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Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and
mammals; however, in other vertebrates this function is not yet clearly established.
More than half of the vertebrate species are teleosts. This group is characterized by
the 3R whole genome duplication, a fact that could have been responsible for the great
phenotypic complexity and great variability in reproductive strategies and sexual behavior.
In this context, we revise GnIH cell bodies and fibers distribution in adult brains of teleosts,
discuss its relationship with GnRH variants and summarize the few reports available
about the ontogeny of the GnIH system. Considering all the information presented in this
review, we propose that in teleosts, GnIH could have other functions beyond reproduction
or act as an integrative signal in the reproductive process. However, further studies are
required in order to clarify the role of GnIH in this group including its involvement in
development, a key stage that strongly impacts on adult life.

Keywords: GnIH, fish, brain, ontogeny, GnRH, growth, reproduction

INTRODUCTION

In 2000, Tsutsui’s group isolated, for the first time, a novel hypothalamic neuropeptide from
the brain of the Japanese quail, Coturnix japonica, which inhibited luteinizing hormone (LH)
release from the anterior pituitary and named it gonadotropin-inhibitory hormone (GnIH) (1).
This finding had the novelty that, at that moment, it was known that gonadotropin secretion
was mainly under the stimulatory effect of gonadotropin-releasing hormone (GnRH), but an
inhibitory neuropeptide of gonadotropin secretion had been not discovered. The discovery of GnIH
opened a new research field in reproductive neuroendocrinology from a novel standpoint. Since
then, GnIH orthologs were described in protochordates (2) and many vertebrate taxa including
agnathans, teleosts, amphibians, reptiles, birds, and mammals [for review see (3, 4)]. In some of
these groups, it is clear that GnIH is involved in the regulation of reproduction, inhibition of
pituitary gonadotropins, and sexual behavior [for reviews see (5–9)]; however, up to this moment
this is far to be a common feature. After Tsutsui’s first finding (1), Satake et al. (10) characterized
in quail a cDNA encoding GnIH and two GnIH-related peptides. Later, in most vertebrate species,
these peptides were deduced from the cDNA sequences of their precursors, but the GnIH peptide
was isolated and identified only in a few species: quail (1), starlings (11), zebra finches (12), chicken
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(13), rats (14), Siberian hamsters (15), bullfrog (16), turtles (17),
primates (18), humans (19), and goldfish (20). All these GnIH
orthologs have an Arg-Phe-amide as a C-terminal sequence and
thus, they are part of the RF-amide family. Particularly, GnIH
and its related peptides, either putative or identified, possess a
common LPXRFamide or MPXRFamide (X: L or Q) C-terminus
motif [for reviews see (5–9)].

It is known that more than half of the vertebrate species
are teleosts, and teleost-3R genome duplication could have been
responsible for the great phenotypic complexity observed in this
group of vertebrates (21). They occupy all aquatic environments
and present a tremendous variability of reproductive strategies
and sexual behavior (22). In this context, fish GnIH and
their related peptides could have undertaken new and maybe
unexpected functions.

Early-branching lineages of ray-finned fishes (such as gars)
and teleosts already present a GnIH precursor suggesting
that this peptide emerged before to the teleost whole genome
duplication. Early-branching lineages of teleosts, such as
anguiliforms and otophysans (Cypriniformes, Characiformes,
and Siluriformes), and salmoniforms, ovalentarians (some
Cichliformes, Cyprinodontiformes, Atheriniformes, and
Beloniformes) (23) and some Pleuronectiformes (24), exhibit
a GnIH precursor encoding three peptides. However, in
late-branching evolved species belonging to ovalentarians
(some Cichliformes, Perciformes), Pleuronectiformes
and Tetraodontiformes, two peptides were described (3)
(Figure 1). Then, it seems that species belonging to early
branching teleost lineages contain GnIH and 2 related
peptides, whereas those species belonging to late branching
lineages possessed GnIH and 1 or 2 related peptides,
suggesting that one was lost in the course of teleost
evolution. The meaning of this fact is still unknown, but it
represents an interesting matter of study in neuropeptide
evolution (3, 25).

THE GnIH SYSTEM IN FISH

Neuroanatomical Distribution of GnIH Cell
Bodies and Fibers
In order to gain understanding about the GnIH system in fishes,
several studies have investigated the precise localization of GnIH-
producing cells in the brain and peripheral organs of teleosts by
using PCR, in situ hybridization and immunohistochemical
techniques [for review see (3)]. Although these studies
have reported important consistencies in the brain GnIH
innervation pattern, the localization of GnIH cell bodies showed
considerable dissimilarities in many of the analyzed species.
For instance, in sockeye salmon, Oncorhynchus nerka, (26)
and tilapia, Oreochromis niloticus (27), immunohistochemistry
revealed the presence of GnIH-immunoreactive (GnIH-
ir) cells only in the diencephalic posterior periventricular
nucleus (NPPv), whereas studies developed in other species
reported the presence of GnIH-ir cell populations also in
other brain regions (3). In this sense, increasing evidence
obtained in the last years also suggest that GnIH neurons

in teleosts are not only restricted to the caudal preoptic
area/hypothalamus (24, 25, 28–31), as it occurs in birds and
mammals (32) (Figure 2).

Analyzing the cell clusters reported in fish species from
the forebrain to the hindbrain, the most rostral GnIH-cell
population described is the one present in the olfactory bulb or
terminal nerve ganglion cells (TNgc)/the nucleus olfacto retinalis
(NOR) of goldfish, Carassius auratus (20); developing Indian
major carp, Labeo rohita (33); sea bass, Dicentrarchus labrax
(29); cichlid fish, Cichlasoma dimerus (25); zebrafish, Danio
rerio (30); sole, Solea senegalesis (24), and pejerrey, Odontesthes
bonariensis (31). This immunostaining was consistent with gnih
expression detected in these areas of sea bass brain by RT-
PCR. Moreover, these results were confirmed by sensitive laser-
capture microdissection followed by quantitative real-time PCR
(29). Similar analysis and/or in situ hybridization studies in
this brain region appear necessary to confirm the presence of
GnIH in these cells in other teleost species. More recently,
immunohistochemical studies also showed that GnIH neurons
are located in this transitional region between the olfactory
bulbs and telencephalic hemispheres of pejerrey, Odontesthes
bonariensis, an atheriniform species (31), and the tropical gar,
Atractosteus tropicus, an ancient lepisosteiform fish (28). More
caudally, in the ventral telencephalic area, another GnIH-cell
population was described, for the first time, in sea bass (29).
Similarly, Aliaga-Guerrero et al. (24) reported the presence of
GnIH-ir neurons in the central and lateral subdivision of the
ventral telencephalon using specific antibodies developed against
sole GnIH.

In the diencephalon, GnIH-ir neurons were detected in
the suprachiasmatic nucleus in the tropical gar (28); while,
in the India major carp, GnIH-cell masses were observed
in the magnocellular preoptic nucleus (NOPm) (33). Among
the diencephalic GnIH cell masses identified in different
species, the one present in the posterior periventricular
nucleus (NPPv) of the caudal preoptic area is the most
conserved in all fish species studied so far, including goldfish
(20), sockeye salmon (26), Indian major carp (33), orange-
spotted grouper, Epinephelus coioides (34), sea bass (29), tilapia
(27), Cichlasoma dimerus (25), pejerrey (31), zebrafish (35),
sole (24), and tropical gar (28). Moreover, in agnathans,
the most ancient lineage of vertebrates, a lamprey gnih
precursor mRNA was only expressed in the rostral and
caudal regions of the bed nucleus of the tract of the
postoptic commissure (nTPOC) in the hypothalamus (36). The
presence of other, but more posterior, hypothalamic GnIH-
ir cell population was also seen in tropical gar, within the
tuberal hypothalamus (28). In addition, GnIH-ir cells were
also present in the dorsal mesencephalic tegmentum, as well
as the rostral rhombencephalon of Indian major carp, sea
bass and sole (24, 29, 33). The analysis of gnih expression
in the mesencephalic tegmentum confirmed these neurons as
genuine GnIH-expressing cells by using sensitive laser-capture
microdissection followed by quantitative real-time PCR in sea
bass (29).

The profuse innervation of GnIH cells in the brain is a
common feature of all birds and mammals studied so far, as well
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FIGURE 1 | Phylogenetic tree of fish showing the different orders in which GnIH precursor genes have been identified and the number of LPXRFamide peptides
present in these GnIH precursors. The amino acid motifs present in the C-terminal region of these LPXRFamide peptides are also presented. SP, signal peptide. The
accession numbers of the identified and possible GnIH precursor sequences obtained from US National Center for Biotechnology Information database are:
Lepisosteiformes: Atractosteus tropicus (Álvarez-González, C.A., personal communication; transcriptome sequencing: PRJNA395289), Lepisosteus oculatus
(XP_015213317.1); Elopomorpha: Anguila japonica (XP_013998456.1); Cypriniformes: Carassius auratus (BAC06473.1), Catla catla (AUO16369.1), Cyprinus
carpio (AML83913.1), Danio rerio (NP_001076418.1), Pygocentrus natteri (XP_017549097.1), Sinocyclocheilus grahami (XP_016150344.1), Sinocyclocheilus
rhinocerous (XP_016370559.1); Siluriformes: Ictalurus punctatus (XP_017336524.1); Salmoniformes: Salmo salar (XP_013998456.1); Carangaria: Cynoglossus
semilaevis (AMB48604.1), Paralichthys orbignyanus (Mechaly A.S., personal communication), Solea senegalensis (24); Ovalentaria: Austrofundulus limnaeus

(XP_013866639.1), C. dimerus (25), Cyprinodon variegates (XP_015229614.1), Fundulus heteroclitus (XP_012729657.1), Iconisemion striatum (SBP35361.1),
Kryptolebias marmoratus (XP_017278134.1), Neolamprologus brichardi (XM_006788075.1), Nothobranchius furzeri (XP_015811406.1), Nothobranchius kuhntae
(SBQ91527.1), Nothobranchius pienaari (SBR89569.1), Odontesthes bonariensis (Somoza G.M., personal communication), Oreochromis niloticus
(NP_001298256.1), Oryzias latipes (XP_004073896.1), Poecilia formosa (XP_007562706.1), Poecilia latipinna (XP_014884496.1), Poecilia mexicana
(XP_014852162.1), Poecilia reticulata (XP_008419875.1), Pundamilia nyererei (XP_013765199.1), Stegastes partitus (XP_008290012.1), Xiphophorus maculatus
(XP_005802819.1); Eupercaria: Dicentrarchus labrax (CEK03537.1), Takifugu rubripes (NP_001092115.1), Tetraodon nigroviridis (BAF34880.1), Thalassomabi
fasciatum (ANV28067.1). The phylogenetic tree was taken from Figure 1 of Betancur et al. (23).

as in fishes (20, 24–29, 31, 33). This pattern of the distribution of
GnIH projections strongly suggests that GnIH acts in many brain
sites and then its function can be not only related to reproduction.

GnIH Fiber Projections to the Pituitary
Gland
In fish, GnIH-ir fibers were found running along the ventral
hypothalamus, reaching the infundibulum to project into the
pituitary [for review see (3)]. It is important to highlight to
the readers who are not specialized in fish neuroendocrinology,
that nerve terminals of hypophysiotropic neuroendocrine cells
from fish can establish direct contacts (like a “synaptic terminal”)
or end close to pituitary cells to release their neurohormones
(37), and they do not exhibit neither a median eminence nor
the portal vasculature reported in tetrapods (38). These fibers
were found in the proximal pars distalis (PPD) of goldfish (20),
sockeye salmon (26), sea bass (29), tilapia (27), zebrafish (35),
pejerrey (31), and sole (24) and, more recently, they were also
found in the neurohypophysis of the tropical gar (28). The

presence of GnIH-ir fibers in the PPD reinforces the role of this
neuropeptide in the regulation of pituitary hormone secretion
also in fish. Furthermore, GnIH-ir fibers were observed in close
proximity to FSH, LH, and GH cells in the pituitary of sea bass
(29), and FSH, LH, POMC, and α-MSH cells in the pituitary
of tilapia (27). Nevertheless, GnIH-pituitary innervation has not
been demonstrated in adult specimens of other fish species, such
as the Indian mayor carp and C. dimerus (25, 33). However, we
cannot discard that a sexual-stage-dependent plasticity in the
GnIH-pituitary innervation, or a neurovascular supply to the
pituitary, exists as it was reported in zebrafish (39).

GnIH and Photoperiodic Control of
Reproduction
Much has been written about the role of the GnIH system
in transducing and/or mediating photoperiodic effects on
reproduction through its interactions with the pineal organ and
retina in vertebrates (40–43). The pineal organ of fish is a light-
sensitive structure responsible for the nocturnal production of
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FIGURE 2 | Schematic representation of a sagittal section of the fish brain showing GnIH cell populations described in several brain areas of different fish species,
which are represented by gray circles. The red circle indicates the presence of GnIH cells in the nucleus posterioris periventricularis (NPPv) that has been reported in
all fish species studied until now. OB, olfactory bulb; Tel, telencephalon; Hyp, hypothalamus; OT, optic tectum; Pit, pituitary; Cer, cerebellum; M, medulla.

melatonin, playing a central role in the transduction of daily and
seasonal information (44). To date in fish, only a few studies
have investigated the links between GnIH and melatonin (45–
49). In cinnamon clownfish, Amphipirion melanopus, it was
shown that GnIH and the melatonin receptor MT1 co-localized
in diencephalic cells (46). Moreover, it has been reported the
existence of day-night differences in the expression of gnih in
sea bass, suggesting a role of melatonin in the modulation of
the GnIH system in this species (50). Accordingly, GnIH fibers
were localized in the pineal organ of sea bass (29), sole (24),
pejerrey (31), and tropical gar (28), suggesting the existence of
bidirectional connections between the pineal organ and GnIH
cells. Besides GnIH-ir fibers were found in the vascular sac of sea
bass (29), sole (24) and C. dimerus (51), an organ that represents
a sensor of daily and seasonal changes in day length and has
been involved in the photoperiodic control of reproduction
and other rhythmic processes in some teleost species (52). The
interactions between GnIH and both sensor systems (pineal
organ and vascular sac) could imply a role of GnIH in the relay
between environment and seasonal reproduction in this group
of vertebrates. Other studies observed that gnih was expressed
in the retina of different fish species, such as sea bass (29),
zebrafish (30), sole (24), and C. dimerus (51). However, only one
report relating retinal GnIH with the reproductive cycle has been
published so far, showing a decrease in retinal gnih expression
in late-vitellogenic zebrafish females (30). The fact that GnIH
is expressed in the retina could indicate its modulatory role in
this photosensory organ, but further studies appear necessary to
clarify the physiological significance of this GnIH action.

GnIH Receptors
The study of distribution of GnIH receptors (GnIH-R) has
provided relevant information to recognize the neural targets
of GnIH cells, helping to identify new putative roles of this

neuropeptide in the brain and peripheral organs. Unfortunately,
the precise identification of GnIH-R containing cells is still scarce
and only a few studies have used molecular tools and antibodies
to address its detailed localization in the fish brain. Both GnIH-
ir fibers and GnIH-R were widely distributed in the tilapia brain
but they were particularly evident in cells bodies of the preoptic
area, hypothalamus, optic tectum, semicircular torus, and caudal
midbrain tegmentum. They also coexist in the olfactory bulbs,
ventral/dorsal telencephalon and in the rhombencephalon (27).
In addition, GnIH-R immunoreactivity was found in LH, ACTH,
and α-MSH cells of tilapia pituitary (27). Moreover, three
different GnIH-R subtypes have been identified in goldfish (53)
and zebrafish (54), but their presence in other fish is still not
reported. In goldfish, three subtypes of GnIH-Rs were localized
in neuroendocrine regions as the preoptic area and the NPPv, the
preoptic nucleus (NPO), and the lateral tuberal nucleus (NLT),
whereas only two GnIH-R subtypes (GnIH-R1 and GnIH-R2)
were observed in the pars intermedia of the pituitary gland.
Surprisingly, no signals of GnIH-Rwere observed in the proximal
and rostral pars distalis of the goldfish pituitary (54). On the
other hand, the presence of gnih-r transcripts was also revealed
in the brain and pituitary of zebrafish (53), grass puffer, Takifugu
niphobles (45), and tongue sole, Cynoglossus semilaevis (55), by
using RT-PCR. In addition, RT-PCR and in situ hybridization
studies have reported the expression of gnih and gnih-r in some
peripheral fish organs, including the gonads (24, 25, 29, 30, 34, 45,
46, 53, 54, 56–58), which could indicate an autocrine/paracrine
role of GnIH in gonadal function.

GnIH AND GnRH RELATIONSHIPS

It is well-established that in vertebrates, multiple GnRH variants
are expressed by different neurons in the brain of a single
species. These variants are currently classified into three different
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types, according to their amino-acid sequence, neuroanatomical
localization, embryological origin, and synteny: GnRH1, GnRH2,
and GnRH3 [for review see (59)]. In the case of teleost fish,
GnRH1, the most variable GnRH type according to its amino-
acid sequence, is expressed in neurons originated from the
olfactory placode during embryogenesis (59–62) and plays the
classical hypophysiotropic function in most species. GnRH2 is
mainly produced by midbrain tegmental neurons and it has
been proposed that plays a key role in reproductive behavior
[for review see (63)]. Finally, GnRH3 is expressed in ventral
forebrain neurons, from the olfactory bulbs to the hypothalamus,
and seems to act as a neuromodulator of olfactory and visual
information related to reproduction (64, 65). This variant also
plays hypophysiotropic functions especially in those teleost
species expressing two GnRH variants: GnRH2 and GnRH3 as
most of Cypriniformes and Salmoniformes (38, 66).

In birds and mammals, GnIH regulates gonadotrophs’
function either directly or indirectly via GnRH neurons (11,

FIGURE 3 | Coexpression of GnIH and GnRH3 in the terminal nerve area of
sea bass. GnRH3 positive immunolabeling (red, A) and GnIH positive
immunolabeling (green, B) in the same cell bodies of the terminal nerve region,
presenting evidence of co-expression of these two neurohormones. Images
(A,B) were captured on a conventional fluorescence photomicroscope. (C)
High resolution confocal image presenting evidence for the co-localization of
GnIH (green) and GnRH3 (red) in the same cell bodies, but packaged in
separate neurosecretory vesicles. In A and B, the nuclei of cells are stained
with DAPI (blue). TNgc: terminal nerve ganglion cells. Scale bars = 100µm in
(A,B), and 50µm in (C).

67–69). Considering that GnRH is the key neuropeptide
in the control of gonadotropin synthesis and secretion, it
could be the candidate through which GnIH acts in fish.
In this conceptual frame, several studies have analyzed the
relationship between both systems, although most of the mare
focused on physiological approaches. Even though it could be
considered that morphological associations may allow us to infer
physiological interactions, there is scarce information on the
relationship between GnIH and GnRH neurons in fishes.

GnIH-GnRH1 Neuroanatomical
Interactions
As it was previously mentioned, GnRH1 is the main
hypophisiotropic variant in most fishes, but neither in tilapia
(27) nor in C. dimerus (70), axo-somatic or fiber-fiber contacts
were observed between GnRH1 and GnIH neurons; although,
in C. dimerus GnIH axons were detected in close proximity
to GnRH1 fibers. Additionally, in sea bass (71) and zebrafish
(35), GnIH terminals contacted GnRH1 cells or GnRH3 in
the preoptic area, respectively. Taking into consideration these
results, it is possible that either there are interspecific differences
in this interaction, or it shows plasticity depending on the sexual
stage, as it was suggested in sea bass (71) and C. dimerus (70).
Another possibility is that GnIH can modulate other neurons,
as those producing kisspeptin, dopamine or neuropeptide Y,
to control gonadotropin secretion. For instance, in zebrafish,
GnIH-immunoreactive fibers were observed interacting with
kisspeptin receptor-1a-expressing neurons in the preoptic area
(35), and a GnIH innervation on Kiss2 cells of the nucleus of
the lateral recess has been reported in sea bass (71), although
in tilapia, GnIH cells do not seem to be connected with either
GnRH1, GnRH3 or kisspeptin neurons (27).

GnIH-GnRH2 Neuroanatomical
Interactions
In Indian major carp (33), sea bass (29), and sole (24) a cluster
of GnIH somas were localized in the midbrain; however, this is
not a common feature of all analyzed species. Only one study
reported the GnRH2 and GnIH relationship and demonstrated
fiber-to-fiber contacts in the nucleus lateralis tuberis and the
midbrain tegmentum, suggesting a possible regulation between
them (70). This GnIH-GnRH2 association could represent the
morphological substrate of a network mediating the transduction
of environmental information to the reproductive axis. This is
further supported by the interactions among GnRH2, GnIH and
melatonin reported in several fish species (24, 29, 46–48, 72, 73).

GnIH-GnRH3 Neuroanatomical
Interactions
Finally, GnRH3 and GnIH neurons were observed in the TNgc
of most fish species [for review see, (20, 24, 25, 29, 30, 53, 62)].
The co-localization of both peptides in the same neurons was
observed in C. dimerus since early developmental stages (51)
and in adults of this species (70), pejerrey (31), and sea bass
(Figures 3A,B). Moreover, a deeper study on co-localization
showed, for the first time, that GnIH and GnRH3 peptides
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FIGURE 4 | Double-labeling immunofluorescence in parasagittal brain sections of 27 days post-hatching C. dimerus larvae using GnIH and GnRH3-GAP antisera.
Microphotographs present GnRH3-GAP-immunoreactive (GnRH3) neurons (red, A) and GnIH-immunoreactive (GnIH) neurons (green, B). In (C), a merge image of
(A,B) is presented. Immunoreactive cell somata are indicated by arrows and some representative fibers appear marked by arrowheads. Co-localization is indicated by
asterisks. Scale bar: 200µm. OB, olfactory bulb; NOR, nucleus olfacto retinalis; Tel, telencephalon; Hyp, hypothalamus; OT, optic tectum; MBT, midbrain tegmentum;
E, eye.

are localized in different neurosecretory vesicles (Figure 3C),
suggesting that both peptides can be independently regulated
and secreted. It is also interesting to notice that in most of the
brain regions analyzed in C. dimerus, some fibers co-expressed
GnRH3 and GnIH; whereas some other fibers only expressed
GnRH3 or GnIH, suggesting that these fibers correspond to
neurons located in other brain areas as the NPPv (for GnIH)
or from the OB, ventral TEL and POA (for GnRH3) (Figure 4).
However, no contacts between GnRH3 fibers and GnIH neurons
were observed (70).

Physiological Interactions Between GnIH
and GnRHs
The physiological action of GnIH on GnRH synthesis and
its modulating effects over GnRH-stimulatory action on the
synthesis and release of gonadotropins or GH are summarized
in Table 1. From these data, GnIH can prevent the GnRH-
stimulatory action on the synthesis and/or release of FSH, LH,
and GH. For example, Moussavi et al. (74, 75) showed that
when GnRH2 or GnRH3 are co-administrated with goldfish
GnIH-III (gGnIH-III), the stimulatory action of GnRH2/GnRH3
on LH secretion was attenuated by goldfish GnIH-III, together
with lhβ or fshβ synthesis, especially during mid and late
recrudescence (74); while gGnIH-III prevented GnRH2/GnRH3
stimulation of gh transcript levels and GH secretion (75).
Moreover, gGnIH-III differentially affected GnRH2 and GnRH3
actions depending on the sexual stage. Similar effects of GnIH
peptides were demonstrated in Amphiprion melanopus (46) and
inAstyanax altiparanae (78). This preventive-GnRH-stimulatory
effect has been proposed to depend on the action of estradiol
or neuroestrogen levels; the abundance of GnIH-R, GnRH and
estrogen receptors, and the inhibition of cAMP pathways or
the hyperpolarization of gonadotropes by activating K+, both
exerted by the activation of GnIH-R. Other possibility is that
GnIH-R and GnRH-R could form heterodimers modifying the
action of their ligands on gonadotrophs [for review see (79)].
Although these statements have been mostly established in

birds and mammals (80, 81), there is evidence that a similar
mechanism could be operating in teleosts (34, 55, 82, 83).

On the other hand, GnIH can stimulate, inhibit, or
even have no effect on the synthesis of GnRH variants
(Table 1). These discrepancies could be due to differences
in sexual stage, route of administration, sampling times and
brain regions analyzed. Also, based on studies performed
in birds and mammals, it has been proposed that GnIH
could indirectly modulate the expression and activity of
brain aromatase regulating estradiol levels locally [for review
see (79)].

Nowadays, further studies appear necessary to clarify GnIH
actions over gonadotropin secretion and/or synthesis in fish.
According to anatomical and physiological results presented in
this section, it must be emphasized that GnIH interaction with
GnRH occurs in fish, and either directly or indirectly GnIH can
stimulate or inhibits hypothalamic-pituitary axis depending on
the reproductive state of individuals.

ONTOGENY OF GnIH SYSTEM

As Sandvik et al. (84) referred, although RFamide peptides are
poorly studied during development, the few reports available in
the field show interesting results indicating that many of these
peptides have different roles in early stages and in adults. The
few studies addressing GnIH ontogeny show that this peptide is
not an exception. To date, there are only four studies analyzing
the GnIH expression pattern during fish development, showing
that this peptide is detected from early developmental stages
(33, 50, 51, 53). In zebrafish gnih and gnih-r transcripts were
detected from 1-day post-fertilization (dpf) (prime-5 stage) or
blastula stage, respectively; however, in this study, no temporal
variations in the expression were evaluated (53). In sea bass, gnih
and gnih-r transcripts were detected from 5 dpf, and although
the authors did not quantify the expression in stages prior to
hatching, two temporal increases in the gnih messengers were
observed: one from 5 days post-hatching (dph) to 25 dph,
when the larva starts exogenous feeding and the gonad is still
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TABLE 1 | Physiological actions of GnIH on GnRH in fish.

In vivo or in vitro experiment Species Effect Animals

physiological status

Authors

Two ip. injections of gGnIH-III (0 or 2 µg/fish) plus
GnRH3 or cGnRH2 (0 or 4 µg/fish).

Carassius auratus Seasonal dependent action. gGnIH-III often
prevented GnRH3/GnRH2-stimulated LH
secretion, or lhβ and fshβ synthesis.

Mixed sex in early, mid,
or late recrudescence.

Moussavi
et al. (74)

Ip. injection of gGnIH-II or gGnIH-III (0 or 100 ng/g
of BW).

Carassius auratus Both gGnIH-II and -III inhibited only
hypothalamic gnrh3 levels

Females in late
vitellogenic stage.

Qi et al.
(54)

Primary pituitary cell culture in the presence of
gGnIH-II or -III (0 or 100 nM) in combination with
GnRH-A (0 or 100 nM).

gGnIH-III prevented GnRH-A-stimulated fshβ

synthesis

Two ip. injections of gGnIH-III (0 or 2 µg/fish) plus
GnRH3 or GnRH2 (0 or 4 µg/fish).

Carassius auratus Seasonal dependent action. gGnIH-III often
prevented GnRH3/GnRH2-stimulated GH
secretion, or on gh synthesis.

Mixed sex in early, mid,
or late recrudescence.

Moussavi
et al. (75)

Primary pituitary cell static culture in the presence
of gGnIH-III (0–100.nM) plus GnRH3 (0 or 10 nM),
or pituitary cell column perfusion experiments
exposed togGnIH-III (0 or 10 nM) and GnRH2 or
GnRH3 (0 or 100.nM).

Seasonal dependent action. gGnIH-III often
attenuated GnRH3/GnRH2-stimulated GH
secretion, or on gh synthesis.

Two ip. injection of grGnIH-I, grGnIH-II, or
grGnIH-III (0 or 100 ng/g of BW).

Epinephelus

coioides

Hypothalamic gnrh1 levels were reduced by all
grGnIH peptides, and only grGnIH-III increased
gnrh3 synthesis.

Females. Wang et al.
(34)

Ip. injections of gGnIH-III (0 or 0.1µg/g of BM) in
combination with GnRH1 (0 or 0.1µg/g of BM).

Amphiprion

melanopus

gGnIH-III decreased gnrh1 brain expression
levels and its secretion 24 h post-injection.
gGnIH-III attenuated GnRH1 stimulatory effect
on gnrh1, gthα, fshβ, and lhβ levels, and on
GnRH1, FSH, and LH secretion.

Immature fish, males,
and females.

Choi et al.
(46)

Icv. injection of sbGnIH-I, or sbGnIH-II (0,1, 2 or 4
µg/fish).

Dicentrarchus labrax sbGnIH-1 decreased gnrh1 brain expression
levels at all doses tested.
sbGnIH-2 decreased brain gnrh2and pituitary
gnrhr-II-1a synthesis at all doses tested.

Males at the beginning
of the reproductive
period.

Paullada-
Salmeron
et al. (76)

Im. injection, one time per month for 5 months, of
sbGnIH-I or sbGnIH-II (0 or 1µg/g of BW).

Dicentrarchus labrax Only sbGnIH-2 administration increased brain
gnrh2.

Adult males treated
during gametogenesis.

Paullada-
Salmeron
et al. (77)

Brain slides (200-300µm thickness) incubated
with 0,0.1,0.5,1,5 nM of zGnIH-III

Danio rerio zGnIH-III reduced gnrh3 expression levels at all
concentration tested, and gnrh2 was increased
by zGnIH-III at 0.1 nM.

Adult males. Spicer
et al. (35)

Im. injection of ssGnIH-II, or ssGnIH-III (0,0.1,
1µg/g of BW).

Solea senegalensis ssGnIH-3 reduced gnrh3 expression levels 4 h
post-injection of 1µg/g of BW.

Sexually maturing
males

Aliaga-
Guerrero
et al. (24)

Pituitary explants and brain slides cultured in the
presence of zGnIH-III (0 or 100 nM) and GnRH2 (0
or 100 nM).

Astyanax altiparanae zGnIH-III decreased GnRH2-stimulatory effect
on fshβ and lhβ levels
zGnIH-III alone, or in the presence of GnRH2,
stimulated gnrh2 expression.

Adult males at
spawning capable
phase.

Branco
et al. (78)

α-gth, α-gonadotropin subunit; BM, body mass; BW, body weight; icv, intracerebroventricular; ip, intraperitoneal; im, intramuscular; gGnIH, goldfish GnIH; grGnIH, orange-spotted

grouper GnIH; sbGnIH, sea bass GnIH; ssGnIH, sole senegalensis GnIH; zGnIH, zebrafish GnIH.

undifferentiated, and the other by 150 dph during the onset of
gonadal differentiation (50). Studies performed in C. dimerus
showed that gnih was first detected at 1 dph, increased from 12
dph and reached a peak at 20 dph, when the development of
gonadal primordia occurred (51). As we previously mentioned,
in different species one or more GnIH cell clusters were observed
apart from that of NPPv. The spatial-temporal expression pattern
of these nuclei could suggest different origins or functions
during development. For example, in the Indian major carp,
GnIH cells were observed in the NPPv and in the olfactory
system (epithelium and bulb) at hatching. This mentioned area
showed no GnIH-ir in adults, suggesting a role of these cells

during development (33). By contrast, in C. dimerus GnIH
neurons in the NOR was detected by 3 dph, while NPPv cells
by 14 dph (51). The cells in the NOR increase in number
from 5 dph, coinciding with the time when larvae start to
feed exogenously, and continue to increase in number during
the development and differentiation of gonadal primordia. In
the same direction, it was observed an increase of NPPv cell
number during the development and differentiation of the
gonadal primordia. Based on these results, it is suggested that
GnIH could be involved in the onset of feeding and gonadal
development or sex differentiation in teleosts. This new concept
is supported by the variations of gnih and gnih-r levels in sea
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bass and C.dimerus during these critical periods of early gonadal
development (50, 51).

On the other hand, during development GnIH fibers innervate
different brain regions (33, 51). Particularly in C. dimerus,
the presence of GnIH fibers was observed reaching the
pituitary from 14 dph to 85 dph, but they clearly diminished
from 37 dph on (51). Considering that GnRH1 fibers were
detected at 30 dph (85), we could speculate a shift in the
neuroendocrine control of pituitary function occurring before
gonadal differentiation. The fact that no GnIH fibers innervating
the pituitary gland were detected in adults of this species (25),
could imply that this neuropeptide would act differently in larvae
and adults.

Biotic and abiotic factors, especially temperature and
photoperiod, are critical features that could irreversibly affect
different biological aspects during development. Even though the
neuroendocrine system integrates environmental information,
little is known about its development and how it is altered by
these factors. For example, low or high incubation temperatures
during early developmental stages determine different sex ratio
of pejerrey and sea bass larvae (86, 87) indicating that the
reproductive axis, at some point, has been altered. To our
knowledge, only one study reported the effect of temperature
and photoperiod on GnIH system during development (50).
In this study, sea bass reared at high temperature, showed
a decrease in the expression of gnih and gnih-r, suggesting
that this neuropeptide could be involved in the reported effect
of temperature on sex differentiation. Moreover, a seasonal
shift in a daily variation of GnIH system related to the
reproductive season was demonstrated, indicating the influence
of the photoperiod on this system (50). In summary, GnIH
in fish development is an almost unexplored area, so more
studies are needed in order to further elucidate its role at this
particular stage.

EXPANDING GnIH FUNCTIONS BEYOND
REPRODUCTION

Since the discovery of GnIH, most studies have analyzed
the effect of this peptide on the reproductive axis, leaving
aside their possible role in the regulation of other functions.
In this sense, neuroanatomical localization studies showed
in all fish species analyzed that GnIH fibers are broadly
distributed along the nervous system, not only in the preoptic-
hypothalamic area but also in the retina-optic tract andmidbrain,
suggesting a potential role of GnIH as neuromodulator or
neurotransmitter. In sea bass, GnIH seems to participate in
the regulation of fish behavior, as their administration affected
the diurnal/nocturnal ratio of locomotors activity during the
reproductive cycle (48, 77). It is important to highlight that
in this species a cluster of GnIH cells was observed in the
midbrain innervating sensory-motor areas (29). On the other
hand, there is increasing evidence regarding the effect of GnIH
on the synthesis and release of GH (25, 26, 57, 75, 76, 88).
Usually, after GnIH administration different responses on theGH
synthesis and release were observed depending on the species or

the experimental approach. For example, in vitro administration
of GnIH stimulated GH release in sockeye salmon and C.
dimerus (25, 26) while in grass puffer, GnIH can increase the
abundance of gh messengers (88). However, icv administration
of GnIH decreased gh in sea bass (76), whereas intraperitoneal
administration of GnIH did not affect GH release in tilapia (57).
However, also concerning to GH regulation, a clear dependence
on the reproductive status and on the experimental approach
was observed in goldfish (75). In conclusion, these results
indicate that GnIH exerts complex effects on basal and GnRH-
stimulated somatotrope function in a seasonal-reproductive
manner, and thus, this peptide could be involved in the regulation
of somatic growth and/or in the interaction between growth
and reproduction.

Finally, the ventral telencephalon and the NPPv also
exhibit neuropeptide Y (NPY) producing cells in several fish
species (89–91). NPY has been implicated in the modulation
of gonadotropin release, but also in the regulation of
feeding and growth (38, 92). Since GnIH cells are observed
in these regions, it is suggested that this neuropeptide
could establish a crosstalk among growth, feeding, and
reproductive axes. Whether GnIH and NPY are interacting to
modulate reproduction, feeding and growth in fish remains to
be elucidated.

In conclusion, although the effects of GnIH on reproduction
are very clear in birds and mammals, there are still some
inconsistencies in fishes that should be addressed soon.
Because of our attempt to generalize GnIH function, it
is possible that different modes of action or other roles
beyond reproduction are leaving aside in fishes. Moreover, as
reproduction is a complex event that involves the integration
of internal and external cues, it is possible that GnIH acts
as a link among them. Interestingly, recent mutation studies
for reproductive neuroendocrine factors have shown that,
contrary to mammals, kisspeptin, and GnRH null fish can
reproduce normally, suggesting a compensatory multifactorial
neuroendocrine control of reproduction (93–97). Notably, they
found an up-regulation of different neuropeptides involved
in the control of reproduction in zebrafish including GnIH
(97). According Marvel et al. (97), the up-regulation of GnIH
messengers could be related to the action of GnIH as a stimulator
of pituitary gonadotropins, as it was already demonstrated in
some teleost fish species (25, 74). Further studies are still required
in order to clarify the role of GnIH in teleosts including its
involvement in development, a key stage that strongly impacts
on adult biology.
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