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ABSTRACT
A key point to understand the glass transition is the relationship between structural and dynamic behavior experienced by a glass former
when it approaches Tg . In this work, the relaxation in a simple bead-spring polymer system in the supercooled regime near its glass transition
temperature was investigated with molecular dynamic simulations. We develop a new manner to look at the dynamic length scales in a
supercooled polymeric system, focusing on correlated motion of particles in an isoconfigurational ensemble (that is, associated with the
structure), as measured by Pearson’s correlation coefficient. We found that while the usual dynamic four-point correlation length deviates
from the structural (mosaic or point-to-set) length scale at low temperatures, Pearson’s length behaves similarly to the static length in the
whole temperature range. The results lead to a consensus of similar scaling of structural and dynamical length scales, reinforcing the idea of
the theories of Adam-Gibbs and random first order transition.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5091682

I. INTRODUCTION

Glasses are deeply supercooled materials that behave as solids,
but display no apparent molecular order such that from the molec-
ular structure point of view, they look like liquids. They find
use in many technological applications. In particular, many poly-
meric materials used in industrial products are glassy polymers.
In order to control the viscoelastic and mechanical properties to
improve the performance of these amorphous materials, under-
standing the behavior of static and dynamic length scales is expected
to provide valuable insights in understanding this phenomenol-
ogy.1–7 There are several theories that associate structural causes
with dynamic behavior. In the Adam-Gibbs (AG) theory, for exam-
ple, the large increase in relaxation times when the glass transition
temperature (Tg) is approached is ascribed to the emergence of
Cooperative Relaxation Regions (CRRs), which grow in size as the
system approaches its Tg .8 These CRRs represent clusters of particles
that have a highly correlated movement. In a similar way that AG
proposes the existence of CRR, the Random First Order Transition
(RFOT) theory proposes, based on a statistical mechanical for-
mulation at the mean-field level, a mosaic picture in which the

liquid is divided into metastable regions with a characteristic size ξ
(the mosaic length).9,10 In this way, both AG and RFOT describe
regions of correlated particles in the supercooled state that grow as
the system approaches the Tg . This means that according to these
two theories, the increase in relaxation time is caused by the growth
of a purely static length scale, ξ, that represent some “hidden order”
in the many-body free-energy landscape. In this sense, both theo-
ries describe a thermodynamic origin to explain the glass transition.
Through large scale computer simulations, it can be shown that the
most mobile particles can be further divided into groups of atoms
or molecules that move cooperatively in a roughly stringlike fash-
ion.11–13 The particles that present this dynamic behavior are iden-
tified as belonging to CRRs, and this describes the scenarios of the
Adam-Gibbs and RFOT theory fairly well.14 There is evidence of
an increase in the number of dynamically correlated particles as the
temperature decreases.15 Moreover, many interesting studies in the
last years trying to uncover some “hidden” structural order related
to heterogeneous dynamics. For example, some results suggest that
particles with low mobility tend to be found in certain locally pre-
ferred structures (LPS) or high local bond orientational order, and
this tendency increases with supercooling.16–20 A striking result is
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that the relation between LPS and dynamical slowdown is highly
system dependent.21 An alternative approach to those cited, is the
point-to-set method22 which consists in measuring an overlap func-
tion in a region of mobile particles, surrounded by an environment
of artificially frozen particles. With this technique, an order-agnostic
correlation length can be defined, and it was found that it grows
faster than simpler static lengths in various glass-forming liquids as
Tg is approached, supporting the RFOT scenario.22–26 Recent exper-
imental studies reinforce these results.27 Another type of approach
is given by the isoconfigurational ensemble method (ICEM) ideated
by Widmer-Cooperet al.28 This technique consists in performing
many molecular dynamic (MD) trajectories, with different initial
velocities but the same initial positions. It allowed us to identify
regions of high mobility and low mobility that are defined by the
initial configuration, as well as the presence of correlations (between
different trajectories of the ICE, measured through Pearson’s corre-
lation coefficient) in the displacement of neighboring particles.29–31

ICEM appears as a very useful tool to evidence the intimate rela-
tion between dynamics and the structure. In some models, localized
soft modes appear to correlate strongly with propensity for motion
at short time scale.32 One of the problems that arise when analyzing
the supercooled state of glass-former is that the structural correla-
tion lengths show a much smaller increase with the temperature than
the dynamic length, where the latter increases more in the temporal
scales of the simulation.6 This discrepancy found between the dif-
ferent correlation lengths is still a subject of debate and it is a key
piece since it can reveal if the glass transition contains a thermody-
namic origin. Within the idea that a thermodynamic origin exists,
two reasons can be presented for the discrepancy between both
correlation lengths. One possibility is that the dynamic behavior is
nonmonotonic in the supercooled region, and in the time scale inac-
cessible from the simulation, both types of length scale take similar
values,33,34 although this approach is also controversial.35,36 The
other possibility is to find a dynamical length scale that increases
weakly with supercooling, in a similar way to length scales based
on structural measures. Recently, Dunleavy et al.37 proposed an
alternative way to observe the increase in dynamic lengths through
information theoretic quantities employing an isonconfigurational
ensemble. They found similar behavior between structural and
dynamic length scales considering a dynamic length scale obtained
through correlated motion of the particles. In line with this, we
introduce in this work a new approach to analyze the dynamic length
scales that emerge in glass forming liquids of linear polymers, focus-
ing on the tendency of the particles to be dynamically correlated
through ICEM.38 We define a dynamic length that emerges not as
a function of the particles mobilities, but rather it is based on the
particle correlations, where these correlations involve relative move-
ments. We also calculate the structural length scale with the PtS
method. The results show that both magnitudes grow in a similar
manner. This result leads to a consensus of similar scaling of struc-
tural and dynamical length scales, reinforcing the idea of the theories
of AG and RFOT.

II. METHODS
MD simulations of a polymer glass-forming system were per-

formed in a wide range of temperatures and structural relax-
ation time. The polymer was represented through the bead-spring

model,39 with fully flexible chain molecules. All monomers interact
through the Lennard-Jones (LJ) potential,

U(rij) = 4�
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( σ
rij

)
12

− ( σ
rij

)
6⎤⎥⎥⎥⎥⎦

, (1)

where rij is the distance between the beads i and j, σ is the distance
at which the interparticle potential is zero, and � is the depth of
the potential at the minimum. Both parameters take the value of 1.
U(rij) is truncated for rij greater than 2.0 σ with the long-tail correc-
tion applied. In addition, the bonded neighbors in a chain interact
through the FENE bond potential,

Ubond(rij) = −15R2
0 ln [1 − (rij/R0)2], (2)

where R0 = 1.5σ is the maximum length of the bond.
Simulations were implemented with the software LAMMPS40

with periodic boundary conditions. All values are reported in
reduced LJ units. The time step for integration was dt = 0.01 using
the Verlet velocity algorithm. Our results were based on systems of
2000 polymer chains containing 30 monomers each, except for the
ICEM that worked with 133 chains. Full equilibration at each tem-
perature was verified by the absence of drift in thermodynamic mag-
nitudes and by the absence of aging.38 The NVE ensemble was used
for production runs and for later production of the ICEM. At each
studied temperature, 15 ICEs were generated, each one starting from
equilibrated configurations obtained from independent trajectories.
The ICE consisted of 500 trajectories.

III. RESULTS AND DISCUSSION
Since many different time scales are present in glassy relax-

ation, it is necessary to define a time scale to study the dynamic
length scales. The relaxation of this model has been extensively stud-
ied in previous simulations. In Fig. 1(a), we show the behavior of
the incoherent scattering function Fs(q0, t) at the wave vector q0
(corresponding to the first peak of the structure factor). The struc-
tural relaxation time (τ) can be defined as the time at which Fs(q, τ)
= e−1. Figure 1(b) shows the relaxation times as a function of tem-
perature. The behavior of τ(T) is well described by Vogel-Fulcher-
Tamman (VFT) expression: τ(T) = τ0 exp(A/T − T0).

It can be noted that at high temperatures the behavior is Arrhe-
nius type, with a single energy for the relaxation process. Below a cer-
tain temperature TA, the system presents a non-Arrhenius behavior,
and from small temperature changes, drastic changes occur in
τ. In this sense, the TA is presented as a reference temperature,
which marks the change in behavior that occurs in the relaxation
of the system, and for this model, TA ∼ 1 and T0 = 0.37. The
Tg of this model, measured as the temperature at which a change
in slope of the specific volume as a function of temperature is
evidenced, is close to 0.45.41 There is a general consensus that
glass-forming liquids are dynamically heterogeneous,2,42,43 that is,
they present a significant fraction of particles with extremely high
or low mobility relative to the average, whose positions are spa-
tially correlated. Dynamic heterogeneity may be interpreted through
some structural origin, like the formation of CRRs or the aperiodic
mosaic structures from RFOT theory. Glass-forming systems present
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FIG. 1. (a) The behavior of the incoherent scattering function for the different tem-
peratures at the slowest mode q0. The relaxation time of the system is extracted
from this function. (b) Relaxation times of the system as a function of temper-
ature, and the dashed line corresponds to the VFT law. The temperature TA is
the temperature at which the activation energy for the relaxation process changes
(grows). (c) The behavior of the non-Gaussian parameter at the different temper-
atures. From this function, the times of maximum dynamic heterogeneity (t∗) are
obtained at the maximum of the function.

a characteristic time at which dynamically heterogeneity is maxi-
mum; this time is defined as t∗, and it can be extracted from the
maximum of the non-Gaussian parameter (α2). If dynamic het-
erogeneities are indeed related to CRRs, t∗ would be a reasonable
time scale to observe the CRRs. Figure 1(c) shows the behavior of
this function. It can be seen in this figure that when temperature
decreases, α2 is larger, indicating that the heterogeneity increases,
and also the maximum of the curves is observed at larger time, so
t∗ increases. In order to quantify the increase in dynamic correla-
tion lengths when the system approaches Tg , we propose to quan-
tify the degree of correlation between monomers at t∗ through the
ICEM. From our previous work, it can be shown that the highest
correlation intensity is evidenced in t∗.38 This method allows us to
measure correlations in particle dynamics that are encoded in the
initial configuration of the system.31 Since the correlations discussed
here are measured in the isoconfigurational ensemble, we know that
they have a structural origin and they must be caused by the initial
particle configuration as this is the only thing in common between
the different trajectories. The Pearson coefficient (kij) is calculated
on each ICE.38 This magnitude reflects the degree of dynamic cor-
relation between the particles i and j. The value of k∗ij at t∗, for
two particles initially separated by a distance rij = |ri(0) − rj(0)|, is
defined as

k∗ij(rij) =
1

Si(t∗)Sj(t∗)
NIC

∑
w=1

ψi(w, t∗)ψj(w, t∗), (3)

and the term ψi(w, t∗) is given by

ψi(w, t∗) = ∣(ri(w, t∗) − ri(0)∣ − ⟨∆ri(t∗)⟩IC, (4)

where ⟨∆ri(t∗)⟩IC is the mean displacement at time t∗ in all the tra-
jectories of the ICE for the particle i (propensity), Si is the standard
deviation of the propensity, ψi(w, t) is the relative displacement of
the monomer i in a particular trajectoryw with respect to its propen-
sity, and ri(0) is the position of the monomer i in the initial configu-
ration that generates the ICE. The coefficient k∗ij(rij) can take values
between −1 and +1 and it is a measure of the correlation between
displacement of two monomers, relative to the ICE average displace-
ment (propensity) of each monomer. A negative correlation coeffi-
cient between two monomers implies that a large relative movement
of one monomer is conditioned to a small relative movement of the
other. A positive correlation implies that both monomers tend to
present simultaneously large or small relative movement. A small
value of the correlation coefficient implies that the relative move-
ment of the monomers is independent of each other. In this work,
the sum in j in Eq. (3) is done for all the monomers of the system,
whether they are bonded or not. In a previous work, we showed
that there are no significant differences in the correlated dynamic
behavior excluding monomers of the same chain in times relative
to t∗.38 To quantify the degree of global correlation at t∗ in the
whole system for a certain distance r, we calculated the following
quantity:

K(r, t∗) =

N
∑
ij
k∗ij(rij)δ(r − rij)

N
∑
ij
δ(r − rij)

, (5)

where δ() denotes the Dirac delta function. So, the magnitude
K(r, t∗) reflects the global dynamic correlation between monomers
at distance r. This global magnitude reflects correlated movements
but in terms of relative movements of each particle, relative to its
propensities for movement in the ICE. To quantify the correlation
in terms of individual movements in relation with bulk dynamical
behavior in a normal ensemble with NVT condition, that is, tak-
ing into account the displacement of a monomer with respect to the
average displacement among all the particles, the following function
is used:

Cδu(r, t∗) =

N
∑
i=1
δui(t∗)

N
∑
j=1
δuj(t∗)δ(r − rij)

⟨δu(t∗)2⟩∑
i,j
δ(r − rij)

, (6)

where

δui(t∗) = ∣(ri(t∗) − ri(0)∣ − ⟨∆r(t∗)⟩. (7)

The term ⟨∆r(t∗)⟩ is the average value of the displacement among
all the particles and

⟨δu(t)2⟩ = 1
N

N
∑
w=1

δui(t)2. (8)

The magnitude Cδu(r, t∗) is similar to the standard four-point
correlation function.44 The principal difference with K(r, t∗) is
that Cδu(r, t∗) contemplates a correlated movement of the parti-
cles at t∗ but in relation to the average displacement of all par-
ticles, contrary to the case of K(r, t∗) where the correlation of a
monomer with its surroundings is relative to the tendency of its own
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movement (only possible through an ICE). Figure 2 shows the
behavior of K(r, t∗) and Cδu(r, t∗) at different temperatures. It can
be noted that the structure is affecting these dynamic correlations at
t∗ since the behavior of the curves oscillates similarly to the radial
distribution function g(r).38 It is observed that correlation increases
when the temperature decreases and the correlation is significant
at larger distances. In the inset of Fig. 2, the behavior of Cδu(r, t∗)
(dashed lines) is compared to K(r, t∗) (continuous lines) for three
different temperatures. We found that at low temperatures, the dif-
ference between both functions increases with the distance, while at
high temperatures, both magnitudes are coincident. In our previous
work, we show that this magnitude of correlation presents its great-
est intensity at time t∗. In comparison with the structural relaxation
time, where the correlations decay to very low values, a t∗ corre-
lation extends to greater distances than the first neighbors. This is
the reason why in this case we analyze the correlation lengths at this
characteristic time. A correlation length can be extracted from the
decay of K(r, t∗) and Cδu(r, t∗) as a function of the distance, similar
to other works:44–47 An exponential decay, exp − (r′/ξ), is fitted to
K(r′, t∗) and Cδu(r, t∗), where r′ denotes the local maxima of each
function; and ξ is the correlation length, which is different for each
function. Thereby, ξK reflects the size of regions formed by dynam-
ically connected particles, while ξδu reflects the size of regions with
particles of similar mobility. It should be kept in mind that the cal-
culation of the four-point dynamic correlation length, Cδu(r, t∗),
in this way, results in somewhat smaller values than calculating it
by the reciprocal space.44,48 Figure 3 shows the calculated correla-
tion lengths. A similar behavior in both dynamic lengths is observed
at high temperatures and they both increase proportionally to each
other, but at low temperatures, ξδu increases faster than ξK and the

FIG. 2. (a) The behavior of K(r, t∗) at the different temperatures. The dashed
lines correspond to the linear fits that describe the linear expression K(r, t∗) ∼ exp
− (r /ξK ) and from which the correlation lengths can be obtained. (b) The behavior
for Cδu(r, t∗). (c) Comparison between K(r, t∗) (continuous lines) and Cδu(r, t∗)
(dashed lines) for three different temperatures.

FIG. 3. Dynamic correlation length obtained from the behavior of K(r, t∗) and
Cδu(r, t∗) at the different temperatures studied. Inset: the relationship between
both lengths is shown. It can be seen how, at approximately T = 0.70, a change
in behavior occurs in which the proportionality between both magnitudes is lost for
lower temperatures.

proportionality is broken (this is explicitly shown in the inset of
Fig. 3). This discrepancy that arises at low temperatures is another
indication that the dynamic lengths in terms of the absolute dis-
placements of the monomers depart from the structural behavior,
showing a greater increase.6,33,34,49 On the other hand, the relative
displacements, ξK , show a softer increase, as found in some struc-
tural lengths.18,19 The decoupling of both length at about T = 0.7
could be an indication of a change in the relaxation mechanism, and
this will be discussed in more detail later. We remark that despite the
observed discrepancies, these types of correlation lengths increase
continuously on supercooling toward the glass transition. In order to
compare these dynamic correlation lengths with a structural one, we
calculated the static correlation length based on the PtS method,10

following the protocol of Ref. 22. This method allows us to calculate a
nontrivial structural length scale (ξPtS), which measures the distance
over which particles are self-consistently pinned to other particles.
For each temperature, 18 bulk equilibrium configurations were gen-
erated at a desired temperature, and then, cavities were constructed
by freezing the particles outside a sphere of radius R. Figure 4 shows
a graphical representation of the spherical cavity of the center that
contains mobile monomers (large particles in colors, where each
color represents different polymer chains) and monomers outside
the cavity that are immobile (small particles in blue color). The
center of the cavity is partitioned into many small cubic boxes of
length l, generating a subvolume v. The overlap function is then
defined as

qc(R) =
1

l3Nb
∑
i∈v

⟨ni(t0)ni(t0 +∞)⟩. (9)

The sum runs over all the boxes at the center of the sphere (Nb),
and ⟨⋯⟩ represents the averaging over different realizations of the
frozen boundary. The function is normalized in such a way that two
identical configurations have overlap equal to unity and two uncor-
related random configurations have overlap close to q0 = l3. We
used replica exchange molecular dynamics (REMD)50 to sample the
equilibrium thermodynamic properties of the system in the mobile
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FIG. 4. Representation of the spherical cavity that contains mobile particles
and the monomers outside the cavity that are immobile monomers (small blue
particles).

cavities of PtS. In our case, the REMD consisted of 16 noninteract-
ing replicas of the same system at different temperatures Ti (T1, . . .,
T16), where T1 is the temperature of interest. The difference in tem-
perature between two neighboring replicas was 0.01, which gives a
good overlap of the potential energy distributions. Each attempted
swap of neighbor temperatures is either accepted or rejected
based on a Boltzmann-weighted Metropolis criterion and the
exchange between different replica was done every 0.025τ(T1) (the
relaxation time at the low temperature, the target temperature).
Then, each replica is run independently and simultaneously in a
canonical ensemble for the total time of 10–100τ(T1), depending

on the temperature. This procedure was employed at each stud-
ied temperature (different T1) with 18 independent configurations.
The acceptance ratios of exchange between replicas ranged around
0.3 in the different experiments. The result of this swapping between
different temperatures allowed us to jump across the energy bar-
riers of the system to avoid the two barriers imposed in the sys-
tem, first the natural barrier, the basin transition from the super-
cooled state, and second the artificial barrier, the PtS restriction
conditions. By means of this procedure, it is possible to equili-
brate the subsystem in the cavity and thus obtain equilibrium val-
ues for the overlapping function. A study that can be performed
to check the correct balance within the cavity is the β initial
condition (BIC) test proposed in Refs. 51 and 52, where a ran-
dom configuration is generated within the cavity (beta configu-
ration) and then the corresponding temporal evolution is made
starting from this configuration. Then, the same is done but start-
ing from the initial balanced configuration (alpha configuration).
If both cases converge to the same value of the overlap function at
long enough times, that is considered to be the equilibrium value.
Figure 5 shows the results of performing the BIC test for some
of the particular states studied. It can be noted that in all cases
both initial configurations type converge to the same value in the
overlap function. Figure 6 shows the behavior of the overlap func-
tion q(R) − q0 at different temperatures. It can be noted that
as temperature decreases, the decay becomes slower. In order to
extract a correlation length ξPtS from the spatial decay of q(R),
a generalized compressed exponential of the form qc(r) − q0

= Ω exp[−((R − a)/ξPtS)ζ] was fitted to the data. We fixed the value
of a = 1 and 0.55 < Ω < 0.65, in a similar manner to the work of
Hocky et al.,24 leading to values for ξ with much smaller statistical
variance. The dashed lines in Fig. 6 show the fits with this
expression. Figure 7(a) shows the relation between both dynamic
correlation lengths and the static correlation length, ξPtS. It has to

FIG. 5. BIC test for some of the tempera-
tures and R studied, as indicated in each
figure. The α and β configurations reach
the same asymptotic equilibrium value of
q(R) for large times.
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FIG. 6. PtS overlap function calculated at different temperatures. Dashed lines
follow the expression qc(r) − q0 = Ω exp[−((R − 1)/ξPtS)ζ] and are fitted to
the calculated values at each temperature.

be noted that ξPtS presents a larger increase with decreasing tem-
perature, becoming large in absolute value, which is not observed in
nonpolymeric systems studied by this method. This is probably due
to the fact that in a polymeric system where the PtS is applied, there

FIG. 7. (a) The relation between the dynamic correlation lengths (ξδu and ξK )
and the static correlation length ξPtS. The dashed lines are guide to the eye to
highlight the behavior of both magnitudes. (b) The behavior of ξψ(T) following the
expression of RFOT for the ξPtS, ξδu, and ξK , the values of ψ are 1.28, 1.30, and
1.31, respectively.

are certain polymer chains that have mobile monomers (ri < R)
and immobile (ri > R), which result in a double confinement in
the mobile monomers. This affects the behavior of qc(R) and the
consequent ξPtS. For this reason, the correlation lengths found for
a connected system like polymers may be larger than other sys-
tems with similar intermolecular forces but without intramolecu-
lar connectivity. This connectivity in polymer systems causes that
some properties differ from the typical glass-forming systems53 and
a direct comparison of the absolute values of correlation lengths
might then be deceiving. But as the relative dependence of one
length with respect to the other is considered, a few interesting
observations can be made. First, the 4 point correlation length,
Cδu, as shown before, is proportional to ξK at high temperatures,
and this proportionality breaks down at about T = 0.7. In a simi-
lar way, it is found that Cδu has a linear correlation with ξPtS, and
this linearity is lost at this intermediate supercooling temperature.
This behavior is usually found in glass formers, where the dynamic
length extracted from four-point correlation functions is observed
to grow to a greater extent than the structural length.4 On the other
hand, ξK shows a linear relation with ξPtS in the whole temperature
range studied. This seems to indicate that while correlations of the
absolute displacements decorrelate from structural lengths at some
intermediate degree of supercooling, correlations in terms of rela-
tive displacements can be described in terms of a structural length
in the whole temperature range. Although this analysis is far from
being the complete picture of the underlying physical mechanisms,
it does seem to indicate that ξK and ξPtS correlation lengths are
indeed related and this alternative calculation of a dynamic length
can be the missing link to relate structure and dynamic in glass
formers.

Finally, Fig. 7(b) shows the scaling of τ with ξPtS, ξδu, and ξK ,
as given by RFOT theory. For each curve, we obtain the best fit for
the exponent ψ, where the values around 1.3 obtained are similar
to those reported in different types of systems and according to the
theory.9,14,22,24 This indicates that RFOT describes the relaxation
time in terms of correlation lengths fairly well, and that different
correlation lengths, calculated from static or dynamic correlations,
could be used as the characteristic “mosaic” size. However, and as
previously discussed, only the behavior between ξK and ξPtS seems
to indicate a correlation between them for the entire temperature
range. It would be very interesting to extend this analysis to lower
temperatures (larger lengths), but this would require larger simula-
tion domains (which has to be significantly larger than the correla-
tion length), and much larger time scales, not feasible with current
computation capabilities.

IV. CONCLUSION
In summary, we analyzed the increase in relaxation times and

correlation lengths in a polymeric system through dynamics and
structural analysis. The growth of a structural length was analyzed
by the PtS using the replicate exchange method and two dynamic
lengths were considered. The first one was the usual length defin-
ing a mobility correlation, calculated from the standard four-point
correlation function. The second one was quantified through a sta-
tistical study within an isoconfigurational ensemble, defining the
dynamic correlations between the particles by means of Pearson’s
correlation coefficient. It was shown that that there is a linear
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relation between Cδu and ξPtS at high temperatures, but this lin-
earity is lost at an intermediate supercooling temperature. This is
consistent with other studies where it is observed that the correla-
tion lengths calculated from four-point correlation functions grow
faster than the structural lengths with decreasing temperature for
large supercooling. On the other hand, ξK shows a linear relation
with ξPtS in the whole temperature range studied. This points out to
an alternative way of defining dynamic lengths, through the ICEM,
which could be useful to resolve the apparent observed discrepan-
cies between structural and dynamic length scales in supercooled
liquids.
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