DISTRIBUTIVE NEARLATTICES WITH A NECESSITY MODAL OPERATOR

SERGIO CELANI — ISMAEL CALOMINO

(Communicated by Jan Kühr)

ABSTRACT. The aim of this paper is to study the class of distributive nearlattices with a necessity modal operator. We develop a full duality to the category of distributive nearlattices whose morphisms are applications that preserving the infimum when exists and, as special case, we obtain a representation and duality for distributive nearlattices with a necessity modal operator. We study certain particular subclasses and give some applications.

1. Introduction and preliminaries

The Tarski algebras are the algebraic counterpart of the \{→\}-fragment of the classical propositional logic. In [1], Abbott establishes a correspondence between Tarski algebras and join-semilattices with greatest element which every principal filter is a Boolean lattice. A natural generalization of the Tarski algebras are the nearlattices: join-semilattices with greatest element which every principal filter is a bounded lattice. A special class are the distributive nearlattices. This algebras have been studied by different authors. We refer the reader to the following bibliography: [18], [21], [12], [13], [14], [20] and [5]. A full duality between distributive nearlattices with greatest element and certain topological spaces was developed in [9], extending the results given in [8] for Tarski algebras and the duality of Stone for bounded distributive lattices [22].

In [6], the author studies the algebraic semantics of the \{→, □\}-fragment of the classical modal logic introducing the class of Tarski algebras with a modal operator as a generalization of the Boolean algebras with a modal operator. Since the distributive nearlattices are a generalization of the Tarski algebras, it is natural to extend some of these results. The main purpose of this paper is to study the class of distributive nearlattices with a necessity modal operator □. As in a nearlattice the infimum of any two elements automatically exists when they share a common lower bound, we define the notion of modal operator as an operator □ that preserves existing finite infimum. Recall that a modal operator in a Boolean algebra B can be considered as a meet-homomorphism defined in B. In [19], Halmos works with join-homomorphisms which generalize the modal operator ◊, while meet-homomorphisms generalize the modal operator □. In the same way we can define a modal operator □ in a nearlattice A as a particular class of function. Taking into account this observation we introduce the notion of ∧-semi-homomorphisms between distributive nearlattices.

2010 Mathematics Subject Classification: Primary 06A12, 06D35; Secondary 03G10, 06D50.
Keywords: distributive nearlattice, topological representation, duality, modal operator.
This work was supported by the CONICET under Grant PIP 112-201501-00412.
Consequently, a distributive nearlattice with a necessity modal operator is a distributive nearlattice endowed with a \wedge-semi-homomorphism.

In the remaining part of this section we review some definitions and the topological duality developed in [9]. In Section 2 we define the category of distributive nearlattices with \wedge-semi-homomorphisms and we prove that there exists a correspondence between \wedge-semi-homomorphisms of distributive nearlattices and certain binary relations. In Section 3 we introduce the distributive nearlattices with a necessity modal operator \Box, or \Box-distributive nearlattices. We develop a topological representation and duality for \Box-distributive nearlattices using the simplified representation given in the Section 2. In Section 4 we study certain classes of \Box-distributive nearlattices, in particular, the variety of \mathbf{S}_5-nearlattices which is a generalization of the class of monadic algebras. Finally, in Section 5 we apply the duality to characterize the lattices of the congruences, subalgebras and the free \Box-distributive lattice extension of a \Box-distributive nearlattice.

Let $A = \langle A, \wedge, 1 \rangle$ be a join-semilattice with greatest element, or simply semilattice. Recall that the binary relation \leq defined by $x \leq y$ if and only if $x \lor y = y$ is a partial order. A filter of A is a non-empty subset $F \subseteq A$ such that $1 \in F$, if $x \leq y$ and $x \in F$ then $y \in F$, and if $x, y \in F$ then $x \wedge y \in F$, whenever $x \wedge y$ exists. The intersection of any collection of filters is a filter. For any non-empty subset $X \subseteq A$, the filter generated by X, in symbols $F(X)$, is the smallest filter containing X. A filter F is said to be finitely generated if $F = F(X)$ for some finite non-empty subset X. If $X = \{a\}$ then $F(\{a\}) = \{a\} = \{x \in A : a \leq x\}$, called the principal filter of a. Let us denote by $F_i(A)$ and $F_f(A)$ the set of all filters and filters finitely generated of A, respectively. A subset $I \subseteq A$ is called an ideal if for every $x, y \in I$, if $x \leq y$ and $y \in I$ then $x \in I$, and for all $x, y \in I$ then $x \lor y \in I$. The smallest ideal containing X is called ideal generated by X and will be denoted by $I(X)$. A non-empty proper ideal P is prime if for every $x, y \in A$, if $x \land y \in P$, whenever $x \land y$ exists, then $x \in P$ or $y \in P$. The set of all ideals and prime ideals of A will be denoted by $\text{Id}(A)$ and $X(A)$, respectively.

Definition 1. Let A be a semilattice. We say that A is a nearlattice if each principal filter is a bounded lattice with respect to the induced order.

The meet is not everywhere defined and the class of nearlattices consists of partial algebras only. However, nearlattices can be regarded as total algebras through a ternary operation. Hickman in [21] and Chajda and Kolářík in [14] proved that the nearlattices form a variety. In [3] the authors found a smaller equational base.

Lemma 1.1 ([3]). Let A be a nearlattice. Let $m : A^3 \to A$ be the ternary operation given by $m(x, y, z) = (x \lor z) \land (y \lor z)$. The following identities are satisfied:

1. $m(x, y, x) = x$,
2. $m(m(x, y, z), m(y, m(u, x, z), z), w) = m(w, w, m(y, m(u, x, z), z))$,
3. $m(x, x, 1) = 1$.

Conversely, let $A = \langle A, m, 1 \rangle$ be an algebra of type $(3, 0)$ satisfying the identities (1)–(3). If we define $x \lor y = m(x, y, x)$ then A is a semilattice. Moreover, for each $a \in A$, $\{a\}$ is a bounded lattice where for $x, y \in \{a\}$ their infimum is $x \land_a y = m(x, y, a)$. Hence, A is a nearlattice.

We are interested in a particular class of nearlattices.

Definition 2. Let A be a nearlattice. We say that A is distributive if each principal filter is a bounded distributive lattice.

Example 1. A Tarski algebra can be defined as a join-semilattice with greatest element such that each principal filter is a Boolean lattice with respect to the induced order. Indeed, if $(A, \rightarrow, 1)$ is a Tarski algebra then the join of two elements x and y is given by $x \lor y = (x \rightarrow y) \rightarrow y$ and for
DISTRIBUTIVE NEARLATTICES WITH A NECESSITY MODAL OPERATOR

Each $a \in A$, $[a] = \{x \in A : a \leq x\}$ is a Boolean lattice where for $x, y \in [a]$ the meet is given by $x \land_a y = (x \rightarrow (y \rightarrow a)) \rightarrow a$ and $x \rightarrow_a y$ is the complement of x in $[a]$. Thus, every Tarski algebra is in particular a distributive nearlattice. For more details see [1] and [2].

We denote by \mathcal{DN} the variety of distributive nearlattices. From the results given in [18], if $A \in \mathcal{DN}$ then we have the following characterization of the filter generated by a non-empty subset X of A:

$$F(X) = \{a \in A : \exists x_1, \ldots, x_n \in [X], \exists y_1 \land \cdots \land y_n \ (x_1 \land \cdots \land x_n = a)\}.$$

Theorem 1.1 ([20]). Let $A \in \mathcal{DN}$. Let $I \in \text{Id}(A)$ and let $F \in \text{Fi}(A)$ such that $I \cap F = \emptyset$. Then there exists $P \in X(A)$ such that $I \subseteq P$ and $F \cap P = \emptyset$.

The Stone’s representation theorem for distributive lattices states that every distributive lattice is isomorphic to a ring of sets. We recall that a ring of sets A is a family of subsets of a set X that is closed under the operations of unions and intersections. These results are the basis for topological dualities developed by Stone in [22]. For distributive nearlattices we have a similar representation theorem proved by Halas [20].

Theorem 1.2 ([12]). Let $A \in \mathcal{DN}$. Then the map $\varphi_A : A \rightarrow \mathcal{P}_d(X(A))$ defined by $\varphi_A(a) = \{P \in X(A) : a \notin P\}$ is an embedding of A into $\mathcal{P}_d(X(A))$. Thus, A is isomorphic to the subalgebra $\varphi_A[A] = \varphi_A[a] : a \in A)$ of $\mathcal{P}_d(X(A))$.

Recall the Stone style duality for distributive nearlattices developed in [9]. First we give some topological concepts. A topological space with a base \mathcal{K} will be denoted by (X, \mathcal{K}). We consider the family

$$D_{\mathcal{K}}(X) = \{U : U \cap \mathcal{K} \subseteq \mathcal{K}\}.$$

A subset $Y \subseteq X$ is basic saturated if $Y = \bigcap\{U_i \in \mathcal{K} : Y \subseteq U_i\}$. The basic saturation of Y is the smallest basic saturated containing Y and will be denoted by $\text{Sb}(Y)$. Analogously, the closure of Y is the smallest closed containing Y and will be denoted by $\text{Cl}(Y)$. If $Y = \{y\}$ we write $\text{Sb}\{y\} = \text{Sb}(y)$ and $\text{Cl}\{y\} = \text{Cl}(y)$. On X is defined a binary relation \leq as $x \leq y$ if and only if $y \in \text{Sb}(x)$. It is easy to see that the relation \leq is a partial order if and only if (X, \mathcal{K}) is T_0. The dual order of \leq is denoted by \preceq, i.e., $x \preceq y$ if and only if $x \in \text{Sb}(y)$. Note that $x \preceq y$ if and only if $y \in \text{Cl}(x)$. The order \leq and the dual order \preceq will be indexed by the set where it is used. It follows that if $U \in D_{\mathcal{K}}(X)$ then U is increasing with respect to the dual order. We say that $Y \subseteq X$ is irreducible if for every $U, V \in D_{\mathcal{K}}(X)$ such that $U \cap V = D_{\mathcal{K}}(X)$ and $Y \cap (U \cap V) = \emptyset$ implies $Y \cap U = \emptyset$ or $Y \cap V = \emptyset$ and we say that Y is dually compact if for every family $\mathcal{F} = \{U_i : i \in I\} \subseteq \mathcal{K}$ such that $\bigcap\{U_i : i \in I\} \subseteq Y$ implies that there exists a finite family $\{U_1, \ldots, U_n\}$ of \mathcal{F} such that $U_1 \cap \cdots \cap U_n \subseteq Y$.

Definition 3. Let (X, \mathcal{K}) be a topological space. Then (X, \mathcal{K}) is an N-space if:

1. \mathcal{K} is a basis of open, compact and dually compact subsets for a topology $\mathcal{T}_{\mathcal{K}}$ on X.
2. For every $U, V, W \in \mathcal{K}$, $(U \cap W) \cup (V \cap W) \in \mathcal{K}$.
3. For every irreducible basic saturated subset Y of X there exists a unique $x \in X$ such that $\text{Sb}(x) = Y$.

Theorem 1.3 ([9]). Let (X, \mathcal{K}) be a topological space where \mathcal{K} is a basis of open and compact subsets for a topology $\mathcal{T}_{\mathcal{K}}$ on X. Suppose that $(U \cap W) \cup (V \cap W) \in \mathcal{K}$ for all $U, V, W \in \mathcal{K}$. The following conditions are equivalent:

1. (X, \mathcal{K}) is T_0, and if $A = \{U_i : i \in I\}$ and $B = \{V_j : j \in J\}$ are non-empty families of $D_{\mathcal{K}}(X)$ such that $\bigcap\{U_i : i \in I\} \subseteq \bigcup\{V_j : j \in J\}$ then there exist $U_1, \ldots, U_n \in [A]$ and $V_1, \ldots, V_k \in B$ such that $U_1 \cap \cdots \cap U_n \in D_{\mathcal{K}}(X)$ and $U_1 \cap \cdots \cap U_n \subseteq V_1 \cup \cdots \cup V_k$.
(2) \((X, \mathcal{K}) \) is \(T_0 \), every \(U \in \mathcal{K} \) is dually compact and the assignment \(H_X \colon X \to X(D_X(X)) \) defined by
\[
H_X(x) = \{ U \in D_X(X) : x \notin U \},
\]
for each \(x \in X \), is onto.

(3) Every \(U \in \mathcal{K} \) is dually compact and for every irreducible basic saturated subset \(Y \) of \(X \) there exists a unique \(x \in X \) such that \(Y = S_b(x) \).

If \((X, \mathcal{K}) \) is an \(N \)-space then \((D_X(X), \cup, X) \) is a distributive nearlattice. So, the map \(H_X \) defined in the Theorem 1.3 is an homeomorphism such that \(x \leq y \) if and only if \(H_X(x) \subseteq H_X(y) \). Conversely, if \(A \in \mathcal{DN} \) then the family \(\mathcal{K}_A = \{ \varphi_A(a)^c : a \in A \} \subseteq \mathcal{P}_d(X(A)) \) is a basis for a topology \(T_{\mathcal{K}_A} \) on \(X(A) \). The topological space \((X(A), \mathcal{K}_A) \) is an \(N \)-space called the dual space of \(A \). For more details see [3].

2. \(\wedge \)-semi-homomorphisms

In this section we define the notion of \(\wedge \)-semi-homomorphism between distributive nearlattices which we use in the following section to present a representation and duality for distributive nearlattices with a necessity modal operator.

Definition 4. Let \(A, B \in \mathcal{DN} \). Let \(h \colon A \to B \) be a map. We say that \(h \) is a \(\wedge \)-semi-homomorphism if it verifies the following conditions:

1. \(h(1) = 1 \),
2. \(h(a \wedge b) = h(a) \wedge h(b) \) for all \(a, b \in A \) such that \(a \wedge b \) exists.

Let us denote by \(\mathcal{SDN}_\wedge[A, B] \) the set of all \(\wedge \)-semi-homomorphisms from \(A \) into \(B \).

Remark 1. Note that if \(h \in \mathcal{SDN}_\wedge[A, B] \) then \(h \) preserves the natural order. On the other hand, if \(a, b \in A \) such that \(a \wedge b \) exists then \(h(a) \wedge h(b) \) exists. Indeed, since \(a \wedge b \leq a, b \) then \(h(a), h(b) \in [h(a \wedge b)] \) and as \(B \) is a nearlattice, \(h(a) \wedge h(b) \) exists.

We denote by \(\mathcal{SDN}_\wedge \), the category whose objects are distributive nearlattices and morphisms \(\wedge \)-semi-homomorphisms between them.

Lemma 2.1. Let \(A, B \in \mathcal{DN} \). Let \(h \colon A \to B \) be a map. The following conditions are equivalents:

1. \(h \in \mathcal{SDN}_\wedge[A, B] \).
2. \(h^{-1}(P)^c \in \text{Fi}(A) \) for all \(P \in X(B) \).

Proof. (1) \(\Rightarrow \) (2) It is clear that \(1 \in h^{-1}(P)^c \). Let \(a, b \in A \) such that \(a \leq b \) and \(a \in h^{-1}(P)^c \). Then \(h(a) \notin P \). As \(h \) preserves the natural order, \(h(a) \leq h(b) \). Since \(P \) is an ideal, \(h(b) \notin P \). So, \(b \in h^{-1}(P)^c \) and \(h^{-1}(P)^c \) is increasing. Let \(a, b \in h^{-1}(P)^c \) such that \(a \wedge b \) exists. Then \(h(a), h(b) \notin P \). If \(h(a \wedge b) = h(a) \wedge h(b) \in P \) then for primality of \(P \), \(h(a) \in P \) or \(h(b) \in P \) which is impossible. Thus,
\[
h(a) \wedge h(b) \notin P \text{ and } a \wedge b \in h^{-1}(P)^c.
\]
Therefore, \(h^{-1}(P)^c \in \text{Fi}(A) \).

(2) \(\Rightarrow \) (1) We assume that \(h^{-1}(P)^c \in \text{Fi}(A) \) for all \(P \in X(B) \). If \(h(1) < 1 \) then by Theorem 1.1 there exists \(P \in X(B) \) such that \(h(1) \in P \) and \(1 \notin P \). So, \(1 \notin h^{-1}(P)^c \) which is a contradiction because \(h^{-1}(P)^c \) is a filter. Then \(h(1) = 1 \). Let \(a, b \in A \) such that \(a \wedge b \) exists. It is easy to see that \(h \) preserves the order. Thus, \(h(a \wedge b) \leq h(a) \wedge h(b) \). We prove that \(h(a) \wedge h(b) \leq h(a \wedge b) \).
DISTRIBUTIVE NEARLATTICES WITH A NECESSITY MODAL OPERATOR

If \(h(a) \land h(b) \not\subseteq h(a \land b) \) then \(\{h(a \land b)\} \cap [h(a) \land h(b)] = \emptyset \) and by Theorem 1.1 there exists \(P \in X(B) \) such that \(h(a \land b) \in P \) and \(h(a) \land h(b) \notin P \). So, \(a \land b \notin h^{-1}(P^c) \). On the other hand, \(h(a) \land h(b) \notin P \) and \(a, b \in h^{-1}(P^c) \). Since \(a \land b \) exists and \(h^{-1}(P^c) \) is a filter, \(a \land b \in h^{-1}(P^c) \) which is a contradiction. Thus,

\[
h(a \land b) = h(a) \land h(b) \quad \text{and} \quad h \in SDN \land [A, B].
\]

Let \(X_1 \) and \(X_2 \) be two sets and let \(R \subseteq X_1 \times X_2 \) be a binary relation. We consider

\[
R[C] = \{y \in X_2 : \exists x \in C \ ((x, y) \in R) \},
\]

where \(C \) is a subset of \(X_1 \). We write \(R(x) \) instead of \(R\{x\} \). Let \(h_R : P(X_2) \to \mathcal{P}(X_1) \) be given by \(h_R(U) = \{x \in X_1 : R(x) \subseteq U\} \). It is easy to check that \(h_R \in SDN_{\land}[P(X_2), \mathcal{P}(X_1)] \).

Definition 5. Let \(\langle X_1, K_1 \rangle \) and \(\langle X_2, K_2 \rangle \) be two \(N \)-spaces. Let \(R \subseteq X_1 \times X_2 \) be a binary relation. We say that \(R \) is an \(N_{\land} \)-relation if it verifies the following conditions:

1. \(h_R(U) \in D_{K_1}(X_1) \) for all \(U \in D_{K_2}(X_2) \),
2. \(R(x) \) is a closed subset of \(X_2 \) for all \(x \in X_1 \).

Denote by \(\mathcal{N}R_{\land}[X_1, X_2] \) the set of all \(N_{\land} \)-relations between \(\langle X_1, K_1 \rangle \) and \(\langle X_2, K_2 \rangle \).

Remark 2. If \(R \in \mathcal{N}R_{\land}[X_1, X_2] \) and \(x \preceq y \) then \(R(y) \subseteq R(x) \) for all \(x, y \in X_1 \).

The following result gives some equivalences of item (2) of the Definition 5.

Proposition 2.1. Let \(\langle X_1, K_1 \rangle \) and \(\langle X_2, K_2 \rangle \) be two \(N \)-spaces. Let \(R \subseteq X_1 \times X_2 \) be a binary relation such that \(h_R(U) \in D_{K_1}(X_1) \) for all \(U \in D_{K_2}(X_2) \). The following conditions are equivalent:

1. For every \((x, y) \notin R \), there exists \(U \in D_{K_2}(X_2) \) such that \(R(x) \subseteq U \) and \(y \notin U \).
2. \(R(x) = \bigcap \{U \in D_{K_2}(X_2) : R(x) \subseteq U\} \) for all \(x \in X_1 \).
3. For every \((x, y) \in X_1 \times X_2 \),

\[
(x, y) \in R \iff H_{X_2}(y) \subseteq h_R^{-1}(H_{X_1}(x)).
\]

Proof. (1) \(\Rightarrow \) (2) It follows that \(R(x) \subseteq \bigcap \{U \in D_{K_2}(X_2) : R(x) \subseteq U\} \). We show the other inclusion. Suppose there is \(y \notin \bigcap \{U \in D_{K_2}(X_2) : R(x) \subseteq U\} \). So, by hypothesis, there exists \(U_0 \in D_{K_2}(X_2) \) such that \(R(x) \subseteq U_0 \) and \(y \notin U_0 \) which is a contradiction. Therefore,

\[
R(x) = \bigcap \{U \in D_{K_2}(X_2) : R(x) \subseteq U\}.
\]

(2) \(\Rightarrow \) (3) Let \((x, y) \notin R \). Then \(y \notin R(x) = \bigcap \{U \in D_{K_2}(X_2) : R(x) \subseteq U\} \). So, there exists \(U_0 \in D_{K_2}(X_2) \) such that \(R(x) \subseteq U_0 \) and \(y \notin U_0 \). Thus,

\[
U_0 \notin h_R^{-1}(H_{X_1}(x)) \quad \text{and} \quad U_0 \in H_{X_2}(y),
\]

i.e.,

\[
H_{X_2}(y) \not\subseteq h_R^{-1}(H_{X_1}(x)).
\]

The other direction is similar.

(3) \(\Rightarrow \) (1) Let \((x, y) \notin R \). Then \(H_{X_2}(y) \not\subseteq h_R^{-1}(H_{X_1}(x)) \). It follows that there is \(U \in D_{K_2}(X_2) \) such that \(U \in H_{X_2}(y) \) and \(U \notin h_R^{-1}(H_{X_1}(x)) \). Since \(h_R(U) \notin H_{X_1}(x) \), \(x \in h_R(U) \) and \(R(x) \subseteq U \). Thus, there exists \(U \in D_{K_2}(X_2) \) such that

\[
R(x) \subseteq U \quad \text{and} \quad y \notin U.
\]
Proof. Let C be a closed subset of X_1. Since \mathcal{K}_1 is a basis of X_1, there exists a family $\{V_i : i \in I\} \subseteq \mathcal{K}_1$ such that $C = \bigcap \{V_i : i \in I\}$. It is enough to show that for each $y \notin R[C]$ there exists $U \in \mathcal{K}_2$ such that $R[C] \subseteq U^c$ and $y \in U$. If $y \notin R[C]$ then for every $x \in C$, $y \notin R(x)$. As $R(x)$ is a closed subset of X_2, there exists $U_x \in \mathcal{K}_2$ such that $R[C] \subseteq U_x^c$ and $y \notin U_x$. So, $x \in h_R(U_x^c)$. We consider the families $A = \{V_i^c : i \in I\}$ and $B = \{h_R(U_x^c) : x \in C$ and $U_x \in \mathcal{K}_2\}$ of $D_{\mathcal{K}_1}(X_1)$. Then $C \subseteq \bigcup \{h_R(U_x^c) : x \in C$ and $U_x \in \mathcal{K}_2\}$, i.e.,

$$\bigcap \{V_i^c : i \in I\} \subseteq \bigcup \{h_R(U_x^c) : x \in C$ and $U_x \in \mathcal{K}_2\}.$$

As X_1 is an N-space, by Theorem 1.3, there exist $V_1^c, \ldots, V_n^c \in \{A\}$ and $x_1, \ldots, x_m \in C$ such that $V_1^c \cap \cdots \cap V_n^c \subseteq D_{\mathcal{K}_1}(X_1)$ and $V_1^c \cap \cdots \cap V_n^c \subseteq h_R(U_{x_1}^c) \cup \cdots \cup h_R(U_{x_m}^c)$. Then $C \subseteq h_R(U^c)$ where $U^c = U_{x_1}^c \cup \cdots \cup U_{x_m}^c \subseteq D_{\mathcal{K}_2}(X_2)$. So, there exists $U \in \mathcal{K}_2$ such that $R[C] \subseteq U^c$ and $y \in U$. Therefore, $R[C]$ is a closed subset of X_2.

Lemma 2.2. Let (X_1, \mathcal{K}_1) and (X_2, \mathcal{K}_2) be two N-spaces. Let $f : X_1 \to X_2$ be a map such that $f^{-1}(U) \in D_{\mathcal{K}_1}(X_1)$ for all $U \in D_{\mathcal{K}_2}(X_2)$. Then the relation $f^* \subseteq X_1 \times X_2$ defined by

$$(x, y) \in f^* \iff f(x) \preceq_2 y$$

is an N_Λ-relation.

Proof. By definition, $f^*(x) = \text{Cl}(f(x))$ for all $x \in X_1$. We show that $h_{f^*}(U) \subseteq D_{\mathcal{K}_1}(X_1)$ for all $U \in D_{\mathcal{K}_2}(X_2)$. Hence,

$$h_{f^*}(U) = \{x \in X_1 : f^*(x) \subseteq U\} = \{x \in X_1 : \text{Cl}(f(x)) \cap U^c = \emptyset\} = \{x \in X_1 : f(x) \cap U^c = \emptyset\} = \{x \in X_1 : f(x) \in U\} = \{x \in X_1 : x \in f^{-1}(U)\} = f^{-1}(U).$$

Since $f^{-1}(U) \subseteq D_{\mathcal{K}_1}(X_1)$, $h_{f^*}(U) \subseteq D_{\mathcal{K}_1}(X_1)$. Then f^* is an N_Λ-relation.

The next result affirm that the N-spaces with N_Λ-relations form a category.

Theorem 2.3. Let (X_1, \mathcal{K}_1), (X_2, \mathcal{K}_2) and (X_3, \mathcal{K}_3) be three N-spaces. Let $R \subseteq \mathcal{N}_\Lambda [X_1, X_2]$ and $S \subseteq \mathcal{N}_\Lambda [X_2, X_3]$. Then:

1. $\preceq_1 \subseteq \mathcal{N}_\Lambda [X_1, X_3]$.
2. $\preceq_2 \circ R = R$ and $S \circ \preceq_2 = S$.
3. $S \circ R \subseteq \mathcal{N}_\Lambda [X_1, X_3]$.

Proof. (1) It is clear that $\preceq_1(x) = \text{Cl}(x)$ for all $x \in X_1$. We see that $h_{\preceq_1}(U) = U$ for all $U \subseteq D_{\mathcal{K}_1}(X_1)$. If $x \in h_{\preceq_1}(U)$ then $\preceq_1(x) \subseteq U$, i.e., $\text{Cl}(x) \subseteq U$ and $x \in U$. Conversely, let $x \in U$. As U is a closed subset, $\text{Cl}(x) \subseteq U$ and $\preceq_1(x) \subseteq U$. So,

$$x \in h_{\preceq_1}(U) \quad \text{and} \quad \preceq_1 \subseteq \mathcal{N}_\Lambda [X_1, X_3].$$

(2) It is easy to prove that $R \subseteq \preceq_2 \circ R$ and $S \subseteq S \circ \preceq_2$. Let $(x, z) \in S \circ \preceq_2$. Then there is $y \in X_2$ such that $(x, y) \in \preceq_2$ and $(y, z) \in S$, i.e., $x \preceq_2 y$ and $z \in S(y)$. By Remark 2, $S(y) \subseteq S(x)$ and $z \in S(x)$. So, $(x, z) \in S$ and $S \circ \preceq_2 \subseteq S$. Similarly, if $(x, z) \in \preceq_2 \circ R$ then there is $y \in X_2$ such that $(x, y) \in R$ and $(y, z) \in \preceq_2$. Thus, $y \in R(x)$ and $z \in \text{Cl}(y)$. As $R(x)$ is a closed subset of X_1, $\text{Cl}(y) \subseteq R(x)$ and $z \in R(x)$. We deduce that

$$(x, z) \in R \quad \text{and} \quad \preceq_2 \circ R = R.$$

(3) Let $U \subseteq D_{\mathcal{K}_3}(X_3)$. Then $h_{(S \circ R)}(U) \subseteq D_{\mathcal{K}_1}(X_1)$. Indeed,

$$h_{(S \circ R)}(U) = \{x \in X_1 : (S \circ R)(x) \subseteq U\} = \{x \in X_1 : S(R(x)) \subseteq U\} = \{x \in X_1 : R(x) \subseteq h_S(U)\} = h_R(h_S(U)).$$

40
By Proposition 2.2 \((S \circ R)(x)\) is a closed subset of \(X_3\) for all \(x \in X_1\) and \(S \circ R \in \mathcal{N}R_{\Lambda} [X_1,X_3] \). \qed

We denote by \(\mathcal{N}R_{\Lambda}\) the category whose objects are \(N\)-spaces and morphisms \(N_{\Lambda}\)-relations between them.

Let \(A, B \in \mathcal{D}N\) and \(h \in \mathcal{S}D\mathcal{N}_{\Lambda} [A, B]\). Let \(R_h \subseteq X (B) \times X (A)\) be the binary relation defined by

\[(P, Q) \in R_h \iff Q \subseteq h^{-1}(P). \]

Proposition 2.4. Let \(A, B \in \mathcal{D}N\) and \(h \in \mathcal{S}D\mathcal{N}_{\Lambda} [A, B]\). Then:

1. For every \(P \in X (A)\) and for every \(a \in A\), \(h(a) \in P\) if and only if there exists \(Q \in X (A)\) such that \((P, Q) \in R_h\) and \(a \in Q\).
2. \(R_h \in \mathcal{N}R_{\Lambda} [X (B), X (A)]\).
3. If \(C \in \mathcal{D}N\) and \(k \in \mathcal{S}D\mathcal{N}_{\Lambda} [B, C]\) then \(R_{koh} = R_h \circ R_k\).
4. \(h_{R_h}(\varphi_A (a)) = \varphi_B (h (a))\) for all \(a \in A\).

Proof.

1. Let \(a \in A\) and \(P \in X (A)\). If \(h(a) \in P\) then \(a \in h^{-1}(P)\). By Lemma 2.1, we have \(h^{-1}(P) \in \mathcal{F}i (A)\). Thus, \([a] \cap h^{-1}(P) = \emptyset\) and by Theorem 1.1, there exists \(Q \in X (A)\) such that \([a] \subseteq Q\) and \(Q \cap h^{-1}(P) = \emptyset\). Therefore,

\[a \in Q\ and \ (P, Q) \in R_h. \]

The reciprocal is immediate.

2. By item (1), \(h_{R_h}(\varphi_A (a)) \in D_{kB} (X (B))\) for all \(\varphi_A (a) \in D_{kA} (X (A))\). Let \(P \in X (B)\). We show that \(R_h (P) = \bigcap \{\varphi_A (a) : h(a) \notin P\}\). Then

\[Q \in R_h (P) \iff Q \subseteq h^{-1}(P) \cap D_{kA} (X (A)) \iff \forall a \in A \\ (a \notin h^{-1}(P) \Rightarrow a \notin Q) \iff Q \in \bigcap \{\varphi_A (a) : h(a) \notin P\}. \]

So, \(R_h (P)\) is a closed subset of \(X (A)\) and \(R_h \in \mathcal{N}R_{\Lambda} [X (B), X (A)]\).

3. Let \(P \in X (B)\) and \(Q \in X (A)\). If \((P, Q) \in R_{koh}\) then \(Q \subseteq h^{-1}(k^{-1}(P))\). By Lemma 2.1, \(k^{-1}(P) \in \mathcal{F}i (B)\). We consider the set \(h (Q) = \{h(q) : q \in Q\} \subseteq B\). We note that

\[I (h (Q)) \cap k^{-1}(P) \subseteq \emptyset. \]

Otherwise, if there is \(a \in A\) such that \(a \in I (h (Q)) \cap k^{-1}(P)\) then there exists \(q \in Q\) such that \(a \leq h (q)\) and \(a \in k^{-1}(P)\). Since \(k^{-1}(P) \in \mathcal{F}i (B)\), \(h(q) \in k^{-1}(P)\). Thus, \(q \notin h^{-1}(k^{-1}(P))\) and \(q \notin Q\) which is a contradiction. So, \(I (h (Q)) \cap k^{-1}(P) = \emptyset\) and by Theorem 1.1, there exists \(D \in X (B)\) such that \(h (Q) \subseteq D\) and \(D \cap k^{-1}(P) = \emptyset\). Then \((P, D) \in R_k\) and \((D, Q) \in R_h\), i.e., \((P, Q) \in R_h \circ R_k\). It is easy to check that \(R_h \circ R_k \subseteq R_{koh}\).

4. It follows from (1). \qed

Proposition 2.5. Let \(\langle X_1, K_1 \rangle, \langle X_2, K_2 \rangle\) and \(\langle X_3, K_3 \rangle\) be three \(N\)-spaces. Let \(R \in \mathcal{N}R_{\Lambda} [X_1, X_2]\) and \(S \in \mathcal{N}R_{\Lambda} [X_2, X_3]\). Then:

1. \(h_R \in \mathcal{S}D\mathcal{N}_{\Lambda} [D_{K_2} (X_2), D_{K_1} (X_1)]\).
2. \(h_{S \circ R} = h_R \circ h_S\).
3. For every \((x, y) \in X_1 \times X_2\),

\[(x, y) \in R \iff (H_{X_1}(x), H_{X_2}(y)) \in R_{h_R}. \]

4. \(R_{h_R} \circ H_{X_1} = H_{X_2} \circ R. \)
Theorem 2.6. The contravariant functors \mathcal{X} and \mathcal{D} define a dual equivalence between the categories SDN_\wedge and $\mathcal{N}R_\wedge$.

3. \Box-distributive nearlattices

A modal algebra is a pair $B = \langle B, \Box \rangle$ where B is a Boolean algebra and \Box is a \wedge-semi-homomorphism. Recall that the modal algebras are the algebraic semantics of the modal propositional logic in the same way that Boolean algebras are the algebraic counterpart of the classical propositional logic $\mathcal{L}[1]$. Analogously, a modal lattice is a pair $L = \langle L, \Box \rangle$ where L is a bounded distributive lattice and \Box is a \wedge-semi-homomorphism $\mathcal{L}[2]$. We give an extension of this notion.

Definition 6. We say that a pair $A_\Box = \langle A, \Box \rangle$ is a distributive nearlattice with a necessity modal operator, or \Box-distributive nearlattice, if $A \in \mathcal{DN}$ and \Box is a \wedge-semi-homomorphism defined on A.

Let us denote by \mathcal{DN}_\Box the class of \Box-distributive nearlattices. Since a \Box-distributive nearlattice is a distributive nearlattice endowed with a \wedge-semi-homomorphism, we have that all results on representation and duality given in the previous section can be applied to these class of structures.

Definition 7. Let $A_\Box, B_\Box \in \mathcal{DN}_\Box$. Let $h \in SDN_\wedge \langle A, B \rangle$. We say that h is a \Box-homomorphism if $h(\Box_1 a) = \Box_2 h(a)$ for all $a \in A$. If h is an isomorphism then we say that h is a \Box-isomorphism.

Denote by $SDN_\Box \langle A_\Box, B_\Box \rangle$ the set of all \Box-homomorphisms from A_\Box into B_\Box. The category of \Box-distributive nearlattices and their \Box-homomorphisms is denoted by SDN_\Box.

Example 2. In $\mathcal{L}[3]$ the author studied the bounded distributive lattices with a necessity modal operator \Box. It is immediate that every bounded distributive lattice with a necessity modal operator is a \Box-distributive nearlattice.
Example 3. In [6] the variety of modal Tarski algebras is introduced. A modal Tarski algebra is an algebra $A = \langle A, \Box \rangle$ where $A = \langle A, \to \rangle$ is a Tarski algebra and \Box is a unary operator defined on A such that it verifies the following conditions:

1. $\Box 1 = 1$,
2. $\Box (a \to b) \leq \Box a \to \Box b$ for all $a, b \in A$.

Then $A\Box$ is a \Box-distributive nearlattice where the join of two elements $a, b \in A$ is defined by $a \vee b = (a \to b) \to b$. First, we see that \Box preserves the order. Let $a, b \in A$ such that $a \leq b$. Then $a \to b = 1$ and $\Box (a \to b) = \Box 1 = 1$. By (2), $\Box a \to \Box b = 1$, i.e., $\Box a \leq \Box b$. Suppose that $a \land b$ exists. As \Box preserves the order, $\Box (a \land b) \leq \Box a \land \Box b$. On the other hand, since $a \land b \leq a \land b$, we have $a \leq b \to (a \land b)$. Thus, $\Box a \leq \Box (b \to (a \land b)) \leq \Box b \to \Box (a \land b)$ by (2) and $\Box a \land \Box b \leq \Box (a \land b)$. Therefore, \Box is a \land-semi-homomorphism and $A\Box$ is a \Box-distributive nearlattice.

In [9] a topological duality was developed for distributive nearlattices. Using the results of the Section 2 we extend this representation and duality to the class of distributive nearlattices with a necessity modal operator.

Definition 8. We say that the structure $\langle X, K, Q \rangle$ is an $N\Box$-space if $\langle X, K \rangle$ is an N-space and $Q \subseteq X \times X$ is an N_\land-relation.

If $\langle X, K, Q \rangle$ is an $N\Box$-space then the map $\Box_Q: D_K (X) \to D_K (X)$ given by

$$\Box_Q (U) = \{ x \in X : Q (x) \subseteq U \}$$

is a \land-semi-homomorphism. Then $\langle D_K (X), \Box_Q \rangle \in \mathcal{DN}_\Box$.

Let $A\Box \in \mathcal{DN}_\Box$. By the results given in the Section 2 the binary relation $Q\Box \subseteq X (A) \times X (A)$ given by

$$(P, R) \in Q\Box \text{ iff } R \subseteq \Box^{-1} (P),$$

is a N_\land-relation. We have the following result.

Theorem 3.1. Let $A\Box \in \mathcal{DN}_\Box$. Then $\langle X (A), K_A, Q\Box \rangle$ is an $N\Box$-space.

Definition 9. Let $\langle X_1, K_1, Q_1 \rangle$ and $\langle X_2, K_2, Q_2 \rangle$ be two $N\Box$-spaces. Let $R \in \mathcal{N}_{\land}\mathcal{R}_\Delta [X_1, X_2]$. We say that R is an $N_{\land}\Box$-relation if $R \circ Q_1 = Q_2 \circ R$.

Denote by $\mathcal{N}_{\land}\mathcal{R}_\Box [X_1, X_2]$ the set of all $N_{\land}\Box$-relations between $\langle X_1, K_1, Q_1 \rangle$ and $\langle X_2, K_2, Q_2 \rangle$. The category whose objects are $N\Box$-spaces and morphisms $N_{\land}\Box$-relations between them will be denoted by $\mathcal{N}_{\land}\mathcal{R}_\Box$.

Theorem 3.2. Let $A\Box \in \mathcal{DN}_\Box$. Then there exists an $N\Box$-space $\langle X, K, Q \rangle$ such that $A\Box$ is \Box-isomorphic to $\langle D_K (X), \Box_Q \rangle$.

Proof. Since $\langle X (A), K_A \rangle$ is an N-space and $Q\Box$ an N_{\land}-relation, the structure $\langle X (A), K_A, Q\Box \rangle$ is an $N\Box$-space. So, $\langle D_{K_A} (X (A)), \Box_Q \rangle$ is a \Box-distributive nearlattice. By Proposition 2.4 $\varphi_A (\Box a) = \Box_Q (\varphi_A (a))$ for all $a \in A$. Then $\varphi_A \in SD\mathcal{N}_\Box [A\Box, D_{K_A} (X (A))]$ and by Theorem 1.2 we have that $A\Box$ is \Box-isomorphic to $\langle D_{K_A} (X (A)), \Box_Q \rangle$.

Let $\langle X, K \rangle$ be an N-space. Note that $P \leq Q$ if and only if $Q \subseteq P$ for all $P, Q \in X (D_K (X))$. By the results developed in [9] and Lemma 2.2 the map $H_X : X \to X (D_K (X))$ induces an N_{\land}-relation $H_X^\land \subseteq X \times X (D_K (X))$ given by

$$(x, P) \in H_X^\land \text{ iff } P \subseteq H_X (x).$$

Theorem 3.3. Let $\langle X, K, Q \rangle$ be an $N\Box$-space. Then $H_X^\land \in \mathcal{N}_{\land}\mathcal{R}_\Box [X, X (D_K (X))]$.

43
Proof. We know that $H_X : X \to X(D_K(X))$ is an homeomorphism between the $N\Box$-spaces $\langle X, K, Q \rangle$ and $\langle X(D_K(X)), K_D(X), Q_{\Box Q} \rangle$ such that
$$(x, y) \in Q \text{ iff } (H_X(x), H_X(y)) \in Q_{\Box Q}.$$ We only see that (3.4). We know that
$$(h^3 \circ P) \text{ and } (h \circ P).$$ Thus, $(h_X(x), H_X(y)) \in Q_{\Box Q}$ and $P \subseteq H_X(y)$. It follows that $P \subseteq \Box_Q^{-1}(H_X(x))$ and $(H_X(x), P) \in Q_{\Box Q}$. On the other hand, $(x, H_X(x)) \in H_X^\Box$. Hence, $(x, P) \in Q_{\Box Q} \circ H_X^\Box$ and $H_X^\Box \circ Q \subseteq Q_{\Box Q} \circ H_X^\Box$. Reciprocally, let $(x, P) \in Q_{\Box Q} \circ H_X^\Box$. Then there exists $F \in X(D_K(X))$ such that $(x, F) \in H_X^\Box$ and $(F, P) \in Q_{\Box Q}$, i.e., $F \subseteq H_X(x)$ and $P \subseteq \Box_Q^{-1}(F)$. As H_X is onto, there exist $y, z \in X$ such that $H_X(y) = F$ and $H_X(z) = P$. So, $H_X(z) \subseteq \Box_Q^{-1}(H_X(y)) \subseteq \Box_Q^{-1}(H_X(x))$ and $(H_X(x), H_X(z)) \in Q_{\Box Q}$. Then $(x, z) \in Q$. Since $(z, P) \in H_X^\Box$, we have $(x, P) \in H_X^\Box \circ Q$. Therefore, $H_X^\Box \circ Q = Q_{\Box Q} \circ H_X^\Box$. \hfill \Box

In Section 2 it was proved that if $\langle X_1, K_1 \rangle$ and $\langle X_2, K_2 \rangle$ are N-spaces and $R \subseteq X_1 \times X_2$ is an N_\wedge-relation then the map $h_R : D_{K_2}(X_2) \to D_{K_1}(X_1)$ is a \wedge-semi-homomorphism.

Theorem 3.4. Let $\langle X_1, K_1, Q_1 \rangle$ and $\langle X_2, K_2, Q_2 \rangle$ be two $N\Box$-spaces. If $R \in N_\wedge[0](X_1, X_2)$ then $h_R \in SDN_\Box[D_{K_2}(X_2), D_{K_1}(X_1)]$.

Proof. Let $x \in X_1$ and $U \in D_{K_2}(X_2)$. Since R is an $N_\wedge\Box$-relation,
$$x \in h_R(\Box_{Q_2}(U)) \text{ if and only if } R(x) \subseteq \Box_{Q_2}(U) \text{ and } \forall y \in R(x) (Q_2(y) \subseteq U)$$
$$\text{iff } Q_2(R(x)) \subseteq U \text{ and } \forall z \in Q_1(x) (R(z) \subseteq U) \text{ and } \forall x \in \Box_{Q_1}(h_R(U)).$$
Thus, $h_R(\Box_{Q_2}(U)) = \Box_{Q_1}(h_R(U))$ and h_R is a \Box-homomorphism. \hfill \Box

Let $A, B \in DN_\Box$ and $h : A \to B$ be a \wedge-semi-homomorphism. In Section 2 it was proved that the relation $R_h \subseteq X(B) \times X(A)$ is an N_\wedge-relation. We study R_h when h is a \Box-homomorphism.

Theorem 3.5. Let $\langle A_\Box, B_{\Box} \rangle \in DN_\Box$. If $h \in SDN_\Box[A_\Box, B_{\Box}]$ then $h \in N_\wedge[0][X(B), X(A)]$.

Proof. It is enough to show that $R_h \circ Q_{\Box_2} = Q_{\Box_1} \circ R_h$. Let $P \in X(B)$ and $Q \in X(A)$ such that $(P, D) \in Q_{\Box_2} \circ R_h$. Then there is $F \in X(A)$ such that $(P, F) \in R_h$ and $(F, D) \in Q_{\Box_1}$, i.e., $F \subseteq h^{-1}(P)$ and $D \subseteq \Box^{-1}_1(F)$. By Lemma 2.1, we have $\Box^{-1}_2(P)^c \in \text{Fi}(B)$. We prove that $I(h(D)) \cap \Box^{-1}_2(P)^c = \emptyset$. If $b \in I(h(D)) \cap \Box^{-1}_2(P)^c$ then there exists $a \in D$ such that $b \leq h(a)$ and $\Box^2b \notin P$. Since h is a \Box-homomorphism, $\Box^2b \leq \Box^2(h(a)) = h(\Box^1a)$. It follows that $h(\Box^1a) \notin P$. So, $\Box^1a \notin h^{-1}(P)$ and $a \notin \Box^{-1}_1(F)$. Then $a \notin D$ which is a contradiction. Since $I(h(D)) \cap \Box^{-1}_2(P)^c = \emptyset$, by Theorem 1.1 there exists $H \in X(B)$ such that $I(h(D)) \subseteq H$ and $H \cap \Box^{-1}_2(P)^c = \emptyset$. Thus, $D \subseteq h^{-1}(H)$ and $H \subseteq \Box^{-1}_1(P)$, i.e., $(H, D) \in R_h$ and $(P, H) \in Q_{\Box_2}$. Therefore, $(P, D) \in h_R \circ Q_{\Box_2}$ and $Q_{\Box_2} \circ R_h \subseteq h_R \circ Q_{\Box_2}$. The other inclusion is similar. \hfill \Box

From the functors \Box and X given by 2.1 and 2.2 respectively, and the Theorems 3.4 and 3.5 we give the following result.

Theorem 3.6. The contravariant functors $X|_{SDN_\Box}$ and $\Box|_{N_\wedge[0]}$ define a dual equivalence between the categories SDN_\Box and $N_\wedge[0]$.

44
4. Some classes of \(\Box\)-distributive nearlattices

There exist many important classes of Boolean algebras endowed with a modal operator. For example, interior algebras, also known as topological Boolean algebras or closure algebras, are modal algebras \(B = (B, \Box)\) where the modal operator satisfies the additional conditions \(\Box a \leq a\) and \(\Box a \leq \Box^2 a\) for all \(a \in B\). Some classes of modal algebras can be characterized by means of first order conditions defined in the associated modal space, for example, a modal algebra \(B = (B, \Box)\) is an interior algebra if and only if the relation \(Q^\Box\) associated with the modal operator \(\Box\) is reflexive and transitive. In this section we give similar results for some classes of \(\Box\)-distributive nearlattices.

Let \(Q\) be a binary relation defined on a set \(X\). For each \(n \geq 0\) we define inductively the relation \(Q^n\) as follows: \((x, y) \in Q^0\) if and only if \(x = y\) and \((x, y) \in Q^{n+1} = Q \circ Q^n\) where \(\circ\) is the usual composition of relations.

Lemma 4.1. Let \(A_\Box \in D N_\Box\). Let \(P \in X(A)\) and \(a \in A\). For each \(n \in \mathbb{N}\), \(\Box^n a \in P\) if and only if there exists \(R \in X(A)\) such that \((P, R) \in Q^n\Box\) and \(a \in R\).

Proof. The proof is by induction on \(n\). By Proposition \([2.4](a)\) it is immediately for \(n = 0\). Assume that \(\Box^n a \in P\) implies that there exists \(R \in X(A)\) such that \((P, R) \in Q^n\Box\) and \(a \in R\). Suppose that \(\Box^{n+1} a \in P\), i.e., \(\Box(\Box^n a) \in P\). By Proposition \([2.4](a)\) there is \(R \in X(A)\) such that \(R \subseteq \Box^{-1}(P)\) and \(\Box^n a \in R\). By assumption, there exists \(D \in X(A)\) such that \((R, D) \in Q^n\Box\) and \(a \in R\). Since \((P, R) \in Q^n\Box\) and \((R, D) \in Q^n\Box\) we get that \((P, D) \in Q^{n+1}\Box\). Conversely, suppose that \((P, R) \in Q^{n+1}\Box\) and \(a \in R\). So, there exists \(D \in X(A)\) such that \((P, D) \in Q^n\Box\) and \((D, R) \in Q^n\Box\) and \(\Box^n a \in R\). Therefore, \(R \subseteq \Box^{-1}(D)\) and as \(a \in R\), \(a \in \Box^{-1}(D)\). Thus, \((P, D) \in Q^n\Box\) and \(\Box a \in D\). It follows by assumption that \(\Box^{n+1} a \in P\).

Theorem 4.1. Let \(A_\Box \in D N_\Box\). Then:

1. \(a \leq \Box a\) if and only for all \(P\) and \(R ((P, R) \in Q^n \Box \Rightarrow R \subseteq P)\).
2. \(\Box^n a \leq \Box a\) if and only for all \(P\) and \(R ((P, R) \in Q^n \Box \Rightarrow R \subseteq P)\) with \(n \in \mathbb{N}\).
3. \(\Box a \leq a\) if \(Q\Box\) is reflexive.
4. \(\Box a \leq \Box^2 a\) if \(Q\Box\) is transitive.
5. \(\Box^2 a \leq \Box a\) if and only for all \(P\) and \(R ((P, R) \in Q^n \Box \Rightarrow \text{there exists } T ((P, T) \in Q^n \Box \text{ and } (T, R) \in Q^n \Box))\).

Proof. We prove only the assertions (2), (3) and (5).

(2) Let \(n \in \mathbb{N}\). Suppose that there exist \(P, R \in X(A)\) such that \((P, R) \in Q^n \Box\) and \(R \subseteq P\). Hence, there is a \(R\) such that \(a \notin P\). Since \((P, R) \in Q^n \Box\) and \(a \in R\), by Lemma \([1.1](b)\) \(\Box^n a \in P\). As \(a \leq \Box^n a\) we have \(a \in P\), which is a contradiction. Conversely, suppose that there exists a \(A\) such that \(a \notin \Box^n a\). By Theorem \([1.1]\) it follows that there is \(P \in X(A)\) such that \(\Box^n a \in P\) and \(a \notin P\). So, by Lemma \([4.1]\) there exists \(R \in X(A)\) such that \((P, R) \in Q^n \Box\) and \(a \in R\). By assumption, \(R \subseteq P\) and \(a \in P\) which is a contradiction.

(3) Let \(P \in X(A)\) and \(a \in A\) such that \(a \in P\). Since \(\Box a \leq a\), \(\Box a \in P\). So, \(a \leq \Box^{-1}(P)\) and \(P \subseteq \Box^{-1}(P)\). Then \((P, R) \in Q^n \Box\) and \(Q\Box\) is reflexive. Reciprocally, suppose that there is a \(A\) such that \(\Box a \notin A\). By Theorem \([1.1]\) there exists \(P \in X(A)\) such that \(\Box a \in P\) and \(a \notin P\), i.e., \(a \notin \Box^{-1}(P)\). As \(Q\Box\) is reflexive, \(P \subseteq \Box^{-1}(P)\) and \(a \in \Box^{-1}(P)\) which is impossible.

(5) Assume that \(\Box^2 a \leq \Box a\) for all \(a \in A\) and let \((P, R) \in Q^n\Box\). Consider the ideal \(I(\Box(R))\) and the filter \(\Box^{-1}(P)^c\). Suppose that there exists \(c \in A\) such that \(c \in I(\Box(R)) \cap \Box^{-1}(P)^c\). Thus, there exist \(r_1, \ldots, r_n \in R\) such that \(c \leq \Box r_1 \vee \cdots \vee \Box r_n\). Since \(r_1, \ldots, r_n \in R\) and \(R\) is an ideal, \(r_1 \vee \cdots \vee r_n \equiv r \in R\). Then \(\Box r \equiv \Box a\) for all \(1 \leq i \leq n\) and \(c \leq \Box r\). It follows that \(r \in R \subseteq \Box^{-1}(P)\), i.e., \(\Box r \in P\). As \(\Box^2 r \leq \Box a\), \(\Box^2 r \in P\). On the other hand, \(c \leq \Box r\) and \(\Box r \in \Box^{-1}(P)^c\). Then \(\Box^2 r \notin P\), which is impossible. So, \(I(\Box(R)) \cap \Box^{-1}(P)^c = \emptyset\) and by Theorem \([1.1]\) there exists
Reciprocally, suppose that there is \(a \in X (A) \) such that \(\Box (\square \in T) \cap T \). This is, \((P,T) \in Q \) and \((T,R) \in Q \). By Proposition 2.3 we have \(\square \alpha a \notin P \) and \(\Box \square \alpha a \notin P \). By assumption, there is \(a \in X (A) \) such that \((P,R) \in Q \) and \(a \in R \). By assumption, there is \(T \in X (A) \) such that \((P,T) \in Q \) and \((T,R) \in Q \), i.e., \((P,R) \in Q_1 \) and since \(a \in R \), by Lemma 4.1 we have \(\Box^2 a \in P \) which is a contradiction. \(\square \)

Each equation of the Theorem 4.1 defines a subclass of \(\square \)-distributed nearlattices where its dual space satisfies the correspondent condition.

4.1. S\(5 \)-nearlattices

Recall that a monadic Boolean algebra, in the sense of Halmos [19], is a Boolean algebra \(B \) with a modal operator \(\forall \) satisfying the equations \(\forall 1 = 1 \), \(\forall (a \vee b) = \forall a \vee \forall b \) and \(\forall a \leq a \) for all \(a,b \in B \). The name “monadic” comes from the connection with predicate logics for languages having one-placed predicates and a single quantifier. There are different generalizations of the monadic algebras such as the variety of \(Q \)-distributive lattices introduced in [16], the monadic Heyting algebras studied in [4], the lattices with an antitone involution endowed with a quantifier studied in [15] or the orthoposets with a quantifier studied in [17]. In this subsection we introduce the class of \(S_5 \)-nearlattices.

Definition 10. Let \(A_{\Box} \in D N_{\Box} \). We say that \(A_{\Box} \) is an \(S_4 \)-nearlattice if it verifies the following conditions:

1. \(\Box a \leq a \),
2. \(\Box a \leq \Box^2 a \) for all \(a \in A \).

We say that \(A_{\Box} \) is an \(S_5 \)-nearlattice if \(A_{\Box} \) is an \(S_4 \)-nearlattice and satisfies the additional condition:

\[
\Box (\Box a \vee b) \leq \Box a \vee \Box b \text{ for all } a,b \in A.
\]

By Theorem 4.1, \(A_{\Box} \) is an \(S_4 \)-nearlattice if and only if \(Q_{\Box} \) is reflexive and transitive. Thus, the dual space of an \(S_4 \)-nearlattice \(A_{\Box} \) is an \(N_{\Box} \)-space \((X,K,Q) \) such that \(Q_{\Box} \) is a quasi-order. The next objective is to characterize the dual space of an \(S_5 \)-nearlattice.

Lemma 4.2. Let \(A_{\Box} \) be an \(S_4 \)-nearlattice. Then:

1. \(\Box a \vee \Box b \leq \Box (\Box a \vee \Box b) \),
2. \(\Box a \vee \Box b \leq \Box (\Box a \vee \Box b) \text{ for all } a,b \in A \).

Proof. (1) Let \(a,b \in A \). As \(\Box a \leq \Box a \vee b \) and \(\Box \) preserves the order, we have \(\Box^2 a \leq \Box (\Box a \vee \Box b) \). Since \(\Box a \leq \Box^2 a \), \(\Box a \leq \Box (\Box a \vee \Box b) \). Analogously, \(\Box b \leq \Box (\Box a \vee \Box b) \). Therefore, \(\Box a \vee \Box b \leq \Box (\Box a \vee \Box b) \).

(2) Let \(a,b \in A \). Since \(\Box a \leq \Box a \vee b \), it follows that \(\Box a \leq \Box^2 a \leq \Box (\Box a \vee \Box b) \). Similarly, \(\Box b \leq \Box (\Box a \vee \Box b) \). Therefore, \(\Box a \vee \Box b \leq \Box (\Box a \vee \Box b) \). \(\square \)

Let \(A_{\Box} \in D N_{\Box} \). We consider the relation

\[E_{\Box} = Q_{\Box} \cap Q_{\Box}^{-1}. \]

Note that if \(Q_{\Box} \) is reflexive and transitive then \(E_{\Box} \) is an equivalence relation. For \(U \subseteq X (A) \), let

\[h_{E_{\Box}}(U) = \{ P \in X (A) : E_{\Box}(P) \subseteq U \}. \]

Lemma 4.3. Let \(A_{\Box} \) be an \(S_4 \)-nearlattice. The following conditions are equivalent:

1. \((P,D) \in E_{\Box} \),
2. \(\Box^{-1} (P) = \Box^{-1} (D) \text{ for all } P,D \in X (A) \).
Remark 3. Let $A_{\square} \in \mathcal{DN}_{\square}$ and $P \in X(A)$. It is easy to see that $(\square(P)) \in \text{Id}(A)$.

Remark 4. Let X be a set and let $R \subseteq X \times X$ be an equivalence relation. So, $\square_R(U \cup \square_R(V)) = \square_R(U) \cup \square_R(V)$ for all $U, V \in \mathcal{P}(X)$. Let $x \notin \square_R(U \cup \square_R(V)$ then there exist $y, z \in X$ such that $y \in R(x) - U$ and $z \in R(x) - V$. Since $R(x) \subseteq U \cup \square_R(V)$, we have $y \in \square_R(V)$. As R is an equivalence relation, $(y, z) \in R$ and consequently $z \in V$ which is a contradiction. Thus, $\square_R(U \cup \square_R(V)) \subseteq \square_R(U) \cup \square_R(V)$. On the other hand, $\square_R(U) \subseteq \square_R(U \cup \square_R(V))$ and $\square_R(V) \subseteq \square_R(U \cup \square_R(V))$. Therefore $\square_R(U) \cup \square_R(V) \subseteq \square_R(U \cup \square_R(V))$.

Proposition 4.2. Let A_{\square} be an $S4$-nearlattice. The following conditions are equivalent:

1. A_{\square} is an $S5$-nearlattice.
2. For every $P \in X(A)$ and for every $a \in A$, $\square a \in P$ if and only if there exists $Q \in X(A)$ such that $(P, Q) \in E_{\square}$ and $a \in Q$.
3. $\varphi_A(\square a) = h_{E_{\square}}(\varphi_A(a))$ for all $a \in A$.
4. $Q \subseteq (E_{\square} \circ \subseteq^{-1})$.

Proof. (1) \Rightarrow (2) Let $P \in X(A)$ and $a \in A$ such that $\square a \subseteq P$. By Lemma 2.1, $\square^{-1}(P)^c \in \text{Fi}(A)$. We consider the ideal $I = I((\square(P)] \cup \{a\})$. Then $I \cap \square^{-1}(P)^c = \emptyset$. Otherwise, there exists $b \in A$ such that $b \in \square^{-1}(P)^c$ and there exists $c \in P$ such that $b \leq c \lor a$. So, $\square b \leq \square (c \lor a) \subseteq \square c \lor a$. Since $\square b \notin P$, $\square c \lor a \notin P$. Also, as $\square a \in P$, we have $\square c \notin P$. On the other hand, $P \subseteq \square^{-1}(P)$ and $c \in P$. Then $\square c \in P$ which is a contradiction. Therefore, $I \cap \square^{-1}(P)^c = \emptyset$ and by Theorem 1.1, there exists $Q \in X(A)$ such that $I \subseteq Q$ and $Q \cap \square^{-1}(P)^c = \emptyset$. Then $a \in Q$, $\square(P) \subseteq Q$ and $Q \subseteq \square^{-1}(P)$. Since $\square a \subseteq \square^{-1}a$, we have $\square^{-1}(Q) \subseteq \square^{-1}(P)$ and $\square^{-1}(P) \subseteq \square^{-1}(Q)$, i.e., $\square^{-1}(P) = \square^{-1}(Q)$. Thus, by Lemma 4.3, $(P, Q) \in E_{\square}$ and $a \in Q$.

Conversely, if there is $Q \in X(A)$ such that $(P, Q) \in E_{\square}$ and $a \in Q$ then, by Lemma 4.3, $\square^{-1}(P) = \square^{-1}(Q)$. Since $\square a \leq a$, $\square a \in Q$ and $a \in \square^{-1}(Q)$. So, $\square a \in P$.

(2) \Rightarrow (3) It is immediate.

(3) \Rightarrow (4). Let $P, D \in X(A)$ such that $(P, D) \in Q_{\square}$. We consider the filter $\square^{-1}(P)^c$ and the ideal $I = I(D \cup (\square(P)])$. Then $I \cap \square^{-1}(P)^c = \emptyset$. If there exists $b \in A$ such that $b \in \square^{-1}(P)^c$ and $b \in I$ then there exists $D \subseteq D$ and $c \in P$ such that $b \leq d \lor c$. So, $\square b \leq \square (d \lor c)$. Since $\square b \notin P$, we have $\square (d \lor c) \notin P$. By hypothesis and Remark 4 it follows that

$$P \in \varphi_A(\square (d \lor c)) = h_{E_{\square}}(\varphi_A(d \lor c)) = h_{E_{\square}}(\varphi_A(d) \lor \varphi_A(c)) = h_{E_{\square}}(\varphi_A(d)) \lor h_{E_{\square}}(\varphi_A(c)) = \varphi_A(d) \lor \varphi_A(c) = \varphi_A(\square d \lor \square c).$$

Then $P \in \varphi_A(\square d \lor \square c)$, i.e., $\square d \lor \square c \notin P$. As $d \in D \subseteq \square^{-1}(P)$, $\square d \in P$. Thus, $\square c \notin P$ which is a contradiction because $c \in P \subseteq \square^{-1}(P)$. Therefore $I \cap \square^{-1}(P)^c = \emptyset$ and by Theorem 1.1, there exists $S \in X(A)$ such that $I \subseteq S$ and $S \cap \square^{-1}(P)^c = \emptyset$. So, $D \subseteq S$, $\square(P) \subseteq S$ and $S \subseteq \square^{-1}(P)$. It is easy to see that $(P, S) \in E_{\square}$ and $(P, D) \in E_{\square} \subseteq \subseteq^{-1}$. Then $Q_{\square} \subseteq (E_{\square} \circ \subseteq^{-1})$.

47
The previous result suggests the following definition.

Definition 11. We say that the structure \(\langle X, Q, K \rangle \) is an **S5-space** if \(\langle X, Q, K \rangle \) is an \(\nabla \)-space and \(Q \subseteq (Q \cap Q^{-1})^o \leq -1 \).

If \(\langle X, Q, K \rangle \) is an **S5-space** then \(\langle D_K(X), \nabla Q \rangle \) is an **S5-space**.

Remark 5. Let \(\langle X, Q, K \rangle \) be an **S5-space**. We consider the equivalence relation \(E_Q = Q \cap Q^{-1} \).

Then the structure \(\langle X, E_Q, K \rangle \) verifies the following conditions:

1. \(h_{E_Q}(U) = \{ x \in X : E_Q(x) \subseteq U \} \in D_K(X) \) for all \(U \in D_K(X) \).
2. \(E_Q(x) \) is a closed subset of \(X \) for all \(x \in X \).

Conversely, if \(\langle X, E, K \rangle \) is a structure such that \(\langle X, K \rangle \) is an \(N \)-space and \(E \) is an equivalence relation on \(X \) satisfying the conditions (1) and (2) above then \(\langle X, Q_E, K \rangle \), where \(Q_E \) is a reflexive and transitive relation defined by \(Q_E = E \circ \leq -1 \), is an **S5-space**. Thus, we can identify the **S5-spaces** with triples \(\langle X, E, K \rangle \) where \(\langle X, K \rangle \) is an \(N \)-space and \(E \) is an equivalence relation on \(X \) satisfying the conditions (1) and (2).

5. Application of the duality

In this section we give an application of the topological duality developed in Section 3.

5.1. \(\nabla \)-congruences

Let \(A \in \mathcal{DN} \). In [9] it was shown that the distributive lattice of the congruences \(\text{Con}(A) \) of \(A \) is dually isomorphic to certain subsets, called **N-subspaces**, of the dual space \(\langle X(A), K_A \rangle \). We extend this result to the congruences of a \(\nabla \)-distributive nearlattice.

Recall that if \(\langle X, K \rangle \) is a topological space with a base \(K \) and \(Y \) is a subset of \(X \) then the family \(K_Y = \{ U \cap Y : U \in K \} \) is a basis for a topology on \(Y \) and the pair \(\langle Y, K_Y \rangle \) is a topological space.

Definition 12. Let \(\langle X, K \rangle \) be an \(N \)-space and let \(Y \) be a subset of \(X \). We say that \(Y \) is an **N-subspace** if \(\langle Y, K_Y \rangle \) is an \(N \)-space.

Denote by \(S(X) \) the set of all \(N \)-subspaces of an \(N \)-space \(\langle X, K \rangle \).

Let \(A \in \mathcal{DN} \) and let \(\langle X(A), K_A \rangle \) be the dual space of \(A \). By [9], there exists a dual correspondence \(Y \to \theta(Y) \) from the \(N \)-subspaces \(S(X(A)) \) of \(X(A) \) onto the congruences \(\text{Con}(A) \) of \(A \). If \(Y \) is a subset of \(X(A) \) then the binary relation \(\theta(Y) \subseteq A \times A \) given by \((a, b) \in \theta(Y) \) if and only if \(\varphi_A(a)^o \cap Y = \varphi_A(b)^o \cap Y \) is a congruence on \(A \). Conversely, if \(\theta \in \text{Con}(A) \) then we have the canonical map \(q_\theta : A \to A/\theta \) where each element \(a \in A \) is assigned the equivalence class \(q_\theta(a) = a/\theta \). We consider the set

\[
Y_\theta = \{ q_\theta^{-1}(P) : P \in X(A/\theta) \}.
\]

Then \(Y_\theta \subseteq X(A) \) and the pair \(\langle Y_\theta, K_{Y_\theta} \rangle \) is an \(N \)-subspace. For more details see [9].
Definition 13. Let \((X, \mathcal{K}, Q) \) be an \(N\Box \)-space and let \(Y \) be a subset of \(X \). We say that \(Y \) is \(Q\)-saturated if \((Y, K_Y) \) is an \(N\)-subspace and \(max Q(x) \subseteq Y \) for all \(x \in Y \).

We denote by \(S_Q(X) \) the set of all \(Q\)-saturated subsets of an \(N\Box \)-space \((X, \mathcal{K}, Q) \).

Let \(A \in D_N \) and let \(\langle X(A), \mathcal{K}_A, Q \Box \rangle \) be the dual space of \(A \). Then the map \(F: S_Q(X(A)) \to Con_A(\Box) \)

defined by \(F(Y) = \theta(Y) \) is a dual isomorphism.

Proof. Let \(Y \) be a \(Q\Box \)-saturated subset of \(X(A) \). We prove that \(\theta(Y) \) is compatible with the operator \(\Box \). Let \(a, b \in A \) such that \((a, b) \in \theta(Y) \) and suppose that \(\varphi_A(\Box a)^c \cap Y \neq \varphi_A(\Box b)^c \cap Y \), i.e., there is \(P \in \varphi_A(\Box a)^c \) such that \(P \notin \varphi_A(\Box b)^c \). Then \(P \in Y \), \(\Box a \in P \) and \(\Box b \notin P \). Thus, by Proposition 2.4 there exists \(R \in X(A) \) such that \(R \subseteq \Box^{-1}(P) \) and \(a \in R \). Consider the family

\[
G = \{ H \in X(A) : R \subseteq H \subseteq \Box^{-1}(P) \}.
\]

Then \(G \) is non-empty and by Zorn’s Lemma there exists a maximal element \(D \in G \). As \(a \in R \subseteq D \), \(D \in \varphi_A(a)^c \). On the other hand, \(D \in max Q_D(P) \subseteq Y \). So, \(D \in \varphi_A(a)^c \cap Y = \varphi_A(b)^c \cap Y \) and \(D \in \varphi_A(b)^c \), i.e., \(b \in D \subseteq \Box^{-1}(P) \). Then \(\Box b \in P \) which is a contradiction. Thus, \((\Box a, \Box b) \in \theta(Y) \).

Reciprocally, let \(\theta \in Con_A(\Box) \). We know that the pair \((Y_0, \mathcal{K}_0) \) is an \(N\)-space such that \(F(Y_0) = \theta \). We see that \(Y_0 \) is a \(Q\Box \)-saturated subset. Let \(P \subseteq Y_0 \) and \(R \in max Q_D(P) \) such that \(R \notin Y_0 \). Then \(R \subseteq \Box^{-1}(P) \) and we consider

\[
\bigcap \{ \varphi_A(b) \cap Y_0 : \varphi_A(b) \notin H_{X(A)}(R) \} \cap \bigcap \{ \varphi_A(c)^c \cap Y_0 : \varphi_A(c) \in H_{X(A)}(R) \}.
\]

If this intersection is non-empty then there exists \(D \in X(A) \) such that \(H_{X(A)}(D) = H_{X(A)}(R) \) and since \(H_{X(A)} \) is \(1-1 \), \(D = R \in Y_0 \) which is a contradiction. Then

\[
\bigcap \{ \varphi_A(b) \cap Y_0 : \varphi_A(b) \notin H_{X(A)}(R) \} \subseteq \bigcup \{ \varphi_A(c) \cap Y_0 : \varphi_A(c) \in H_{X(A)}(R) \}.
\]

Let \(B = \{ b : \varphi_A(b) \notin H_{X(A)}(R) \} \) and \(C = \{ c : \varphi_A(c) \in H_{X(A)}(R) \} \). Since \(Y_0 \) is an \(N\)-space, by Theorem 1.3 there exist \(b_1, \ldots, b_n \in [B] \) and \(c_1, \ldots, c_m \in [C] \) such that \(b_1 \land \cdots \land b_n \) and \(c_1 \lor \cdots \lor c_m \). Then \(\varphi_A(b) \cap Y_0 \subseteq \varphi_A(c) \cap Y_0 \), or equivalently, \(\varphi_A(c)^c \cap Y_0 \subseteq \varphi_A(b)^c \cap Y_0 \). So, the pair \((b \lor c, c) \in \theta(Y_0) \) as \(\theta(Y_0) \) is a congruence, \((\Box (b \lor c), b \lor c) \in \theta(Y_0) \), i.e., \(\varphi_A((\Box (b \lor c))^c \cap Y_0 \subseteq \varphi_A((\Box b)^c \cap Y_0 \). It is clear that \(P \in \varphi_A((\Box b)^c \) because if \(P \notin \varphi_A((\Box b)^c \) then \(c \notin \Box^{-1}(P) \) and \(c \notin R \). Also, since \(\varphi_A(c) \in H_{X(A)}(R) \), we have \(R \notin \varphi_A(c) \). So, \(c \in R \) which is a contradiction. Then \(P \in \varphi_A((\Box b)^c \cap Y_0 \) and \(P \in \varphi_A((\Box (b \lor c))^c \cap Y_0 \). Thus, \(b \lor c \notin \Box^{-1}(P) \) and as \(\Box^{-1}(P) \) is a filter it follows that \(\Box b \notin P \). Then \(\Box b = (\Box b_1 \land \cdots \land b_n) = \Box b_1 \land \cdots \land \Box b_n \in P \) and for primitivity of \(P \) there exists \(i \in \{ 1, \ldots, n \} \) such that \(\Box b_i \notin P \). So, \(\Box b_i \notin \Box b_1 \) and \(\Box b_i \notin P \). By Proposition 2.4 there is \(D \in X(A) \) such that \(P \subseteq \Box^{-1}(P) \) and \(b_i \in D \). Since \(R \) is maximal, we have \(D \subseteq R \) and \(b_i \notin R \). On the other hand, as \(\varphi_A(b_i) \notin H_{X(A)}(R) \), \(\Box b_i \notin R \) which is a contradiction. Therefore, \(Y_0 \) is a \(Q\Box \)-saturated subset of \(X(A) \) and \(F \) is a dual isomorphism. □
5.2. □-subalgebras

In this subsection we characterize the subalgebras of a □-distributive nearlattice A_\Diamond. The set of all subalgebras of A_\Diamond is denoted by $\text{Sub}_{\Diamond}(A)$.

Definition 14. Let (X, \mathcal{K}) be an N-space and let \mathcal{L} be a non-empty subset of \mathcal{K}. We say that \mathcal{L} is N-basic if $(U \cap W) \cup (V \cap W) \in \mathcal{L}$ for all $U, V, W \in \mathcal{L}$.

Let $A \in D\mathcal{N}$. By the results developed in [9], there is a correspondence between subalgebras of A and N-basic subsets of the dual space $(X(A), K_A)$. We have the following definition.

Definition 15. Let (X, \mathcal{K}, Q) be an $N\Box$-space and let \mathcal{L} be a non-empty subset of \mathcal{K}. We say that \mathcal{L} is $N\Box$-basic if it is N-basic and $\Box_Q (U^c) \in \mathcal{L}$ for all $U \in \mathcal{L}$.

We consider $\text{Nb}_{\Box}(X) = \{L \subseteq K : L \text{ is } N\Box\text{-basic}\}$. Let $A_\Box \in D\mathcal{N}_\Box$. We define $T(B) = \{\varphi_A(b)^c : b \in B\}$ for each $B \in \text{Sub}_{\Box}(A)$.

Lemma 5.1. Let $A_\Box \in D\mathcal{N}_\Box$. If $B \in \text{Sub}_{\Box}(A)$ then $T(B) \subseteq \text{Nb}_{\Box}(X(A))$.

Proof. Let $U \in T(B)$. Then there is $b \in B$ such that $U = \varphi_A(b)^c$. Since B is a subalgebra of A, $\Box b \in B$ and $\varphi_A(\Box b)^c \in T(B)$. On the other hand, by Proposition 2.4, $\Box_Q (\varphi_A(b)) = \varphi_A(\Box b)$. Then $\Box_Q (\varphi_A(b)^c) = \Box_Q (U^c) \in T(B)$ and $T(B) \subseteq \text{Nb}_{\Box}(X(A))$.

Let $\mathcal{L} \subseteq \text{Nb}_{\Box}(X(A))$. We consider $S(\mathcal{L}) = \{a \in A : \varphi_A(a)^c \in \mathcal{L}\}$.

Lemma 5.2. Let $A_\Box \in D\mathcal{N}_\Box$. If $\mathcal{L} \subseteq \text{Nb}_{\Box}(X(A))$ then $S(\mathcal{L}) \subseteq \text{Sub}_{\Box}(A)$.

Proof. We prove that $S(\mathcal{L})$ is closed under the modal operator \Box. If $a \in S(\mathcal{L})$ then $\varphi_A(a)^c \in \mathcal{L}$ and \mathcal{L} is $N\Box$-basic. If $a \in S(\mathcal{L})$ then $\Box_Q (\varphi_A(a)) = \varphi_A(\Box a)^c \in \mathcal{L}$. Therefore $S(\mathcal{L}) \subseteq \text{Sub}_{\Box}(A)$.

Theorem 5.2. Let $A_\Box \in D\mathcal{N}_\Box$ and let $(X(A), K_A, Q_\Box)$ be the dual space of A_\Box. Then the lattices $\text{Sub}_{\Box}(A)$ and $\text{Nb}_{\Box}(X(A))$ are isomorphic.

Proof. By definition of T and S it follows that $S(T(B)) = B$ for all $B \in \text{Sub}_{\Box}(A)$ and $T(S(\mathcal{L})) = \mathcal{L}$ for all $\mathcal{L} \subseteq \text{Nb}_{\Box}(X(A))$. The result is immediate.

5.3. The free □-distributive lattice extension

Let $A \in D\mathcal{N}$ and let $(X(A), K_A)$ be the dual space of A. Let $K\mathcal{O}(X(A))$ be the family of all open and compact subsets of $(X(A), K_A)$. We consider $D\mathcal{K}_\mathcal{O}[X(A)] = \{U : U^c \in K\mathcal{O}(X(A))\}$. Thus, $U \in D\mathcal{K}_\mathcal{O}[X(A)]$ if and only if there exist $a_1, \ldots, a_n \in A$ such that $U = \varphi_A(a_1) \cap \cdots \cap \varphi_A(a_n)$. In [10] it was shown that the structure $(D\mathcal{K}_\mathcal{O}[X(A)], \cup, \cap, \emptyset, X(A))$ is a bounded distributive lattice and the pair $(D\mathcal{K}_\mathcal{O}[X(A)], \varphi_A)$ is the free distributive lattice extension where the map $\varphi_A : A \rightarrow D\mathcal{K}_\mathcal{O}[X(A)]$ is given by $\varphi_A(a) = \{P \in X(A) : a \notin P\}$. Now, we extend these results to the class of □-distributive nearlattices.

Definition 16. Let $A_\Box \in D\mathcal{N}_\Box$. A pair $L_\Box = \langle (L, \Box), e \rangle$, where (L, \Box) is a bounded distributive lattice with a necessity modal operator and $e : A \rightarrow L$ a 1-1 □-homomorphism, is a □-free distributive lattice extension of A_\Box if the following universal property holds: for every bounded distributive lattice with a necessity modal operator (\mathcal{T}, Δ) and every □-homomorphism $h : A \rightarrow \mathcal{T}$, there exists a unique □-homomorphism $\overline{h} : \mathcal{T} \rightarrow \mathcal{T}$ such that $h = \overline{h} \circ e$.

Let $A_\Box \in D\mathcal{N}_\Box$. We consider the map $\Box : D\mathcal{K}_\mathcal{O}[X(A)] \rightarrow D\mathcal{K}_\mathcal{O}[X(A)]$ given by

$$\Box(U) = \varphi_A(\Box a_1) \cap \cdots \cap \varphi_A(\Box a_n),$$

where $U = \varphi_A(a_1) \cap \cdots \cap \varphi_A(a_n)$ for some $a_1, \ldots, a_n \in A$. Note that:
DISTRIBUTIVE NEARLATTICES WITH A NECESSITY MODAL OPERATOR

(1) $\Box (X (A)) = X (A)$,
(2) $\Box (U \cap V) = \Box (U) \cap \Box (V)$ for all $U, V \in D_{K\Box}$.

So, \Box is a modal operator on $D_{K\Box}$, i.e., the structure $\langle D_{K\Box}, X (A), \cup, \cap, \Box, \varnothing, X (A) \rangle$ is a bounded distributive lattice with a necessity modal operator.

Theorem 5.3. Let $A_{\Box} \in D_{N_{\Box}}$ and let $\langle X (A), K_{A}, Q_{\Box} \rangle$ be the dual space of A_{\Box}. Then the pair $\langle \langle D_{K\Box}, X (A), \Box, \varnothing \rangle, \varphi_{A} \rangle$ is the \Box-free distributive lattice extension of A_{\Box}.

Proof. Let $\langle \mathcal{T}, \Delta \rangle$ be a bounded distributive lattice with a necessity modal operator and let $h: A \to \mathcal{T}$ be a \Box-homomorphism. We define $\overline{h}: D_{K\Box} \to \mathcal{T}$ by

$$\overline{h} (\varphi_{A} (a_1) \cap \cdots \cap \varphi_{A} (a_n)) = h (a_1) \cap \cdots \cap h (a_n).$$

By [10], we have that \overline{h} is a unique homomorphism such that $h = \overline{h} \circ \varphi$. We only prove that $\overline{h} (\Box (U)) = \Delta (\overline{h} (U))$ for all $U \in D_{K\Box}$. Thus, if $U \in D_{K\Box}$ then there exist $a_1, \ldots, a_n \in A$ such that $U = \varphi_{A} (a_1) \cap \cdots \cap \varphi_{A} (a_n)$. Then

$$\overline{h} (\Box (U)) = \overline{h} (\Box (\varphi_{A} (a_1) \cap \cdots \cap \varphi_{A} (a_n))) = \overline{h} (\varphi_{A} (a_1) \cap \cdots \cap \varphi_{A} (a_n))$$

$$= h (a_1) \cap \cdots \cap h (a_n) = \Delta (h (a_1)) \cap \cdots \cap \Delta (h (a_n))$$

$$= \Delta (h (a_1) \cap \cdots \cap h (a_n)) = \Delta (\overline{h} (\varphi_{A} (a_1) \cap \cdots \cap \varphi_{A} (a_n))).$$

Therefore, \overline{h} is a \Box-homomorphism. □

References
