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Introduction
The development of fuels with low 235U enrichment has become 

valuable over the course of the last twenty years, being of special 
interest fuels with high density of U(Mo) dispersion in Al matrices. 
The aim is to replace high enriched fuel by low enriched one with 
relative 235U/Utot contents less than 0.2. Experimental evidence of 
U(Mo) under irradiation1–4 show the existence of an interaction layer 
(IL) between UMo and the Al matrix. The IL growth influences the 
mechanical integrity of the plates, generating a structural weakness. 
Swelling accumulation can ultimate lead to fuel plate failure. 
Characterization of the IL with different rates of fuel burn-up shows 
the presence of fission products (FP).5 In this way, Sr, Cs, Nd, La, 
Ce and Xe have been detected by electron probe microanalysis 
(EPMA), electron microscopy (SEM) and energy dispersive x-ray 
microanalysis (EDX).6 Other works have confirmed the nucleation 
and growth of fission gas bubbles (swelling) in the aluminum 
matrix.7,8 The FP accumulation has been observed by Huet et al.,2 in 
the IL and aluminum matrix interface. FP implantation in Al matrices 
has been measured by EPMA, and Nd content has been estimated 
through Xe presence in the precipitation and formation of bubbles2 for 
the swelling effect. From another point of view, the irradiation of fuel 
plates of UMo show that the formation of the IL depends on the fission 
rate, and the swelling, on the other hand, depends on the burn-up or 
the fission density.9 Similar concepts have been reported regarding 
the FP-induced swelling,10 and the acceleration of swelling due to 
the influence of recrystallized phases of UMo.11 In agreement with 
experimental researches focusing on the influence of the FP in the IL, 
in the present work the configurational energy has been calculated, 
based on the functional density theory (DFT), of the disordered 
phases bcc U(Mo), bcc U(Mo, FP), fcc U(Mo)Al3, fcc U(Mo,FP)Al3, 
fcc Al and fcc Al(FP). The selected FP are Nd, Ce, La and Pr. The code 
used is VASP.12,13 In order to simulate disordered solutions the Special 
Quasi Random Structures (SQRS)14,15 was employed.

This work compares the results obtained through the calculus code 
to the experimental data in previously published papers. The goal of 

this article is to reinforce the experimental evidence regarding the 
effect of the accumulation of fission products and the influence during 
the swelling process on IL’s behavior.

Results and discussion
In order to obtain a comparative chart of energies for the preference 

of rare earth atom to rest within the bcc (U,Mo) solid solution, or to 
be placed within the fcc (U,Mo)Al3 solid solution, we calculated the 
formation energies as:
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energy calculated for the disordered structure with the substitution of 
one uranium atom by a FP atom, ET (SS) is the total energy for the bcc 
or fcc solid solution structure without substitution, ni is the quantity of 
substituted atoms (either -1 or +1 for the replaced uranium atom or the 
added FP atom) and µi are the chemical potential for the corresponding 
FP element. The key quantities in order to evaluate the host preference 
for the FP are the difference 1
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values (Table 1) are negative, meaning that the situational defects 
have a preference for allocation within the interaction layer (IL) both 
in comparison with fuel and with the matrix. Our calculated result is 
in agreement with experimental evidence8 and predicts a consequent 
IL growth.
Table 1 Differences between formation energies of defect solid solutions 
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E∆ -1,91 -1,19 -1,70 -0,90
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E∆ -1,67 -0,73 -0,62 -0,79
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Abstract

In the frame of the RERTR (Reduced Enrichment for Research and Test Reactors) program 
a fuel element is being developed with the concept of high density bcc uranium that can 
remain stable during fabrication and later irradiation, dispersed in aluminum powder. The 
whole constitutes a compact material which is later rolled with an aluminum-silicon clad 
plate. Under further irradiation, an interaction layer (IL) grows through a diffusion process 
around the fuel element particle, leading to the swelling of the fuel element and formation 
of pores. This behavior can lead to catastrophic failure of the disperse fuel. Therefore it 
is our great interest to gain knowledge about the influence the fission products (FP) have 
over the IL formation and swelling. The stable compounds that have been observed in 
the IL of U(Mo)/Al(Si) tested in diffusion pair experiments are U(Al, Si)3, USi2, U1+xSi2-x, 
U3Si5 UMo2Al20 and U6Mo4Al43. Among them, U(Al, Si)3 has been observed to remain 
stable when subject to irradiation, delaying or stopping the IL swelling. Compositional 
analysis shows that La, Ce, Pr and Nd are some of the FP present in the burned dispersed 
fuel. Hence, these are the considered elements for a first evaluation of the problem that we 
performed in this work by means of computational methods.
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Conclusion
Our results lead to the conclusion that the fission products taken 

into account would remain within the IL if the reaction takes place 
there, or they would move to the IL if it were possible. But we are 
prevented from a simplistic analysis by the knowledge that diffusion 
and migration play a fundamental role in the determination of the 
final location of the fission product in the different lattices. A careful 
diffusion analyses will be undertaken to enlighten the fission product 
behavior in a growing IL. 
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