cross-sections, see Eq. (7). In addition, Eq. (7) establishes that

a21 represents the ratio between the electronic mobility due to non-exchange scattering

mechanisms and the one due to exchange scattering mechanisms (including spin flip

and non-spin flip events). The previous assumption σ0 ≫ σJ(H = 0) implies that

µ0 ≪ µJ(H = 0) hence if the Matthiessen rule is valid, the total electron mobility

µT will be dominated by µ0 which would be the major contributor to the measured

electron mobility. Consequently, measuring the electron mobility and using the values

of a21 extracted from Fig. 3b it is possible to obtain µJ(H = 0) via Eq. (7).

In Fig. 4a and Fig. 4b we present the temperature dependence of both the

electron carrier concentration obtained from Hall effect measurements and the electrical

resistivity respectively. Both of them have a weak temperature dependence in the same

way as the resulting electron mobility µT ≃ µ0, see Fig. 4c. This weak T -dependent

mobility at high doping levels in ZnO has been already predicted by Alfaramawi [40].
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electrical resistivity (b) for the ZnO:Na film. (c) Resulting Hall electron mobility,

µ0, (blue squares) as a function of the temperature. A corresponding fitting using

Alfaramawi’s expression [40] (red curve) is also shown.
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(T = 70K) and 6.85 nm (T = 150K).

In his model, scattering with ionized impurities and phonons are included as well as the

electron-electron interaction [40, 41, 42]. Using the parameters adopted by Alfaramawi

[40] in ZnO with an ionized impurity concentration of 1× 1020 cm−3, a good agreement

between this model and our experimental values is obtained, see Fig. 4c.

As it was pointed out, knowing the values of µ0 and a21 it is possible to extract

µJ(H = 0) using Eq. (7), the results are showed in Fig. 5a. As it can be observed,

µJ(H = 0) is weakly T -dependent at T > 70K which seems to be consistent with

the behavior predicted by second order terms of the s-d exchange model [23, 25]. A

departure from this behavior is observed at T < 70K, that is to say, µJ(H = 0)

increases as temperature is decreased, see Fig. 5a. This enhancement of the exchange

(or spin) mobility at low-T does not seem to be caused by an increase of the localized

magnetic moments order since this has already been taken into account in the term

(bH)2 and ⟨M2⟩, see Eq. (1) and Eq. (2). Further studies are needed to provide a

deeper understanding of this effect.

It is worth to compare the MR of our ZnO films doped with alkali metals with

the one corresponding to undoped ZnO films which is well established in the literature

[26, 27, 28, 43]. In Fig. 5b the MR of our ZnO:Na film and the one for an undoped

ZnO film [28] are compared. The resulting fittings using Eq. (1) lead to a value of

JρF ≃ 1.9 for the undoped ZnO film which is equal to the value obtained for our

ZnO:Na film. This result suggests that the localized magnetic defect that is responsible

for the exchange mechanism with the itinerant electrons is the same for both films,

pointing to an intrinsic defect (i.e. Zinc vacancies). In the case of the undoped ZnO

film, the parameter a2undoped = 0.00734 at T ≃ 4K is higher than the one obtained
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for the ZnO:Na film at the same temperature (a2Na = 0.00443, see Fig. 3b); the ratio

between these two values being ∼ 1.7. Using Eq. (7) for each film and assuming that

µNa
0 ≃ µundoped

0 one obtains that µNa
J ≃ 1.7µundoped

J .

On the other hand, it is worth to ask if our ZnO films are outside the strong

localization regime [44, 45]. A simple estimation using the quantities showed in Fig. 4

allows us to estimate kF l for our films, where kF is the Fermi wave-vector and l is

the mean free path. It gives a value of kF l ≃ 1.8 > 1, which means that we are

in a regime where the weak scattering theory still works [45] and the Khosla model

[31] can be applied. In this regard, Ajimsha et al. [46] have considered that their

MR data in Ga-doped ZnO films can be explained in the context of phase coherent

electron transport. They have used a weak-localization expression [47] which accounts

for the negative magnetoresistance plus a positive contribution arising from the electron-

electron interaction [46] to fit their data:

MR =

(
∆ρ

ρ(H = 0)

)
WL

+

(
∆ρ

ρ(H = 0)

)
EE

(8)

where: (
∆ρ

ρ(H = 0)

)
WL

=
−e2ρ(H = 0)

2π2h̄

√
eH

h̄
f3(δ) (9)

with δ = h̄/(4eHℓ2φ). The phase-coherence length is represented by ℓφ. The function

f3(δ) can be expressed as [47]:

f3(δ) =
∞∑

N=0

[2
(√

N + 1 + δ −
√
N + δ

)
− 1√

N + 1/2 + δ
] (10)

The MR contribution due to electron-electron interaction can be written as [46]:(
∆ρ

ρ(H = 0)

)
EE

=
e2ρ(H = 0)Fσ

4π2h̄

√
kBT

2Dh̄
g3(h) (11)

where D = µ0kBT/e is the electron diffusion constant, Fσ is the Coulomb

interaction parameter and h = gµBH/kBT . The function g3(h) is expressed by:

g3(h) =
∫ ∞

0
dΩ

d2

dΩ2
(ΩN(Ω))[

√
Ω + h+

√
|Ω− h| − 2

√
Ω] (12)

where N = 1/(eΩ−1). We have tried to fit our MR data with Eq. (8) taking ℓφ and

Fσ as fitting parameters. The best fit to our data was achieved fixing Fσ at a value of

≃ 0.3 for all T. The electron diffusion constant D was determined at each temperature

using the Hall mobility values from Fig. 4c. The resulting fittings are shown in Fig. 6.

As it can be observed, a good agreement is only attained at high temperatures, while at

low temperatures it is not possible to obtain a proper fit to our MR data using Eq. (8),

especially at low magnetic fields. This disagreement with the weak-localization model

at low-T and low-H has already been observed by Andrearczyk et al. [43] in ZnO films.
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4. Conclusions

In conclusion, we have successfully applied the Khosla model based on the s-d exchange

Hamiltonian to our negative MR data on oxygen deficient ZnO:Na and ZnO:Li films.

The incorporation of these dopants does not seem to affect the MR signal suggesting that

intrinsic defects (i.e. Zinc vacancies) play the role of the localized magnetic defects. We

have found an anomalous temperature dependence in one of the model’s parameter,

a2. After a careful analysis we have concluded that this temperature dependence

comes from a ratio between a non-exchange and a zero field exchange electron mobility,

µ0/µJ(H = 0). While the high n-doping level of our films (mainly originated by oxygen

vacancies) leads to a weak T -dependent non-exchange mobility, the resulting zero field

exchange (or spin) mobility increases when temperature is lowered below T ∼ 70K.
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