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Water solubility is a key physicochemical parameter in pesticide control and regulation, although sometimes its
experimental determination is not an easy task. In this study, we present Quantitative Structure-Property
Relationships (QSPRs) for predicting the water solubility at 20 °C of 1211 approved heterogeneous pesticide
compounds, collected from the online Pesticides Properties Data Base (PPDB). Validated and generally applic-
able Multivariable Linear Regression (MLR) models were established, including molecular descriptors carrying

constitutional and topological aspects of the analyzed compounds. The most representative descriptors were
selected from the exploration of a large number of about 18,000 structural variables. A hybrid approach that
involves a molecular descriptor, a fingerprint, and a flexible descriptor showed the best predictive performance.

1. Introduction

There are an increasing number and amount of pesticides detected
in water including drinking water sources. At the present time, im-
portant regulatory laws exist regarding the levels of pesticides that are
allowed in surface water, groundwater and drinking water to avoid
dangerous contamination (Agency, 2017; Hamilton et al., 2003). Eur-
opean regulations recognize the need for the use of pesticides for
agricultural development, but their use cannot have adverse effects on
human health, animals or the environment (Villaverde et al., 2017).
Pesticides and their degradation products are distinguished by their
strong toxicity and persistence in the environment. The predisposition
of a pesticide to be removed from soil by runoff from rain or from ir-
rigation water and to reach surface water is directly related to its water
solubility (S,,). This parameter is defined as the concentration of a
chemical dissolved in water when that water is both in contact and at
equilibrium with the pure chemical.

The study of water solubility of pesticides is important to measure
their environmental fate (e.g. biodegradation, bioaccumulation) and
potential effects on humans and other living organisms. Water solubi-
lity measurement establishes a basis for other environmentally relevant
parameters, such as the octanol/water partition coefficient and the
organic carbon/water partition coefficient, among others. The experi-
mental error of solubility measurements can be quite large, especially
for compounds with a very low solubility value. The accurate
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evaluation of water solubility is complicated by a number of factors,
including ionization, formation of salts and polymorphism. These ef-
fects may significantly alter the water solubility values (Cronin and
Livingstone, 2004).

The application of Quantitative Structure-Property Relationships
(QSPR) and computer-aided modeling techniques are valuable and
frequently used tools to accurately predict physical and chemical
properties of compounds (Cronin and Livingstone, 2004; Hamadache
et al., 2017; Mas et al., 2010). Regulation agencies worldwide promote
the use and development of non experimental tests to anticipate the
possible health and environmental risks of pesticides (Tebes-Stevens
et al., 2018; Villaverde et al., 2018). European regulatory agencies such
as REACH (Registration, Evaluation, Authorization and restriction of
Chemicals) and BPR (Biocidal Product Regulation) intensely encourage
the use of non-animal testing techniques to evaluate the chemical risk
of new pesticides. Therefore, QSPR techniques emerge as a logical and
useful alternative to expensive and time-consuming experimental pro-
cedures for the prediction of water solubility of pesticides, ultimately
avoiding many animal laboratory sacrifices. Trustworthy models can
provide insights about the molecular characteristics that may influence
the water solubility, and greatly improve the determination of this
property. Many methods have been developed to predict water solu-
bility, either exclusively from the molecular structure or by using
variables that are easier to measure. A well known method is the
Yalkowsky's “General Solubility Equation” (Ran et al., 2002), which
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bases the solubility calculation on only two variables: the partition of
liquid compounds and water (logP), and the melting point to take into
account the transition from solid to liquid. The ESOL method developed
by Clarke and Delaney (Clarke and Delaney, 2003; Delaney, 2004)
produces solubility predictions comparable to the General Solubility
Equation (GES) but with the advantage that it does not need to account
for the experimental melting points. The ESOL method yields linear
models based on the following four parameters: logP,., molecular
weight, number of rotatable bonds and proportion of heavy atoms de-
fined as ‘aromatic’. Recently, predictive models have been developed
for the aqueous solubility of a large set of drugs, drug-like compounds,
and agrochemicals, with two dimensional descriptors called extended
topochemical atom (ETA) indices, as well as other topological, struc-
tural, spatial and electronic non-ETA descriptors, and the lipophilicity
parameter, C log P (Das and Roy, 2013). These models employed the
genetic function approximation (GFA), genetic partial least squares (G/
PLS), and stepwise multiple linear regression (MLR). On the other hand,
conformation-independent descriptors were used by the Toropov group
through the CORAL program to build up QSPRs for water-solubility
(Toropov et al., 2013). Also, density functional theory (DFT) approx-
imations and QSPR methods were applied to halogenated methyl-
phenyl ethers to model their water solubility (Zeng et al., 2012). They
found that solubility was strongly affected by three variables: energy of
the lowest unoccupied molecular orbital, most positive atomic partial
charge in the molecule, and the quadrupole moment. The water solu-
bility of 209 congeners of chloro-trans-azobenzene was modeled using
Genetic Algorithm-Artificial Neural Network (GA-ANN) (Wilczyniska-
Piliszek et al., 2012). Non-ionic perfluorinated chemicals were studied
using two-dimensional descriptors (Bhhatarai and Gramatica, 2010). In
addition, Benfenati and coworkers have applied different predictive
computer models to analyze water solubility in organic compounds
(Cappelli et al., 2013). Analyzing all available models, they concluded
that the values of highly soluble compounds can be more accurately
predicted than those of poorly soluble ones. Recently, Kim et al. (2016)
proposed a QSPR model based on the hyper-Wiener index (WW) of
quantum-chemical descriptor for 75 polychlorinated dibenzo-p-dioxins
(PCCDs). The single descriptor model obtained with the WW success-
fully predicted the water solubility of PCDDs and was able to distin-
guish among congeners with the same number of chlorine atoms. The
authors concluded that for these pesticides, the structural information
contained in the WW was fundamental to achieving good predictions.

The purpose of this study is to establish a QSPR model for the water
solubility of pesticides using a large set of descriptors and experimental
data from structurally heterogeneous pesticides reported in the litera-
ture. It is our aim to propose simple models based on an extensive and
varied set of compounds. Only conformation-independent molecular
descriptors were considered in order to obtain reliable but simple
models.

It is well known that QSPR models solely based on constitutional
and topological molecular characteristics, avoid ambiguities that may
result from the existence of chemical compounds in various con-
formational states (Duchowicz et al., 2012; Talevi et al., 2012).
Therefore, three different QSPR approaches were explored: i) conven-
tional OD, 1D and 2D descriptors and fingerprints generated by the
freely available descriptor programs PaDEL-Descriptor (version 2.20)
(Yap, 2011), EPI Suite (US, E.P.A. Estimation Programs Interface Suite™
for Microsoft® Windows, 411; Washington, DC), and Mold2 (Hong et al.,
2008); ii) flexible descriptors obtained through the CORALSEA program
(Toropova et al., 2012); and iii) the aforementioned sets of descriptors
combined. Simple models including from 1 to 8 descriptors were chosen
as the best predictive combinations of independently selected variables.
The study complies with the principles required by the Organization for
Economic Co-operation and Development (OECD), which includes the
following: a defined endpoint with S values determined with equal
experimental conditions; unambiguous algorithms, with reproducibility
of the predictions covered by the generation of the descriptors using

48

Ecotoxicology and Environmental Safety 171 (2019) 47-53

publicly available software; a defined applicability domain; and ap-
propriate measures of goodness-of-fit, robustness and predictivity de-
termined by external validation. (Gramatica, 2007; OECD, 2007)

2. Materials and methods
2.1. Experimental Dataset

The QSPR analysis was performed on 1211 approved pesticides
(Table 18S). Their structures and water solubility measured at 20 °C were
collected from the online Pesticide Properties DataBase (PPDB) (Lewis
et al., 2018). The PPDB has been developed by the Agriculture & En-
vironment Research Unit at the University of Hertfordshire. The solu-
bility expressed as g/L was converted into logarithmic units (log S,,).

2.2. Structural representation and molecular descriptors calculation

The molecular structures of the pesticides were generated in both
SMILES notation and bi-dimensional structures, drawn with the free
Discovery Studio software (Version 3.5, Dassault Systémes BIOVIA,
Discovery Studio Modeling Environment, San Diego, USA) and saved in
MDL mol (V2000) format without performing any geometrical opti-
mization. Two different approaches were applied to calculate the de-
scriptors:

a) The freely-available software PaDEL-Descriptor (version 2.20) (Yap,
2011), EPI Suite, and Mold2 (Hong et al., 2008) were used to
compute 17,974 theoretical conformation-independent molecular
descriptors and fingerprints. Of this total, 1444 1D and 2D de-
scriptors and 12 types of fingerprints (16,092) were calculated with
the PaDEL-Descriptor, 184 descriptors with the EPI Suite, and 254
descriptors with the Mold2. Descriptors found to be linearly-de-
pendent and constant values were excluded from the pool of vari-
ables.

b) Flexible molecular descriptors were obtained from the CORAL
freeware (Toropova et al., 2012) using the SMILES notation of the
compounds as input along with the experimental log S,, values. The
CORAL program allows different structural representation (SR) ap-
proaches: a chemical graph (hydrogen-suppressed graph (HSG),
hydrogen-filled graph (HFG) or graph of atomic orbitals (GAO)),
SMILES, or a hybrid of both (chemical graph and SMILES). The se-
lected SR defines the local descriptors to be included in the QSPR
analysis; therefore, it is crucial to look for the most appropriate
combination of structural attributes (local descriptors, SA).

The CORAL framework searches for a QSPR model that correlates
the experimental log S, and a properly defined flexible descriptor
(DCW) through a one-variable linear relationship. The DCW descriptor
is a linear combination of special coefficients called correlation weights
(CW) with values calculated for each SA type in the training set via a
Monte Carlo (MC) simulation (Table 2S). The DCW depends upon the
threshold value (T) and the number of epochs or iterations used
(Toropova et al., 2012). T defines rare SMILES attributes that do not
contribute to the predicted property. All SMILES attributes that take
place in less than T SMILES notations of the training set were classified
as rare instead of active. In this study, T ranges from O to 5 and the
maximum number of iterations used is 50.

The programs used to calculate the descriptors were selected based
on their calculation accuracy, ease of access, free availability and re-
cognition by the scientific community. Following the OECD principles,
for a QSPR model to be acceptable it must be easily and continuously
applicable. These programs allowed calculations for the prediction of
the endpoint to be reproduced by everyone and also applied to new
compounds. The programs have already been used successfully by our
group for other QSPR and QSAR studies (Duchowicz et al., 2015, 2017).



S.E. Fioressi et al.

2.3. Model Validation

For building the QSPR models and verifying their predictive cap-
ability, the complete dataset was split into three subsets: a training set
(404 compounds) for model development, a validation set (404 com-
pounds) for checking whether the model is satisfactory for compounds
that are absent from the training set, and a test set (403 compounds) for
true external validation. To be certain that the training set is re-
presentative of the validation and test sets, the dataset was split using
the Balanced Subsets Method (BSM) (Rojas et al., 2015). The procedure
is based on k-Means Cluster Analysis (k-MCA) which guarantees similar
structure-property relationships in the three subsets. The Replacement
Method (RM) (Duchowicz et al., 2006) variable subset selection pro-
grammed in MATLAB software (The MathWorks, Inc., Natick, Massa-
chusetts, USA) was applied to generate Multivariable Linear Regression
(MLR) models on the training set. RM is a sequential method that op-
timizes the root-mean-squared deviation (RMSD) in MRL.

In order to measure the stability of the QSPR model upon inclusion/
exclusion of molecules, the MLR models were internally validated
through the Leave-One-Out Cross Validation (loo) method. It is a gen-
eral validation criterion to accept the model if the coefficient of de-
termination loo (R2,) is greater than 0.5. However, this is a necessary
but not sufficient condition for predictive power (Golbraikh and
Tropsha, 2002). A more robust validation criterion is to apply the same
principle (R2; > 0.5) to the external test set of 403 compounds. To rule
out chance correlations, the experimental values were scrambled
through the Y-Randomization method (Wold et al., 1995) in such a way
that they did not correspond to the respective compounds.

2.4. Applicability domain

The applicability domain (AD) of a QSPR model is the range of data
in which the training set model is developed and within which pre-
dictions for new molecules can be considered reliable. It is a theoreti-
cally defined space in which only the molecules that belong to this AD
are not considered model extrapolations (Gadaleta et al., 2016;
Gramatica, 2007). The AD for the proposed models were determined
though the leverage approach (Eriksson et al., 2003), where each
compound i has a calculated leverage value h; and a warning leverage
value h* (Table 2S); if h; > h* the prediction is considered as a model
extrapolation.

3. Results and discussion

We performed a QSPR analysis on 1211 diverse compounds well
known for their pesticide action. Three different QSPR approaches were
explored to model the water solubility by resorting to different de-
scriptor types: 1) conventional descriptors; 2) flexible descriptors; and
3) hybrid descriptors. The general methodology applied in the three
approaches was first, to verify the predictive ability of the molecular
descriptors, and then to evaluate the models for the experimental log S,,
data in the test set. This allows to fully exploit the available structural
and response information, and thus to enlarge the applicability domain
of the designed model. The statistical parameters for each model are
provided as Supplementary information (Table 3S to 11S). To fulfill the
five validation principles suggested by the OECD the applicability do-
mains were properly defined and the models were validated through Y-
randomization and Cross-Validation. The detailed results, including the
respective model equations and the main statistical parameters ob-
tained are discussed in the following sections.

3.1. Conventional descriptors
The results for the best eight models found by using the first ap-

proach are shown in Table 1. Models involving from one to eight mo-
lecular descriptors and fingerprints were explored; the best predictive

49

Ecotoxicology and Environmental Safety 171 (2019) 47-53

performances were observed for those containing six and seven de-
scriptors. Both of these models presented similar RMSD,,, but the
model with seven descriptors had a smaller difference between RMSD,
and RMSDin. Therefore, the seven descriptors model was selected as
the best result for the conventional descriptors approach, and the cal-
culated log S,, (Eq. (1)) versus the experimental values for this model
are shown in Fig. 1.

log Sy, = 0.156 + 1.462GATS2m + 1.808GATS1p-0.354CrippenLogP + 4.246SIC3
+ 9.9 X 10~!SpDiam_D-1.336 VAdjMat + 2.253 MACCSFP35

@

Nigin = 404, RZ; = 0.56, RMSDSyain = 1.57, Nyawe = 404, R%,q
= 0.54, RMSD, = 1.49, ((3S) = 7

Niest = 403, RZ = 0.56, RMSDS;ese = 1.38, R, = 0.53, RMSDj5,
= 1.62, RMSD,qnq = 2.30, k"= 0.059 A compound having an absolute
residual value (difference between experimental and calculated log,,S.,)
greater than 3 times RMSD,;, is considered an outlier. The o(3S)
parameter indicates the number of outlier compounds in the training
set (Verma and Hansch, 2005). Ten compounds in this model are not
within the applicability domain and seven compounds are outliers
(compounds 53, 213, 233, 637, 853, 1120, 1155). The water solubility
data for compound 53 is not reliable, as there are at least two very
different solubility values reported in the literature for this pesticide
(Lewis et al., 2018; Wishart et al., 2017). The rest of the outliers are
compounds with extremely low or very high solubility. For example,
compound 853 exhibits the lowest solubility in the dataset, whereas
compound 637 has the highest one. The solubilities of outlier com-
pounds 213 and 1155 are significantly low and compounds 233 and
1120 are very soluble in water (S,, = 10° g/L). It is understandable
that, in such a large and diverse molecular set, those compounds with
extreme solubility values fall as outliers in the proposed model. None-
theless, Eq. (1) satisfies the following external validation conditions
(Roy, 2007):

1 — RZ/RZ, < 0.1(0.0005) or 1 — R}*/R2,

< 1.15(0.99)

< 0.1 (0.11) and, 0.85 < k

and 0.85 < k' < 1.15(0.66)and RZ > 0.5 (0.55)

Two GATS descriptors showed positive correlations with log S,, in
this model. These are 2D-autocorrelation descriptors originated in the
autocorrelation of the topological structure of Geary that encode both,
the molecular structure and a physicochemical property as a vector,
relating the topology of a structure with the selected physicochemical
attribute. The number following the descriptor symbol represents the
topological distance between atom pairs (lag), and the letter accounts
for the physicochemical property considered in the weighting compo-
nent for its computation. In the present model, the GATS2m descriptor
represents an autocorrelation descriptor of lag 2 weighted by mass,
whereas GATS1p describes the atomic polarizabilities at a topological
distance of one.

The MACCSFP35 fingerprint, which represents the presence of an
alkali metal atom of group IA, the 2D matrix-based descriptor SpDiam_D
(spectral diameter from the topological distance matrix) and the
structural information content index SIC3 (neighborhood symmetry of
3-order), also presented positive correlations with log S,,. In contrast,
two descriptors in this model presented a negative effect on the water
solubility: CrippenLogP and VAdjMat. The first one is an atom-based
descriptor that measures the lipophobic character of a molecule, and
the second one is vertex adjacency information (magnitude): 1 + log,
m, where m is the number of heavy-heavy bonds. Therefore, this model
predicts that the polarizability, the presence of alkali atoms, and the
asymmetry of the molecular structure have positive contributions to the
water solubility, whereas the lipophobic character and the presence of
heavy elements have a negative contribution, as expected.
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Table 1
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Descriptors identified for modeling the water solubility in the training, validation, and test sets. The best model appears in bold text.

#Des#Desc. Descriptors RZin RMSDy 4 RZ, RMSD, RZ, RMSD,,
1 CrippenLogP 0.27 2.02 0.49 1.70 0.46 1.69
2 CrippenLogP, piPC8 0.31 1.96 0.50 1.60 0.43 1.62
3 GATS1i, CrippenLogP, SpMAD_Dt 0.38 1.86 0.50 1.57 0.50 1.51
4 GATS1i, CrippenLogP, ZMICO, SpDiam D 0.42 1.80 0.54 1.52 0.54 1.45
5 ATSCle, GATS1i, CrippenLogP, SpDiam D, SubFPC297 0.48 1.70 0.55 1.49 0.55 1.42
6 ATSCle, GATS2m, GATSIi, CrippenLogP, SpAD_D, SubFPC297 0.52 1.64 0.53 1.50 0.55 1.39
7 GATS2m, GATS1p, CrippenLogP, SIC3, SpDiam_D, VAdjMat, MACCSFP35 0.56 1.57 0.54 1.49 0.56 1.38
8 AATS3e, AATS2p, AATSC1e, GATSIp, CrippenLogP, SpDiam D, VAdjMat, PubchemFP406 0.59 1.52 0.51 1.55 0.55 1.40
6
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Fig. 1. Experimental and predicted values for the training, validation and test sets for the seven descriptors model (Eq. (1)) applied to 1211 pesticides.

3.2. Flexible descriptors

In order to find the most efficient structural attributes for each SR
during the flexible descriptor design, the DCW descriptor was optimized
by increasing R?2;,, until the model lost predictive capability in the
validation set, without involving the test set. The statistical parameters
for the best QSPR models found by trying different CORAL based
combinations are presented in Table 2. Analysis of these results reveals
that the best choice is an approach that includes HFG representations.
The optimal descriptor involves three variable types, and 168 active
attributes are based on them (refer to Table 10S). Fig. 2 shows that the
predicted and experimental values for the training, validation, and test
sets follow a straight line. The resulting equation for this model with
one DCW descriptor is:

log S,, = 0.444 + 0.103 DCW o)

Table 2

Statistical parameters for the training, validation, and test sets during the search
for the best QSPR model using flexible molecular descriptors. The best model
appears in bold text.

Structural attributes RZgn  RMSDiain  R2, RMSDvai  R2, RMSD;est
1S, 0.45 1.76 0.44 1.65 0.46 1.53
28 075 1.19 0.54 1.55 0.45 1.56
ECG; 0.40 1.83 0.45 1.62 0.47 1.53
Pt2; 0.46  1.74 0.50 1.56 0.46  1.54
NNC ; 0.52 1.64 0.50 1.56 0.49  1.49
VS2 0.59  1.52 045 1.7 0.48 1.51
%S, NNC ; 0.69 1.31 0.54 1.52 0.50 1.49
28y, Pt2y 074 1.21 0.54 1.52 0.48 1.51
Sy, Pt2j, NNC; 070 1.30 0.55 1.51 0.53 1.43

50

Nirgin = 404, Rt%‘ain = 0.70, RMSDy,i,, = 1.30, N,y = 404,
RZ, = 0.60, RMSD,; = 1.40, 0(35)) = 5

Niest = 403, R2;, = 0.54, RMSD,, = 1.41, R2, = 0.69,
RMSDjs0 = 1.31, RMSD,qnq = 2.33, h* = 0.015

All compounds are within the applicability domain and systematic
error is absent. Five compounds in the training set (53, 352, 764, 853,
1120) showed absolute residuals greater than 3 times RMSD,;, and
were considered as outliers. We applied both Y-randomization to de-
monstrate that RMSD;,4;, < RMSD,,q and also the external validation
criterion (Roy, 2007) to ensure that a valid structure-activity relation-
ship was achieved:

1 — RZ/R2g < 0.1(0.000)or 1 — R{*/RZ, < 0.1(0.12) and, 0.85 < k < 1.15(0.90)
and 0.85 < k' < 1.15(0.75)and R2 > 0.5(0.59)

Table 11S includes an example for the DCW calculation of com-
pound 2. The structural attributes that contribute to such DCW are
listed in Table 10S. The flexible molecular descriptors involved in this
model (S, Pt2, NNC)) are all local attributes (Toropov et al., 2017).
The %S, is a two-elements SMILES attribute, PtZ represents a path
length of two, and NNGC; is the nearest neighboring code, a local graph
invariant.

3.3. Hybrid descriptors

The third approach explored combines PaDEL, EPI Suite, Mold2,
and flexible CORAL descriptors and fingerprints. The combination be-
tween various flexible descriptors or between flexible descriptors and
conventional molecular descriptors produced robust models with better
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Fig. 2. Experimental and predicted values for the training, validation and test sets for the flexible-descriptor model (Eq. (2)) applied to 1211 pesticides.

predictive capability. The best hybrid model involves three descriptors
(Table 3, model 3), including the descriptor called DCW which was the
best descriptor found in the previous model (flexible molecular de-
scriptors model, Eq. (2)). The model that contains four terms in the
hybrid approach resulted in more complexity and did not yield a sig-
nificantly better performance.

It can be noted from the data, that compound 853 is an outlier in all
the proposed models presenting an extremely low log S,, value (-11.73)
which means a very low aqueous solubility. Excluding this compound
from the training set produced a better model (Table 3, model 3a) re-
presented by Eq. (3). It can be seen from Table 3 and Fig. 3 that such a
model shows the best performance among all the explored models:

log S,, = -0.669 + 2.032SIC2-0.473MACCSFP106 + 0.108DCW (3)

Nirain = 403, R2yn = 0.75, RMSDyyqin = 1.15, Nyq = 404,
RZ; = 0.62, RMSD, = 1.38, 0(35) = 4

Nist = 403, RZ, = 0.56, RMSD,os = 1.37, RZ, = 0.75,
RMSD,,, = 1.16, RMSD,,,q = 2.26, h* = 0.030

The DCW descriptor, and the SIC2 descriptor, which denotes the
neighborhood symmetry of 2-order both presented a positive correla-
tion with the predicted property. The fingerprint MACCSFP106, which
indicates the presence of non-aliphatic branching, had a negative
coefficient in this model. Eq. (3) also satisfies the external validation
conditions (Roy, 2007):
1 — RZ/R%, < 0.1(0.012)or 1 — R¢*/R2; < 0.1(0.16)and, 0.85 < k

< 1.15(0.97)

and 0.85 < k' < 1.15(0.68)and R2 > 0.5(0.55)

Four compounds in this model are outliers (compounds 53, 352,
764, 1120). As discussed in Section 3.1, the solubility value of com-
pound 53 is unreliable and it is an outlier in all the proposed models.
The other outliers have very low (352, 764) or very high (1120) water
solubility. This is understandable, since the dataset used is structurally
heterogeneous and includes organic and inorganic compounds with
very different water solubility values (in a more than 10log units
range). Ali et al. have shown that the sparsely populated extremities of
data sets can significantly distort results for linear regression-based
models (Ali et al., 2012b). These compounds can artificially inflate or
depress the predictive ability of the models. In their detailed studies (Ali
et al., 2012a), the ESOL and GES methods were compared with a model
which combines a computationally derived molecular descriptor (to-
pographical polar surface area, TPSA) with the experimentally de-
termined melting point and the log P (TPSA model). They proposed to
use a reduced data set that eliminates the compounds in sparsely po-
pulated regions and compare the statistics of the full set with those of
this reduced set to assess the robustness of the model. In order to
evaluate the model 3a, the compounds outside of the range
— 5.00 < log S = < 3.00 were removed, generating a reduced data set
of 1127 compounds. Analysis of the complete dataset including the
training, validation and test sub-sets yields a R? of 0.65 for the full set
and 0.60 for the reduced set. The RMSD varies from 1.30 for the full set
to 1.23 when the reduced data set is used. This means that exclusion of
compounds with extreme solubility values does not affect significantly
the predictive ability of the model. However, the almost 8% decrease in
R? indicates that the robustness of our model is comparable with those
of ESOL and GSE (Ali et al., 2012a), but is poorer than the TPSA model
that shows a reduction of less than 6% in R when the reduced set is
used.

The statistical parameters of this model with hybrid descriptors are

Table 3
Descriptors identified for modeling the water solubility together with the squared correlation coefficient and the standard deviation for the training, validation, and
test sets.

#Des. Descriptors RZin RMSD i, RZ, RMSD, RZ,, RMSD,.,

1 DCW* 0.70 1.30 0.55 1.51 0.53 1.43

2 DCW?’, MACCSFP106 0.71 1.28 0.61 1.38 0.55 1.40

3 DCW, SIC2, MACCSFP106 0.73 1.22 0.61 1.38 0.56 1.38

4 DCW, SIC2, MACCSFP106, SubFP236 0.75 1.19 0.61 1.38 0.56 1.37

3a® DCW, SIC2, MACCSFP106 0.75 1.15 0.62 1.38 0.56 1.37

2 DCW refers to the descriptor obtained using CORAL in HFG representation for the attributes Pt2;, NNC j, and °Sj.
> Model 3a are the results of the model 3, with the compound 853 removed from the training set.
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Fig. 3. Experimental and predicted values for the training, validation and test sets for the three-descriptors hybrid model (Eq. (3)) for 1210 pesticides (excluding

compound 853).

comparable with those reported for the general solubility equation of
Yalkowsky (Ran et al., 2002). The GSE yields a R? of 0.9681 when is
used to estimate the water solubility for a data set of 580 organic
nonelectrolytes, but the regression coefficient falls to 0.67 when is
applied to a larger (2874) and more diverse set of compounds (Delaney,
2004). The ESOL method, on the other hand, gives a RZ of 0.72 when
applied to the same set of 2874 organic compounds. The model pro-
posed here yields a R? of 0.75 for the training set (Table 3) of a diverse
collection of pesticides, including organic and inorganic compounds.
Moreover, it has the advantage over the GSE that the water solubility
prediction is based on constitutional parameters only, instead of the
experimental data required to apply the GSE. The ESOL method does
not use experimental data, but requires the calculation of the Clog P
(Delaney, 2004) and its performance is comparable to our 3a model.
This means that our QSPR hybrid approach can be applied to estimate
the S, for new compounds knowing just its molecular structure and
may also be helpful in the design of potentially less toxic pesticides. In
addition, the applicability of our model is not limited to none-
lectrolytes, while the ESOL and GSE methods have only been applied to
datasets that exclude compounds that may be charged al pH 7.

4. Conclusions

We developed a simple model that successfully predicts the water
solubility of a diverse and large set of pesticides through a strategy that
does not require the knowledge of the molecular conformation as part
of the structural representation. Analysis of the descriptors involved in
the models proposed here suggests that the polarizability, the presence
of alkali atoms, and the asymmetry of the molecular structure have
positive contributions to the water solubility values, whereas the pre-
sence of elements heavier than carbon and the lipophobic character of
the molecule have a negative correlation. The hybrid approach that
involves a molecular descriptor, a fingerprint, and a flexible descriptor
calculated with the CORAL software showed the best predictive per-
formance. This model was validated through Y-randomization, Cross-
Validation and included a properly defined applicability domain to
fully meet the validation principles established by the OECD. Its sa-
tisfactory predictive power suggests that this new model could re-
present a reliable alternative to the experimental assays, helping the
registrants of new pesticides to fulfill regulatory requirements in com-
pliance with the ethical and economic necessity to reduce animal
testing.
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Supporting information summary

Experimental and predicted water solubility values, and DCW for
the 1211 molecules studied along with the details of each model (cor-
relation matrices, mathematical equations used, description of the
molecular descriptors involved, correlation weight values for the
structural attributes, flexible descriptor calculation example) are
available online as supporting information.
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