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ABSTRACT: During the past decades, intensive research has been pursued on the development of kinetic models to predict
process behavior in ethanol production from lignocellulose. These models comprise a large number of parameters which have to
be tuned with appropriate experimental data. Therefore, the parameter estimation problem plays an essential role. This work
addresses the parameter estimation problem in models representing dilute acid hydrolysis, detoxification, and cofermentation
operations in the biochemical production of ethanol from lignocellulosic biomass. The models are represented by sets of
differential-algebraic equations (DAEs). Unlike previous approaches, these models account for the main process variables that
affect the entire process, specially the final production of bioethanol. These detailed kinetic models, systematically tuned with
experimental data, can be used in future studies within a model-based framework that allows performing realistic simulation and
optimization aimed at bioethanol process design. A sensitivity analysis has been performed in order to identify the most sensitive
parameters. The parameter estimation problem is solved with a simultaneous optimization approach in which the system of
dynamic equations is converted into a set of algebraic ones through orthogonal collocation on finite elements. Thus, estimating
the model parameters entails optimizing a weighted least squares objective function subject to the discretized algebraic
constraints, resulting in a large-scale nonlinear programming problem (NLP). A good agreement with available experimental data
has been obtained with estimated kinetic parameters in each model.

1. INTRODUCTION
Lignocellulosic biomass in nature is by far the most abundant
and low-cost feedstock for the production of the so-called
second generation biofuels. Furthermore, these biofuels have
the potential to replace first generation ones, thus avoiding the
controversies resulting from the use of food crops for transport
fuel production.
Lignocellulosic materials, such as agricultural and forest

residues, or dedicated energy crops, contain a heterogeneous
mixture of biopolymers from plant cell walls: cellulose, hemi-
cellulose, and lignin. The remaining small fraction comprises
extractives, acids, salts, and minerals. The carbohydrate
polymers, i.e., cellulose and hemicelluloses, are a potential
source of fermentable sugars (mainly glucose and xylose), but
they are within an intricate structure that is recalcitrant to
deconstruction.
Lignocellulosic ethanol is one of the major second generation

biofuels, and a considerable amount of research is being done in
order to develop appropriate technologies for achieving large
conversions through biochemical processes.1−4 One of the
major barriers to the economical production of bioethanol is
the aforementioned recalcitrance of lignocellulosic raw materials.
Their direct bioconversion to ethanol requires a pretreatment
stage intended to remove lignin and hydrolyze hemicelluloses.
This operation makes cellulose macromolecules more accessible
for enzymes, allowing the production of fermentable sugars
(glucose) in a further enzymatic hydrolysis stage. In the
downstream microbial fermentation, the sugars extracted from
celluloses and hemicelluloses are converted to ethanol.
Although different pretreatment techniques have been

proposed,5−7 dilute acid hydrolysis is preferred for industrial
applications due to its simplicity and high sugar yield from

hemicelluloses.8,9 Due to the low acid concentrations involved,
their recovery may not be required. However, this process presents
some disadvantages such as the formation of large amounts of
toxic compounds, such as furfural and 5-hydroxymethylfurfural
(HMF), generated by degradation of sugars, which can be
inhibitory to microorganisms in the downstream fermentation
process, with consequent lower ethanol productivities.10,11 Therefore,
an additional operation known as detoxification or conditioning is
required after this pretreatment where the toxic materials are
converted into less inhibitory components.
A number of kinetic models for the hydrolysis, detoxification,

and fermentation operations involved in the production of
bioethanol have been reported in the literature.12−14 However,
most of them do not include process variables such as operating
temperatures and concentrations of inhibitory compounds that
would allow evaluating their influence through simulation and
optimization studies. In this way, the developed model can be used
in future studies within an optimization framework to determine,
for example, whether a detoxification step is required for
enhancing yields in the cofermentation process (without the
inhibitory compounds removed in the overliming process).
In this work we focus on the parameter estimation of kinetic

models considering the main process variables for the unit
operations of hydrolysis, detoxification, and fermentation in a
bioethanol production plant. More specifically, we aim at identi-
fying realistic dynamic models for the dilute acid hydrolysis, the
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detoxification by addition of Ca(OH)2 (overliming), and the
simultaneous fermentation of mixtures of glucose and xylose
(cofermentation).
We have extended the model proposed by Lavarack et al.12

for the dilute acid hydrolysis with the inclusion of kinetic
equations for acetic acid and HMF generation. The model also
includes the production of xylose, glucose, furfural, and soluble
lignin, considering the influence of temperature, acid concen-
tration, and solid to liquid ratio. Regarding the overliming process,
sugars and furans generate transient complexes with calcium ions
which are degraded to different products. We propose a model
based on that of Purwadi et al.13 in which we have included
reaction rates based on the Arrhenius equation to account for the
influence of the temperature. Furthermore, we include a new
expression for determining the initial concentration of the calcium
cation related to the pH level. In the cofermentation operation we
have extended the unstructured model developed by Leksawasdi
et al.14 by including new factors that account for furfural toxicity.
We propose a first-order kinetics with respect to furfural and
biomass concentration for representing the conversion of furfural
by a fermentative microorganism.
We formulate the dynamic parameter estimation problem for

the above-mentioned models within a simultaneous framework,
in which the differential algebraic equation (DAE) system is
discretized using orthogonal collocation on finite elements.15−17

Thus, the DAE constrained optimization problems are trans-
formed into large-scale nonlinear programming (NLP) problems
using a weighted least squares objective function. The resulting
NLP formulation is then solved with an interior point (IP)
program IPOPT18 that uses full space sequential quadratic
programming (SQP) techniques within GAMS.19

Prior to parameter estimation, we carry out local sensitivity
analysis on each system to determine the set of most influential
parameters.20

In order to accomplish parameter estimation, the exper-
imental data from Cassales et al.,21 Purwadi et al.,13 and
Gutierrez-Padilla and Karim22 are used for hydrolysis, over-
liming, and fermentation processes, respectively. We determine
the main unknown kinetic parameters such as activation
energies, pre-exponential factors in the dilute acid hydrolysis
and detoxification operations, and the maximum overall specific
growth rate and inhibition factors for the fermentation process.
This paper is organizated as follows. Section 2 defines a

general estimation problem in DAE models and describes the
methodology used for assessing the most influential parameters
and the approach for solving the resulting DAE optimization
problem. Section 3 describes the proposed models for dilute
acid hydrolysis, detoxification, and cofermentation operations.
Section 4 presents and discusses the results from both the
sensitivity analysis and the parameter estimation from experimental
data for each unit operation. Finally, the conclusions are
summarized in section 5.

2. PARAMETER ESTIMATION PROBLEM
A parameter estimation problem involves proposing a mathematical
model of the process under study which contains unknown
parameters that need to be determined by fitting the predicted
model outputs to a set of experimental data.
In the field of chemical and biochemical engineering, a wide

range of processes are represented by models consisting of
systems of differential and algebraic equations (DAEs) with the
first ones describing the dynamic behavior of the process. The
associated parameter estimation problem is formulated as a

DAE constrained optimization problem with the following
general form:
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where zêjm and zejm are the measured variables and the
corresponding calculated values, respectively, for differential
state variable j at point data m in experiment e, W is a diagonal
weighting or scaling matrix, f is the right-hand-side vector in the
differential equations, g is the algebraic constraints vector, t is
the time, y is the algebraic state variables, p is the time-
independent parameter vector which is to be estimated, and z0

is the initial conditions vector for state variables z. It is
considered that a total number of NE experiments are carried
out under different conditions, and that a number of Je state
variables are measured. For each measurement j in every
experiment e, a number of Mje data points are collected along
the experiment duration.
In this formulation, the objective function ψ to be minimized

is defined as the sum of the squared residues between the
observed values and those predicted by the model.

2.1. Methodology. 2.1.1. Sensitivity Analysis. In the field
of chemical and biochemical engineering, many of the
associated parameter estimation problems have a large number
of parameters that must be estimated. Also, the number of
available experimental measurements is generally limited.
Therefore, attempting to identify a large number of parameters
can result in significant errors on parameter estimates.
To assess the influence of the parameters on the model

behavior, we perform sensitivity analysis. This technique is used
to investigate variations in the output of the model resulting
from variations in the parameters allowing the identification of
those ones that have the largest impact on model variables.
Sensitivity functions Sz,pk and Ry,pk represent the changes in
model state differential variables z and algebraic variables y,
respectively, with respect to slight variations in the model
parameter pk defined by the following derivatives.
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By differentiating the DAE system (eqs 1a−1f) with respect
to the decisions p and changing the order of differentiation, the
following sensitivity dynamic equations are obtained.23
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The solution of eqs 3 requires the state variables profiles
resulting from the integration of the dynamic model (eqs 1a−1f).
Therefore, in order to compute the sensitivities Spk and Rpk, eqs 3
have to be simultaneously solved with the dynamic system
(eqs 1a−1f). The system is said to be sensitive to a certain
parameter if a change in the parameter’s value significantly affects
the predictive quality of the model.20 Thus, model parameters
resulting in large values for the sensitivities have to be accurately
estimated, while those ones whose sensitivity values are small are
considered to be noninfluential parameters.24

2.1.2. Solution Strategy for Parameter Estimation
Problem. A number of approaches, ranging from sequential
methods to multiple shooting, to simultaneous collocation
approaches,25 have been used to solve the parameter estimation
problem of eqs 1a−1f. Within the last approach, by using the
method of orthogonal collocation over finite elements, the
profiles of the state variables are fully discretized with respect to
time, converting the dynamic system into a set of algebraic
equations which are included directly in the formulation. As a
result, the original DAE constrained optimization problem is
transformed into a large-scale nonlinear programming (NLP)
model.
In orthogonal collocation on finite elements, the time

domain is divided into a number of elements NF and the state
profiles in each finite element f are approximated by piecewise
Lagrange polynomials of order NC + 1:
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where NC is the number of collocation points, f ∈ {1, ..., NF} is
a finite time element, q ∈ {1, ..., NC} is a collocation point,
zf
NC+1(t) is the (NC + 1)th order Lagrange polynomial at
element finite f, and φq is a polynomial of degree NC. An
important feature of Lagrange polynomials is that, at time point
tfq, the coefficient of the polynomial zfq is the value of the state
profile at that point. Then, these coefficients are treated as
decision variables in the exact solution for the system at
collocation points within each time element.26 Note that the
time variable, t, is normalized, τ, over each finite element such
that τ ∈ [0, 1].
Thus, by using eqs 4 and 5, the DAEs are discretized forming

residual equations at the time collocation points and forcing
them to satisfy the model exactly. Furthermore, in order to
ensure that the state variable profiles are continuous when
crossing the time element boundaries, continuity constraints
are imposed at the boundary collocation points.
In this way, the problem of eqs 1a−1f can be reformulated as

an NLP problem as follows:
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where φ̇q = dφ/dτ, Δhf is the length of finite element f, and τq is
the normalized root of the Legendre polynomial of degree NC.
Note that Δhf = hf+1 − hf, with hf being the starting time of
finite element f, and tfq = hf + Δhfτq.
In summary, within the simultaneous approach, the solution

of the DAE system is directly coupled with the optimization
problem and, thus, the DAE system is solved only once at the
optimum point, avoiding intermediate solution steps that may
not exist or may require excessive computational effort.27

3. UNIT OPERATION DESCRIPTIONS AND
MATHEMATICAL MODELING
3.1. Dilute Acid Hydrolysis. Dilute acid hydrolysis has

been used mainly as pretreatment for solubilizing the
hemicellulosic fraction of lignocelluloses. Typically, it requires
high temperatures (110−230 °C)5−7,21 and pressures (∼10 atm)7
with acid concentrations below 5% w/w.11 Sulfuric acid is the
most widely used catalyst, although other acids, such as nitric and
hydrochloric acids, have been also reported.28,29 This operation
makes the cellulose fraction more amenable for a subsequent
enzymatic conversion, leaving the lignin fraction almost unaltered.
Reported studies are based mainly on agricultural and

hardwood residues where xylan comprises the most relevant
hemicelluloses.30 In this work, xylan is considered as a
heteropolymer containing xylose, arabinose, glucuronic acid,
and acetyl groups substituting some hydroxyl groups of sugars.
Several kinetic approaches for describing the reaction rates of

acid catalyzed hemicellulose hydrolysis have been proposed in
the literature.12,28,31−33 Most of them follow the model
proposed by Saeman,34 originally derived for cellulose
hydrolysis, which assumes pseudohomogeneous first-order
irreversible reactions in series.
In this work, we propose a model based on that of Lavarack

et al.12 for developing the parameter estimation problem of the
hydrolysis step, catalyzed by dilute mineral acids. Several kinetic
models of the overall rate of product formation for ligno-
cellulosic biomass (e.g., sugarcane bagasse) have been
proposed. In almost all schemes, the reaction rate has been
assumed to be first order with respect to the reactants in each
step. Furthermore, the kinetic rate constant for reaction step
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i, ki, varies with temperature following a modified Arrhenius
relationship, where a power law dependence on the acid
concentration is included.
Figure 1 shows the hydrolysis reactions considered in the

present work. The formation of xylose (Xy), arabinose (Ara),

glucose (G), and soluble lignin (SL) products follow the
simplest scheme in Lavarack et al.12 Under the aforementioned
conditions used in the dilute acid hydrolysis operation, no
glucose is considered to be released from the cellulose fraction
of the lignocellulosic material. Nevertheless, small amounts of
glucose are found in the hydrolysate which are assumed to be
obtained from the glucuronic acid (GA) bound as lateral chains
of the native xylan (Xn). As is well established, xylose and
arabinose are further degraded to furfural (F) under acidic
conditions. However, it is proposed that furfural is obtained
only by the hydrolysis of pentosans, i.e., xylan (Xn) and
arabinan (An) compounds, because the degradation of xylose is
much slower than the reaction producing furfural.
In this paper, we have extended the model by Lavarack

et al.12 by including the production of acetic acid (AcH) released
from the acetyl groups (AcG) attached to the xylan backbone.
Furthermore, the HMF production from glucose degradation is
added in the third reaction which, in turn, can be converted into
decomposition products in a subsequent reaction step.
By taking the reaction mechanisms into account (Figure 1),

and considering a first-order dependency of the reaction rates
with concentration, the individual mass balances for the reactive
species in the system are described by eqs 7 − 19.
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where ϕ represents the solid material to liquid ratio used in the
hydrolysis operation (kg kg−1) and ρ is the density of the hydrolysate
(kg L−1). Cj represents the concentration of component j expressed
in grams per kilogram for the species in the solid biomass (j = Xn,
An, AcG, GA, Ln) and in grams per liter for the soluble products in
the hydrolysate (j = Xy, Ara, G, F, HMF, AcH, SL).
Equation 19 represents the modified Arrhenius relationship

for determining the reaction rate constant ki of reaction step i,
where ki

0 is the pre-exponential or frequency factor (min−1), CAc is
the concentration of acid (wt %), ni is the order of reaction with
respect to CAc, Ei is the activation energy (J/mol), R is the universal
gas constant (8.3144 J/mol K), and T is the temperature (K).
In summary, the parameter estimation problem in dilute acid hydro-

lysis leads to a DAE system with 12 differential equations (eqs 7−18)
and 12 algebraic equations, one for each reaction step i, eq 19.
From this model, the set of kinetic parameters that should be

estimated correspond to the frequency factors, ki
0, exponents ni, and

activation energies Ei, for every reaction step i. The objective
function eq 1a, defined as the sum of weighted squared errors
between the observed species concentrations and the predicted
values, is minimized, subject to model eqs 7−19 and the bound
constraints on concentrations and parameters.

3.2. Detoxification. In the bioethanol process, a key
problem associated with the dilute acid pretreatment is the
unavoidable formation of byproducts that are harmful for the
ensuing fermentation operation. The generation and concen-
tration of microbial inhibitors are strongly influenced by temper-
ature, reaction time, and acid concentration in the hydrolysis step.35

Different types of inhibitory compounds are formed, which mainly
correspond to three groups, i.e., furan derivatives (e.g., furfural and
HMF), carboxylic acids (e.g., acetic, formic, and levulinic acids), and
phenolic compounds.11,13,36

Accordingly, the efficiency of the subsequent ethanol
fermentation is considerably decreased. Therefore, prior to
this operation, a step for removing the toxicity of hydrolysates,
the so-called detoxification step, has to be carried out. Several
detoxification methods have been applied in the past, such as
overliming, anion exchange, evaporation, and enzyme or
microorganism treatment.37 For a long time the calcium
hydroxide overliming process has been considered the best one
for dilute sulfuric acid pretreated hydrolysates.13,38 This strategy
is carried out by adding Ca(OH)2 to the hydrolysate to raise
the solution pH to 10−12, and maintaining this condition for a
time period which ranges from 15 min to several days. Finally,
the pH is adjusted to 5−7.13,36,39 Nonetheless, this method
presents drawbacks such as sugar degradation and gypsum
(CaSO4) precipitation when H2SO4 is used in pretreatment.
Despite the wide application of this detoxification technol-

ogy, there is only one work (Purwadi et al.13), to our

Figure 1. Reaction mechanisms for dilute acid hydrolysis.
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knowledge, that presents a kinetic model for overliming. In our
work, we extend this model to take into account process
variables, such as pH and temperature.
As previously mentioned, furfural and HMF are formed by

dehydration of sugars, pentoses and hexoses, respectively. On
the basis of their relatively high concentration in lignocellulosic
hydrolysates, several researchers13,40,41 remarked that these
furans are the dominant inhibitors to various fermentative
microorganisms. Thus, the model includes not only these inhibitor
degradations, but also sugar degradation. Figure 2 depicts the

reaction mechanisms proposed. The process is described through
two reactions, with the first one being reversible and exothermic.
Here, each compound A (i.e., furfural, HMF, and sugars) reacts
with cation Ca2+ denoted by Z, forming complex ions {ZA} which
are, afterward, either converted to products P by the second
reaction or to original species through the reverse reaction. Also, the
amount of cation Ca2+ is limited by the quantity of anion OH−

which determines the pH level.
A simplified dynamic model of this operation is given by
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where Cj represents the concentration of each reactant (j = F,
HMF, S), CZ is ion Ca2+ concentration, CZj is the concentration
of transient complexes formed between each component j and
calcium ions, and CPj is the product concentration of substance
j, all expressed in grams per liter.
In this work, the reaction rate constants for every reaction

step i, kij, in the kinetic model are assumed to follow an
Arrhenius relationship described by an activation energy and a
pre-exponential factor (eq 24).
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Moreover, to obtain the initial quantity of cation Z, CZ
0,

necessary for overliming, the following constraint is included.

= +− −C k c10z
c

Z
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2
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where kz (g L
−1), c1, and c2 (g L

−1) are kinetic parameters. In eq
25 it can be seen that the initial concentration of Ca(OH)2 is

related to the pH level. Finally, the temperature dependence of
the kinetic parameter kz is modeled using the Arrhenius
relationship in eq 26.
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where kz
0 is the pre-exponential factor (g L−1).

In summary, the DAE constrained optimization model for
estimating kinetic parameters in the detoxification by over-
liming involves minimizing the sum of weighted squared errors
(eq 1a) subject to 10 differential equations (eqs 20−23), 10
algebraic equations corresponding to the kinetic reaction
constant for each reaction step (eq 24), and the expression
defining the initial concentration for the cation (eq 25).
Therefore, kinetic parameters in this process are the

frequency factors, kij
0 and kz

0, the activation energies, Ei and
Ez, and the parameters c1 and c2 in eq 25.

3.3. Cofermentation of Pentoses and Hexoses. The
production of ethanol via the biochemical pathway involves the
conversion of lignocellulosic feedstocks through saccharification
and fermentation. The saccharification step involves the enzymatic
hydrolysis of cellulose to glucose. Prior to this step, the afore-
mentioned dilute acid pretreatment is necessary to make
cellulose amenable to hydrolysis by cellulases. In order to be
economically competitive, the resulting xylose-rich hydrolysate
from the pretreatment step can be combined with the glucose
produced from cellulose hydrolysis and both sugars can be
simultaneously fermented to ethanol.
Saccharomyces cerevisiae and Zymomonas mobilis, the most

frequently used microorganisms for bioethanol production, are
not, however, able to ferment pentoses. Z. mobilis is an
ethanologenic bacterium, generally considered as an econom-
ical high-performance biocatalyst for ethanol production at high
rates compared to yeast.42 Genetic engineering techniques have
been applied for the synthesis of different recombinant strains
of Z. mobilis capable of metabolizing both pentose and hexose
sugars with high ethanol yields.43 However, both sugar metabo-
lization and ethanol production in these organisms can be
inhibited by toxic compounds generated during the acid
hydrolysis of lignocellulose.39,44 Moreover, previous studies
have shown that inhibitors can be converted in situ by
fermenting organisms to less inhibitory compounds resulting in
a long lag phase and a decrease in the potential production of
ethanol. This behavior leads to significant changes over time in
cell, substrate, and ethanol concentrations.
Although various unstructured kinetic models for cofermen-

tation have been presented in the literature,14,45,46 to our
knowledge no previous attempts for including a description of
the transformation of xenobiotic compounds, such as furfural,
or their inhibitory effect on microbial growth kinetics have been
addressed.
For this reason, one of the goals of this work is to propose a

kinetic model for the fermentation of mixtures of glucose and
xylose by Z. mobilis including the kinetics of furfural conversion,
as well as its inhibiting impact on growth kinetics. We have
extended the kinetic model proposed by Leksawasdi et al.,14

which considers the simultaneous fermentation of xylose and
glucose to ethanol by recombinant Z. mobilis strain ZM4-
(pZB5). The unstructured mathematical model presented by
those researchers includes substrate inhibition and product
inhibition, as well as substrate limitation effects.

Figure 2. Reaction mechanisms for detoxification by overliming.
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We have introduced a new term, which takes into account
the inhibitory effect of furfural, not only on growth rate, but
also on substrate consumption and product formation rates. In
addition, in order to describe the conversion of furfural by the
microorganism, a second-order kinetic has been adopted.
To formulate the double substrate model, Leksawasdi et al.14

proposed that microbial growth on each sugar is represented by
the specific growth rates of recombinant Z. mobilis on glucose
and xylose as sole carbon sources. They assumed Monod type
kinetics for both substrate and product inhibition. Also, as
growth occurs on both sugars, they introduced weighting
factors for glucose and xylose uptake, forcing the sum of these
factors to be unity. By adding the contribution from each sugar,
differential equations describing the time evolution of biomass
formation, consumption of both substrates, and ethanol
production were developed.
We propose the extended mathematical dynamic model

describing the cofermentation of xylose and glucose, as follows:
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Figure 3. Maximum or minimum numerical absolute values of sensitivity profiles for the dilute acid hydrolysis model.
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where α is the weighting factor for glucose consumption, rx,G
and rx,Xy are the rates of biomass production, and rEt,G and rEt,Xy
are the ethanol production rates from glucose and xylose,
respectively.
In the above equations, CXy (g L−1) represents the xylose

concentration, CG (g L−1) is the glucose concentration, CEt (g L
−1)

is the ethanol concentration, Cx (g L−1) is the cell mass
concentration, and CF (g L−1) is the furfural concentration.
Parameters Ks,G and Ks,Xy are the saturation constants, while μmax,G
and μmax,Xy are the maximum specific growth rates of the
microorganism in glucose and xylose fermentations, respectively.
qs,max,G and qs,max,Xy are maximum specific uptake rates, while qp,max,G
and qp,max,Xy are ethanol production rates in glucose and xylose
fermentations, respectively. Ki,G and Ki,Xy account for the substrate
inhibition in glucose and xylose fermentation, respectively. Pm,G and
Pm,Xy are the maximum concentrations of ethanol above which cells
do not produce ethanol, while Pi,G and Pi,Xy are the threshold
ethanol concentrations from glucose and xylose fermentations. We
introduced parameters CF,crit, nG, and nXy to account for the fact that
the presence of furfural in the fermentation media produces an
inhibitory effect on cell growth and ethanol production. CF,crit

(g L−1) denotes the critical concentration of furfural causing the
complete inhibition of Z. mobilis growth, while nG and nXy are
unitless inhibition factors for glucose and xylose, respectively. The
value of the parameter CF,crit is 2.375 g L−1, which has been
determined from earlier works published in the literature.11,22,44

It should be noted that, in ethanol production from two
substrates, both biomass and ethanol production rates in eqs 27
and 32 are expressed through the weighted sum of the
corresponding production rates on sole substrates, glucose and

xylose, respectively. Furthermore, the original set with a large
number of estimated parameters by Leksawasdi et al.14 is
significantly reduced in our study.
We have considered furfural consumption by the fermenting

microorganism as a second-order rate expression that depends

Figure 4. Maximum or minimum numerical absolute values of sensitivity profiles for state variables in dilute acid hydrolysis model (low numerical
values).

Table 1. Working Conditions for Dilute Acid Hydrolysis21

expt temp (°C) H2SO4 (wt %)

1 135 1.5
2 118 1.7
3 153 1.7
4 110 2.2
5 135 2.2
6 160 2.2
7 118 2.7
8 153 2.7
9 135 3.0

Table 2. Parameter Values Determined by Fitting the
Hydrolysis Model

parameter optimal value parameter optimal value

k1
0 4.091 × 109 E5 45.670
n1 1.391 k10

0 1.025 × 103

E1 76.361 n10 0.100
k3
0 8.454 × 104 E10 15.240
n3 0.984 k12

0 1.857 × 1017

E3 35.092 n12 0.095
k5
0 1.860 × 106 E12 144.055
n5 0.616
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on the concentrations of furfural and active biomass. This
expression better represents experimental data from the
literature.
In summary, the problem of estimating kinetic parameters in

cofermentation consists of minimizing the weighted least

squared objective function, ψ (eq 1a) subject to five differential
equations, eqs 27, 30−32, and 35, and bound constraints on
concentration values and parameters. Here, model parameters
correspond to maximum specific growth rates, maximum
specific uptake rates, inhibition constants, maximum concentration

Figure 5. Concentration profiles for xylose, glucose, arabinose, furfural, HMF, and soluble lignin in dilute acid hydrolysis carried out at different
conditions: (experiment 1) 408 K, 1.5% H2SO4; (experiment 2) 391 K, 1.7% H2SO4; (experiment 3) 426 K, 1.7% H2SO4; (experiment 4) 383 K,
2.2% H2SO4; (experiment 5) 408 K, 2.2%; (experiment 6) 433 K, 2.2% H2SO4; (experiment 7) 391 K, 2.7% H2SO4; (experiment 8) 426 K, 2.7%
H2SO4; (experiment 9) 408 K, 3.0% H2SO4. The symbols are experimental data points, and continuous lines represent model predictions.

Table 3. Average Deviations between Measured and Predicted Values for Main Components in the Hydrolysis Model

average deviation

xylose arabinose glucose furfural HMF AcH SL

−0.0259 0.0449 0.0614 −0.0189 −0.0467 0.0815 0.0288
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of product, threshold ethanol concentration, and inhibition
factors for glucose and xylose fermentations.

4. NUMERICAL RESULTS AND DISCUSSION

As a first step, we perform sensitivity analysis on the parameters
in each process operation described in section 3 to identify
those that have to be estimated. Parameter sensitivity
calculations have been developed with Matlab 7.6.0 (The
MathWorks, Inc.). Hereafter, parameter estimation with a
reduced number of parameters for dilute acid hydrolysis,
detoxification, and cofermentation models is carried out, using
experimental data from the literature. All models have been
implemented in the GAMS modeling environment,19 and they
have been solved using full space SQP techniques within an
interior point algorithm with the IPOPT solver.18 In order to
test the quality of the proposed models, graphical comparison
of the measured values with the predicted outputs will be
included.
4.1. Acid Hydrolysis Model Fit. The state vector, z, is

composed of concentrations Cj and the parameter vector, p, is
made up of ki

0, ni, and Ei, for 12 reaction steps presented in
Figure 1, resulting in 36 total parameters. Given the large
number of parameters to be identified, a sensitivity study from
model variables toward these parameters is performed to
reduce the number of parameters, allowing their identification
with available experimental data. We evaluate sensitivity
functions Sz,pk for a given parameter set showing the sensitivity
of each output Cj respect to small variations on the above-
mentioned parameters. The resulting trajectories of the
sensitivity functions can be plotted for each model output

with respect to each parameter variation. For the sake of clarity,
instead of presenting each sensitivity trajectory, Figure 3 shows
the maximum and minimum values of each sensitivity function,
in absolute values. This figure allows detecting the parameters
which are the most influential ones on each model state
variable. The maximum values are obtained for parameters k1

0,
n1, E1, k3

0, n3, E3, k5
0, n5, E5, k10

0 , n10, E10, k12
0 , n12, and E12, which

can be seen from Figure 3 except for k10
0 , n10, and E10. In the

Appendix, Table 8 shows the remaining model parameters and
their values. Also, Figure 4 is included in order to show the
modulus of the maximum or minimum values of the sensitivity
functions of the state variables whose order of magnitude is
much lower than those shown in Figure 3. In this way, the
number of parameters has been reduced to 15, considering
those for which the absolute value of the maximum sensitivity
function is greater than 1.0.
Parameter estimation in the dilute acid hydrolysis model has

been performed based on experimental data from Cassales et al.21

These authors carried out several assays aiming at obtaining the
optimal conditions for the dilute acid hydrolysis of soybean hull to
achieve maximal sugar yields (xylose, arabinose, and glucose) while
minimizing the liberation of microbial inhibitory compounds. A
total number of nine experiments (NE = 9) under different
temperatures and sulfuric acid concentrations were performed over
60 min reaction time, taking samples in time intervals of 10 min.
The values of temperatures and acid concentrations employed in
each experiment are given in Table 1. Moreover, the solid biomass
to liquid ratio, ϕ, is fixed at 0.10 g g−1 in all the experiments.
The parameter estimation problem for the dilute acid

hydrolysis has 108 differential equations for the nine experiments

Figure 6. Maximum or minimum numerical absolute values of sensitivity profiles for CS, CZS, CF, CPS, and CZ in the detoxification model.
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and six points for each state variable per experiment (Mje = 6).
The initial conditions for each experiment e, z0, are the mass
compositions of each component in the soybean hull on a dry
basis.21

The DAE constrained optimization problem, described in
section 3.1, is transformed into an NLP one by considering a
time discretization with five finite elements and using fourth-
order Lagrange polynomials. The resulting NLP formulation
comprises 2584 equations and 2599 variables which consist of
15 parameters and 2584 collocation coefficients.
The parameters obtained from fitting the experimental data

to the model outcomes are presented in Table 2. Figure 5
shows the xylose, glucose, arabinose, acetic acid, furfural, HMF,
and soluble lignin profiles compared to the measured
concentrations of these products during the hydrolysis process.
Moreover, the model performance for calibration has been
assessed quantitatively by the average deviations for the main
state variables of the model. The average values of the
deviations between the model predictions and the observed
data for concentrations in the hydrolysis model are summarized
in Table 3. An inspection of Figure 5 and Table 3 reveals a
good agreement between model predictions and measurements
with the highest mean deviation being equal to 8.1%.
4.2. Detoxification Model Fit. In the detoxification model,

the state vector, z, comprises concentrations Cj, CZ, CZj, and
CPj; the parameter vector, p, is composed of kij

0, kz
0, Eij, Ez, c1,

and c2 comprising a total of 22 elements. Based on the analysis
of the sensitivity functions Sz,pk obtained through a sensitivity

study for this operation, the most influential parameters that
have to be estimated are nine, namely E1,S, E2,S, E3,S, E1,HMF, E1,F,

E3,F, Ez, c1, and c2. Figures 6 and 7 show the maximum or
minimum absolute values of the sensitivity trajectories for the
detoxification model. Figure 6 shows the sensitivities for output
variables CS, CZS, CF, CPS, and CZ, which present the larger
variations to the parameters. In Figure 7 the sensitivities for
state variables CHMF, CZHMF, CPHMF, CF, CZF, and CPF are shown
where the aforementioned parameters have a lower influence.
In this work, we have carried out parameter estimation for

detoxification of hydrolysates by overliming. Experimental data
have been obtained from Purwadi et al.13 These authors
performed a two-stage dilute acid hydrolysis of forest residues
using H2SO4 as catalyst. In the first stage the hydrolysis of
hemicelluloses takes place, while in the second one the cellulose
fraction is hydrolyzed. For estimating the parameters of the
detoxification model given in section 3.2, only the first-stage
measurements are used in this work since the reaction
conditions (temperature, pressure, and acid concentration)
correspond to those of the dilute acid hydrolysis pretreatment
in section 3.1.
Purwadi et al.13 have carried out a total of 12 experiments

(NE = 12) by adding calcium hydroxide to the hydrolysates up

Figure 7. Maximum or minimum numerical absolute values of sensitivity profiles for CHMF, CZHMF, CPHMF, CF, CZF, and CPF in the detoxification
model.

Table 4. Parameter Values Determined by Fitting the
Detoxification Model

parameter optimal value parameter optimal value

E1,S 22.414 E1,HMF 33.510
E2,S 66.822 Ez 14.622
E3,S 63.079 c1 0.460
E1,F 16.532 c2 1.000
E3,F 62.501
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to four different pH levels (i.e., 9.0, 10.0, 11.0, and 12.0) at
three temperatures (i.e., 30, 45, and 60 °C). The concentrations
of furfural, HMF, and sugars were monitored every 10 min
during a time horizon of 90 min (Mje = 9).
In this case, the initial concentrations, z0, are the same for all

compounds j in each experiment except for the cation
concentration, which is calculated by eq 25 as a function of
the temperature and pH level.
After discretization of the DAE constrained problem

proposed in section 3.3, the resulting NLP parameter
estimation problem has 11233 algebraic equations and 11242
variables. State profiles are obtained solving the model with 18
equal-sized finite elements and three collocation points within
each element.
Table 4 lists the obtained parameter values for detoxification,

and Table 9 in the Appendix presents the remaining parameter
values. Figure 8 shows a comparison between concentration
profiles (continuous lines) predicted by the detoxification model
and experimental data (symbols). It can be seen that the model is
able to capture the observed behavior in a satisfactory way.
Table 5 shows average values of deviations for concentrations

in the detoxification model.

4.3. Cofermentation Model Fit. Prior to parameter
estimation, a sensitivity analysis on the cofermentation model
is carried out, allowing the identification of the most influential
parameters on the dynamics of this operation. Analyzing the
trajectories of the sensitivity functions of the process α, μmax,G,
μmax,Xy, Ki,G, Pm,G, Pm,Xy, Pi,G, and Pi,Xy have been identified as the
eight most influential parameters for all the state variables.
From this analysis, 10 of the 18 analyzed parameters are not
influential on state variables and they are considered to have
constant known values (see Table 10 in the Appendix).
Figure 9 presents the maximum or minimum numerical

values, in absolute value, for the sensitivity functions in the
operation of cofermentation. In this way, the number of
parameters has been reduced to eight, considering those for
which the absolute value of the maximum sensitivity function is
greater than 1.0.
In parameter estimation for the cofermentation model, we

use experimental data from Gutierrez-Padilla and Karim.22

These authors carried out an experimental study to evaluate the
inhibitory effect of furfural on the recombinant Z. mobilis strain
CP4(pZB5) in the production of bioethanol. Three experi-
ments (NE = 3) with different initial concentrations of furfural

Figure 8. Concentration profiles for sugars, furfural, and HMF in detoxification carried out at different conditions: (experiment 1) 30 °C, pH 9;
(experiment 2) 30 °C, pH 10; (experiment 3) 30 °C, pH 11; (experiment 4) 30 °C, pH 12; (experiment 5) 45 °C, pH 9; (experiment 6) 45 °C, pH
10; (experiment 7) 45 °C, pH 11; (experiment 8) 45 °C, pH 12; (experiment 9) 60 °C; pH 9; (experiment 10) 60 °C, pH 10; (experiment 11)
60 °C, pH 11; (experiment 12) 60 °C, pH 12. The symbols are experimental data points, and continuous lines represent predicted values.

Table 5. Average Deviations between Measured and
Predicted Values for Main Components in the Detoxification
Model

average deviation

sugar HMF furfural

−1.1749 0.0059 −0.0026

Table 6. Parameter Values Determined by Fitting the
Cofermentation Model

parameter optimal value parameter optimal value

α 0.600 Pm,G 6.669
μmax,G 0.010 Pm,Xy 9.469
μmax,Xy 0.017 Pi,G 6.575
Ki,G 1.000 Pi,Xy 9.308
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in the fermentation media were reported. Specifically, two
fermentations by adding furfural 10 h after inoculation between
lag and exponential phases achieving initial furfural concen-
trations of 0.475 and 1.9 g L−1 and control fermentations with
no furfural supply have been also carried out. The
concentrations of biomass (Cx), furfural (CF), glucose (CG),
xylose (CXy), and ethanol (CEt) have been measured at several
time intervals over a 40 h range in each experiment.
In the cofermentation model presented in section 3.3, the

aforementioned concentrations are the state variables (vector z).
Parameter vector p is originally composed of 18 parameters
corresponding to maximum specific rates (growth, uptake, and
production), inhibition constants, and inhibition factors. It
should be noted that only the initial concentration of furfural is

different in each experiment e. Experimental data are fitted
using third-order Lagrange polynomials on five finite elements.
After performing the sensitivity analysis, the aforementioned
eight model parameters were estimated using the three sets of
experimental data simultaneously. For the optimization
procedure, the initial values of the parameters to be estimated
were taken from the literature.14

Estimated parameters are summarized in Table 6. Figures 10−12
depict the observed concentration values for each compound
(points) vs main state variable profiles (solid lines) in every
experiment. Additionally, in order to get a better visualization,
simulation results of biomass growth in each experiment are
presented in Figure 13. It is important to note that the simulated

Figure 9. Maximum or minimum numerical absolute values of sensitivity profiles for the cofermentation model.

Figure 10. Observed data and simulation profiles in the fermentation
carried out without furfural: (experiment 1) 0 g L−1. Experimental data
points for (◆) glucose, (□) xylose, (▲) ethanol, (○) biomass and
(×) furfural concentrations. Continuous lines represent model
predictions.

Figure 11. Observed data and simulation profiles in the fermentation
carried out with 0.475 g of furfural L−1: (experiment 2) 0.475 g L−1.
Experimental data points for (◆) glucose, (□) xylose, (▲) ethanol,
(○) biomass, and (×) furfural concentrations. Continuous lines
represent model predictions.
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profiles and experimental data in Figures 10−13 are presented in
the 30 h range because this is the time period where furfural is
present in the fermentation media. As can be seen, the deviations
between model predictions and experimental data occur mainly in
the furfural concentration profile. Also, the average values of
deviation for concentrations of main components in the
cofermentation model are listed in Table 7.
It can be noted that the best fits are obtained for cofermentation

without furfural, but there is still good agreement for increasing
furfural concentrations. To our knowledge, this is the first model
proposed for cofermentation in the presence of furfural. After
appropriate scaling, the model can be used for process optimization
and determination of the need of a detoxification step in the
biochemical production of ethanol.

5. CONCLUSIONS
In this study, we propose new model formulations and kinetic
parameter estimation in dilute acid hydrolysis, detoxification,
and cofermentation, which are main process operations in the
biochemical pathway for ethanol production.
Model parameter estimation is accomplished by minimizing a

weighted least squares objective function subject to process
constraints represented by a DAE system. These models are
solved by using a simultaneous solution approach in which the
DAEs are fully discretized in time. This procedure gives rise to
large-size NLP optimization problems which are solved with an
interior point (IP) method with sequential quadratic
programming (SQP) strategies within the program IPOPT.
Prior to performing parameter estimation, the number of

kinetic parameters has been reduced through a sensitivity
analysis, which allows the identification of the most influential
ones in each process model. The selection of the model

Table 7. Average Deviations between Measured and
Predicted Values and for Main Components in the
Cofermentation Model

average deviation

biomass glucose xylose ethanol furfural

0.0026 −0.2268 −0.2229 0.1631 −0.1358

Table 9. Model Parameters for the Detoxification Model

parameter value parameter value

k1,S
0 3352.280 k3,F

0 2 × 109

E1,S estimated E3,F estimated
k2,S
0 2 × 109 k1,HMF

0 2 × 105

E2,S estimated E1,HMF estimated
k3,S
0 2 × 109 k2,HMF

0 10 482.168
E3,S estimated E2,HMF 94.491
k1,F
0 1000.000 k3,HMF

0 2 × 109

E1,F estimated E3,HMF 63.544
k2,F
0 10795.295 kz

0 2 225 559.198
E2,F 129.752 Ez estimated
c1 estimated c2 estimated

Table 10. Model Parameters for the Cofermentation Model

parameter value parameter value

α estimated Pi,G estimated
μmax,G estimated Pi,Xy estimated
μmax,Xy estimated Pm,G estimated
Ks,G 0.010 Pm,Xy estimated
Ks,Xy 25.459 qs,max,G 9.200
Ki,G estimated qs,max,Xy 3.836
Ki,Xy 550.000 qp,max,G 2.707
nG 1.461 qp,max,Xy 3.080
nXy 4.432 kf 5.017

Table 8. Model Parameters for the Dilute Acid Hydrolysis
Model

parameter value parameter value

k1
0 estimated k7

0 1.33 × 104

n1 estimated n7 0.680
E1 estimated E7 30.007
k2
0 6.85 × 1010 k8

0 1.06 × 108

n2 1.709 n8 0.566
E2 86.572 E8 63.439
k3
0 estimated k9

0 2.15 × 106

n3 estimated n9 0.100
E3 estimated E9 48.395
k4
0 1.14 × 105 k10

0 estimated
n4 0.940 n10 estimated
E4 36.783 E10 estimated
k5
0 estimated k11

0 2.82 × 1011

n5 estimated n11 1.944
E5 estimated E11 116.776
k6
0 4.91 × 102 k12

0 estimated
n6 0.100 n12 estimated
E6 19.023 E12 estimated

Figure 12. Observed data and simulation profiles in fermentation
carried out with 1.9 g of furfural L−1: (experiment 3) 1.9 g L−1.
Experimental data points for (◆) glucose, (□) xylose, (▲) ethanol,
(○) biomass, and (×) furfural concentrations. Continuous lines
represent model predictions.

Figure 13. Observed data and simulation profiles for biomass
concentration in fermentation carried out at different furfural
concentrations: (experiment 1, ◆) 0, (experiment 2, □) 0.475, and
(experiment 3, ○) 1.9 g L−1. Symbols correspond to experimental data
points, and continuous lines represent model predictions.
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parameters that need to be estimated was based on a
comparison of the maximum or minimum absolute values of
the corresponding sensitivity trajectories.
Then, a reduced number of kinetic parameters have been

estimated using different sets of previously reported exper-
imental data.13,21,22 Numerical results show a satisfactory
adjustment between observed and simulated profiles, conclud-
ing that the proposed models for acid hydrolysis, detoxification,
and cofermentation are able to describe the corresponding
experimental data behavior.
The proposed model, with appropriate scale-up, will be used

in optimization of ethanol production through the biochemical
pathway. The inclusion of furfural influence on the
cofermentation process, together with the detoxification
model, enables structural optimization, determining whether
the detoxification step is required within the process.

■ APPENDIX
Tables 8, 9, and 10 list the remaining model parameters for the
dilute acid hydrolysis model, the detoxification model, and the
cofermentation model, respectively.
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■ NOTATION

Subscripts
e = experiment
f = finite time element
m = data point
i = reaction step
j = product
k = parameter
q = collocation point

Superscripts
L = lower bound
U = upper bound
0 = initial value

Parameters
Cj = concentration of component j (g L−1)
CAc = sulfuric acid concentration in hydrolysis operation
(wt %)
CAcG = acetyl group concentration in lignocellulosic biomass
(g kg−1)
CAn = arabinan concentration in lignocellulosic biomass
(g kg−1)
CAra = arabinose concentration (g L−1)
CEt = ethanol concentration (g L−1)
CF = furfural concentration (g L−1)

CF,crit = critical furfural concentration causing complete
inhibition of growth (g L−1)
CGA = glucuronic acid concentration in lignocellulosic
biomass (g kg−1)
CG = glucose concentration (g L−1)
CHAc = acetic acid concentration (g L−1)
CHMF = 5-hydroxymethylfurfural concentration (g L−1)
CLn = lignin concentration in lignocellulosic biomass
(g kg−1)
CSL = acid soluble lignin concentration (g L−1)
CXy = xylose concentration (g L−1)
CXn = xylan concentration in lignocellulosic biomass (g kg−1)
Cx = biomass concentration (g L−1)
CZ = cation Ca2+ concentration in detoxification (g L−1)
CZj = complex ion concentration in detoxification (g L−1)
Ei = activation energy for reaction i (J/mol)
hf = starting time of finite element f
ki = reaction rate constant for reaction i (min−1)
ki
0 = frequency factor (min−1 wt %−ni)
Ki = substrate inhibition constant (g L−1)
Ks = substrate limitation constant (g L−1)
Mje = number of data points collected for each measurement
j in every experiment e
NE = number of experiments
NF = number of finite elements
NC = number of collocation points
ni = order of reaction i with respect to acid concentration in
Arrhenius equation
nG = inhibiting factor for glucose (dimensionless)
Pi = threshold ethanol concentration (g L−1)
Pm = maximum ethanol concentration (g L−1)
qp,max = overall maximum specific ethanol production rate
(g g−1 h−1)
qs,max = overall maximum specific substrate uptake rate
(g g−1 h−1)
R = universal gas constant (8.3144 J/mol K)
T = temperature (K)
α = weighting factor for glucose consumption in
cofermentation operation
μmax = maximum specific growth rate of cells (h−1)
τ = normalized time in each finite element f
φ = basis function for Lagrange polynomial
ϕ = ratio of solid biomass to liquid in hydrolysis operation
(g g−1)
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